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Abstract

Heat shock protein 90 (Hsp90) inhibition by modulation of the N-or C-terminal binding site has 

become an attractive strategy for the development of anti-cancer chemotherapeutics. The first 

Hsp90 C-terminus inhibitor, novobiocin, manifested a relatively high IC50 value of ~700 μM. 

Therefore, investigation of the novobiocin scaffold has led to analogs with improved 

antiproliferative activity (nanomolar concentrations) against several cancer cell lines. During these 

studies, novobiocin analogs that do not inhibit Hsp90 were identified; however, these analogs 

demonstrated potent anti-proliferative activity. Compound 2, a novobiocin analog, was identified 

as a MAPK pathway signaling disruptor that lacked Hsp90 inhibitory activity. In addition, 

structural modifications of compound 2 were identified that segregated Hsp90 inhibition from 

MAPK signaling disruption. These studies indicate that compound 2 represents a novel scaffold 

for disruption of MAPK pathway signaling and may serve as a useful structure for the generation 

of new anti-cancer agents.
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INTRODUCTION

Heat shock protein 90 (Hsp90) is a molecular chaperone that facilitates the conformational 

maturation of other cellular proteins, termed clients, via the Hsp90 chaperone cycle. Hsp90 

functions as a homodimer and each monomer comprises an N-terminal domain (the site of 

ATP-binding and hydrolysis), a middle domain, and a C-terminal dimerization domain. 

*Corresponding Author: Brian S. J. Blagg, Phone: (785) 864-2288, Fax: (785) 864-5326, bblagg@ku.edu. 

Supporting information includes figures and additional experimental information. This information is available free of charge and can 
be found at http://pubs.acs.org

HHS Public Access
Author manuscript
J Med Chem. Author manuscript; available in PMC 2017 May 25.

Published in final edited form as:
J Med Chem. 2016 February 11; 59(3): 925–933. doi:10.1021/acs.jmedchem.5b01354.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KU ScholarWorks

https://core.ac.uk/display/213423377?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pubs.acs.org


Inhibitors that target the N-and C-termini of Hsp90 can halt client maturation and lead to 

ubiquitinylation and degradation of the substrate via the proteasome1–5. N-terminal 

inhibitors perturb ATPase activity at the N-terminus and include derivatives of the natural 

product geldanamycin. However, N-terminal inhibition also leads to induction of the pro-

survival heat shock response (HSR) via Heat Shock Factor-1. This led to the development of 

C-terminal inhibitors, in which the HSR is avoided and client degradation is maintained. 

There are several therapeutic opportunities for small molecules that target the Hsp90 N-or C-

terminus, including the development of anticancer chemotherapeutics6–20.

Novobiocin is a natural product that inhibits the Hsp90 C-terminus and was found to exhibit 

an IC50 value of ~700 μM against the SKBr3 breast cancer cell line (Figure 1)21. Extensive 

structure-activity relationship (SAR) studies on novobiocin have greatly improved anti-

proliferative activity against many different cancer cell lines and identified structural 

elements necessary for Hsp90 inhibition; however, exploration of the amide linker has yet to 

be fully investigated22–40.

During SAR studies of the urea linker that was probed as a surrogate for the amide, 

analogues were identified that exhibited potent anti-proliferative activity against several 

cancer cell lines. However, some of the compounds did not inhibit Hsp90. Investigation of 

these analogues led to identification of 2, a novobiocin analogue that exhibited potent anti-

proliferative activity against the MCF7 breast and A549 lung cancer cell lines without 

Hsp90 inhibitory activity. Instead, compound 2 was shown to disrupt mitogen-activated 

protein kinase (MAPK) signaling and in a time-dependent manner inhibited the 

phosphorylation of MEK and ERK. Since oncogenic mutations frequently occur within the 

MAPK pathway, much research has been devoted to the development of inhibitors of this 

pathway, including EGFR, Raf, MEK and ERK41–43. Preliminary SAR studies of 2 
examined the necessity of each methoxy substitution on the biaryl side chain and identified 

moieties that transition novobiocin analogues from Hsp90 inhibitory activity, such as 

compound 1, to MAPK pathway inhibitors (Figure 1).

RESULT AND DISCUSSION

As shown in Scheme 1, compound 1 was prepared in one step by coupling the previously 

reported aniline 639 with the commercially available phenylisocyanate, 7a. Compound 2 was 

synthesized from biaryl acid 839, using diphenylphosphorylazide to give the corresponding 

azide, which underwent Curtius rearrangement to afford phenylisocyanate, 7b. Subsequent 

coupling of 7b with intermediate 6, provided compound 2 in good yield.

Many client proteins that depend upon Hsp90 are up-regulated and oftentimes represent 

signaling pathways that are hijacked during malignant transformation16,18,44,45. Compounds 

that inhibit Hsp90, or the Hsp90 chaperone cycle, lead to client protein degradation via the 

ubiquitin proteasome pathway and deprive cancer the use of clients that drive progression 

and growth1,4,5,46. Therefore, decreased client protein levels are observed at the IC50 values 

obtained in cell proliferation assays for Hsp90 inhibitors. To determine whether a compound 

inhibits Hsp90, IC50 values are generated against cancer cell lines that depend upon 

functional Hsp90. The estrogen receptor-expressing MCF7 breast cancer cell line and the 
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KRAS-driven A549 lung cancer cell line both depend upon Hsp90 for client protein 

maturation. Therefore, compounds that exhibit potent anti-proliferative activity against these 

cell lines may inhibit Hsp90. Table 1 shows the IC50 values for compounds 1 and 2 
generated against these cancer cell lines, as well as the normalized cell line, MRC-5. 1 and 2 
were shown to exhibit potent inhibition of cancer cell growth compared to the MRC-5 line, 

indicating the cellular target(s) for these compounds facilitate cancer growth.

Client protein levels in MCF7 and A549 cells were determined via Western blot analysis 

after incubation with low and high concentrations of 1 and 2 (L = half the IC50 value; H = 

five-times the IC50 value, respectively; Figure 2). If client levels are unaffected upon 

incubation with low concentrations of the compound and decreased at high concentrations, 

the compound is likely to inhibit Hsp90 function.

Incubation with high concentrations of 1 led to decreased levels of the Hsp90-dependent 

clients EGFR, Her2 and C-Raf in both MCF7 and A549 cell lysates, when compared to 

vehicle control (Figure 2). Hsp90 levels at low and high concentrations of 1 were 

comparable to vehicle and indicative of Hsp90 C-terminal inhibition37. Furthermore, 

incubation with the N-terminal inhibitor, geldanamycin (GDA), led to decreased client levels 

at concentrations that increased cellular levels of Hsp90 (Supplementary Figure 1)47,48. 

These data suggest the mechanism of action manifested by compound 1 is inhibition of the 

Hsp90 C-terminus, as opposed to N-terminal inhibition.

In contrast, client protein levels were unchanged after incubation with low and high 

concentrations of 2 against both MCF7 and A549 cells. Since no Hsp90-dependent client 

protein degradation was observed with compound 2, the data suggests this compound 

inhibits cancer cell growth unrelated to Hsp90 inhibition. The luciferase refolding activity 

was measured for the compound 2 to confirm whether this compound has Hsp90 inhibitory 

activity. The data demonstrates that compound 2 does not inhibit the re-maturation of firefly 

luciferase, similar to DMSO treated cells (Figure 2). In contrast, the novobiocin analog, 

KU-257, which inhibits Hsp9039, was shown to inhibit luciferase re-maturation (Figure 2). 

These results further confirm that compound 2 inhibits cancer cell growth unrelated to 

Hsp90 inhibition. Given the potent antiproliferative activity manifested by 2 against both 

cancer cell lines as well as the selective inhibition of cancer cell growth, the mechanism by 

which 2 manifests this anti-cancer activity was pursued.

Since 2 exhibited potent anti-proliferative activity against the non-small cell lung cancer cell 

line A549 and generated an IC50 value of 0.15 ± 0.02 μM, subsequent studies were initiated 

with this cell line. The A549 cell line expresses wild type B-Raf, C-Raf and mutant KRAS. 

Proliferation of the A549 cell line is driven by over-activation/expression of proteins 

involved in the Ras-Raf-MEK-ERK (MAPK) pathway and consequently, this cell line is 

commonly utilized to identify small molecule kinase inhibitors that target Raf, MEK and/or 

ERK49. Interestingly, many inhibitors that target kinases involved in the MAPK pathway 

display structural similarities to compound 2 (Figure 3).

Given the potent anti-proliferative activity exhibited by 2 against the MAPK-driven A549 

cancer cell line, and the structural similarities between 2 and known disruptors of this 
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pathway, it was hypothesized that 2 may inhibit the A549 cancer growth through disruption 

of MAPK signaling. Therefore, to determine whether 2 inhibits kinases within the MAPK 

pathway, Western blots for phosphorylated proteins involved in the MAPK pathway were 

performed using A549 lysates treated with 2 at 750 nM (five-times the IC50 value) for two 

to 12 hours (Figure 4A). Treatment with 2 led to a time-dependent decrease in 

phosphorylated MEK and ERK suggesting this compound inhibits kinase activity; however, 

decreased levels of phospho-MEK (p-MEK) and phospho-ERK (p-ERK) were observed at 

different incubation times. Decreased p-MEK levels occurred after four hours of incubation 

with 2 and were undetectable after 12 hour incubation. In contrast, decreased p-ERK levels 

were only observed after six hours of incubation and continued to decrease during the 12 

hour incubation. These data indicate that 2 disrupts kinase activity upstream of MEK and 

ERK; 2 prevented phosphorylation of MEK, which subsequently prevented phosphorylation 

of ERK. The levels of other proteins crucial for MAPK signaling, such as EGFR and C-Raf, 

remained constant at each time point and were comparable to vehicle control. C-Raf is an 

Hsp90 client and undergoes proteolytic degradation upon 12 hours of incubation with Hsp90 

inhibitors. After 12 hours of incubation with 2, C-Raf levels were similar to vehicle and 

remained constant at each time point, which demonstrates that compound 2 inhibits cancer 

cell growth by a mechanism unrelated to Hsp90 inhibition. Total MEK and ERK levels also 

remained constant at each time point and were comparable to vehicle, indicating that 

decreased p-MEK and p-ERK levels were not the result of decreased MEK and ERK levels. 

To determine whether 2 inhibits general kinase activity, Western blots were generated for 

phosphorylated Akt (p-Akt) and total Akt levels using A549 cell lysates after two to 12 

hours of incubation. Akt is phosphorylated by phosphoinositide 3-kinase (PI3K), and p-Akt 

formation is unrelated to the MAPK pathway50. Supplementary Figure 2 demonstrates that 

p-Akt and total Akt levels were unaffected at each time point, which suggests that 2 
preferentially inhibits phosphorylation of the MAPK pathway proteins.

Figure 4B shows a concentration-dependent decrease in p-MEK and p-ERK after 12 hours 

of incubation with 2. A low concentration of 2 (L; half the IC50 value, 70nM) had little 

effect on cellular levels of p-MEK and p-ERK; however, incubation with a high 

concentration of 2 (five-times the IC50 value, 750 nM) resulted in significantly lower levels 

of p-MEK and pERK, which were consistent with previous observations. Little effect was 

observed on the levels of other MAPK-associated proteins, as well as total MEK and ERK 

levels at either concentration.

It is well established that small molecule inhibition of the MAPK pathway activates multiple 

feed-back mechanisms that ultimately result in up-regulated MAPK pathway activity51–54. 

In vitro, this occurs at short incubation times and can be observed up to 24 hours after 

incubation with inhibitors of the MAPK pathway (via increased levels of p-MEK and p-ERK 

as well as increased transcription of MAPK proteins and proteins that support feed-back 

mechanisms). Western blot analysis of MAPK pathway proteins, p-MEK and p-ERK from 

A549 cell lysates treated with high concentrations of 2 (750 nM) for 12 and 24 hours were 

conducted (Figure 4B). After 24 hours of incubation, p-MEK and p-ERK levels were only 

slightly increased compared to 12 hours of incubation; however, these levels remained lower 

than vehicle control, which could result from the up-regulation of MAPK pathway activity 
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via a feed-back mechanism or the consequence of compound 2 instability, which may 

produce metabolites that no longer interact with the cellular target(s).

To determine whether re-establishment of detectable p-MEK and p-ERK levels after 24 

hours of incubation with 2 was the result of feed-back mechanism activation, Western blots 

for Her3 and wild-type B-Raf levels were performed. Her3 and wild type B-Raf are 

expressed at relatively low levels in cancer cells under normal conditions. However, 

inhibition of MAPK pathway activity via small molecule EGFR, Raf or MEK inhibitors 

induce Her3 and wild-type B-Raf overexpression to compensate for decreased p-MEK and 

p-ERK signaling. After 24 hours of incubation with 2, Her3 and wild-type B-Raf levels were 

comparable to vehicle and indicated no activation of a feed-back mechanism (Figure 5). 

Western blots for Her3 and wild-type B-Raf levels from A549 lysates treated with control 

compounds (sorafenib, vemurafenib and TAK-632) for 12 and 24 hours were also performed 

(Figure 5). Sorafenib is a kinase inhibitor and incubation with sorafenib at five-times the 

reported IC50 value (14 μM) resulted in decreased p-MEK and p-ERK levels and a time-

dependent increase in Her3 levels (Supplementary Figure 3; Figure 5)49. Vemurafenib and 

TAK-632 are Raf inhibitors. Vemurafenib is a mutant B-Raf inhibitor that is relatively 

inactive against the A549 cell line, which expresses only wild-type B-Raf. Incubation with a 

high concentration of vemurafenib (five-times the reported IC50 value against the A549 

cancer cell line, >50 μM) had little effect on Her3 and wild-type B-Raf levels, as well as 

MAPK pathway signaling after 12 and 24 hours (Figure 5; Supplementary Figure 3)55. 

TAK-632 is a kinase inhibitor that preferentially inhibits wild-type B-Raf and C-Raf, and 

ultimately leads to decreased p-MEK and p-ERK levels (Supplementary Figure 3). Her3 and 

wild-type B-Raf levels remained unaffected after 12 and 24 hours of incubation with 

TAK-632 at five-times the reported IC50 value (8.5 μM) which is comparable to 2 (Figure 

5)56. These data indicate that 2 prevents p-MEK and p-ERK formation via a mechanism 

similar to TAK-632, which targets wild-type B-Raf and C-Raf.

It has been previously reported that Raf inhibitor treatment leads to hetero-dimerization 

between wild type B-Raf and c-Raf causing re-establishment of MAPK pathway signaling 

and cancer proliferation57. Therefore, a co-immunoprecipitation assay was performed to 

investigate whether compound 2 activates the MAPK pathway by heterodimer formation. 

The results provided in Figure 6 demonstrate that 2 does not result in dimerization of wild 

type B-Raf and c-Raf.

In lieu of the biaryl side chain, the incorporation of a phenyl ring onto the urea linker (1) 

results in Hsp90 inhibition as observed via client protein degradation (see Figure 2), while 

replacement of the phenyl substituent with a bulky di-methoxy biaryl side chain leads to 

disruption of the MAPK pathway. Therefore, compounds 3, 4 and 5, which contain 

substitutions about the biaryl side chain were synthesized to identify substitutions that 

distinguish Hsp90 inhibitory activity from MAPK pathway inhibition (Scheme 2). 

Compound 3 contains a biaryl side chain with no methoxy groups, while 4 and 5 each 

contain a single methoxy substitution on the biaryl side chain. IC50 values for each 

compound were determined against the A549 cancer cell line as shown in Table 2. Each 

compound exhibited potent anti-proliferative activity within the nanomolar concentration 

range.
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Western blot analyses for Hsp90 clients were performed using A549 cell lysates dosed for 

12 and 24 hours with high concentrations of each compound (five-times the IC50 value) to 

identify Hsp90 inhibitors (Figure 7A). After 24 hours of incubation with 3, decreased levels 

of Hsp90-dependent client proteins were observed while constant levels of Hsp90 remained, 

suggesting that 3 is an Hsp90 C-terminal inhibitor. Single methoxy substitutions on the 

biaryl side chain (4 and 5) did not result in decreased client levels after 12 or 24 hours of 

incubation, indicating no Hsp90 inhibition. Western blot analyses for MAPK pathway 

proteins and p-MEK and p-ERK levels were performed using the A549 cell lysates dosed for 

12 and 24 hours with 4 and 5 and are shown in Figure 7B. 12 hours of incubation with 4 led 

to decreased p-MEK and pERK levels compared to vehicle; however in contrast to 2, p-

MEK and p-ERK levels were reestablished after 24 hours of incubation with 4 and 5. P-ERK 

levels were also decreased after 12 hours of incubation with 5; however, 24 hours of 

incubation resulted in p-ERK levels that were comparable to vehicle. After 12 and 24 hours 

of incubation with 5, p-MEK levels were unchanged.

These data indicate that both methoxy substitutions on the biaryl side chain are important for 

prolonged MAPK pathway disruption. While mono-methoxy substitutions inhibited p-MEK 

and/or p-ERK formation, neither substitution alone was able to sustain inhibitory activity to 

the extent of the dimethoxy-substituted side chain present in 2.

CONCLUSIONS

In conclusion, 2 was synthesized during SAR studies of novobiocin-based Hsp90 C-terminal 

inhibitors that contain urea surrogates of the amide linker. 1 was identified as an Hsp90 

inhibitor via Hsp90-dependent client degradation, however, 2 failed to exhibit Hsp90 

inhibitory activity. Upon further investigation, 2 was shown to disrupt the MAPK pathway 

signaling by preventing p-MEK formation after 4 hours of incubation, which ultimately 

disrupted p-ERK formation. Disruption of p-MEK and p-ERK formation was comparable to 

the control compound TAK-632, a Raf inhibitor that preferentially inhibits wild type B-Raf 

and C-Raf; however, 2 exerted this activity at one tenth the IC50 value of TAK-632 (IC50 

value of 0.15 ± 0.02 μM versus 1.7 μM against the A549 lunger cancer cell line). While 

individual methoxy substitutions on the biaryl side chain inhibit p-MEK and/or p-ERK 

formation, the dimethoxy-substituted biaryl sidechain is required for sustained inhibition. 

Therefore, 2 represents a novel, novobiocin-based scaffold for the development of MAPK 

pathway inhibitors and appears to manifest a similar mechanism of action to TAK-632 and 

target C-Raf and wild-type B-Raf.

EXPERIMENTAL SECTION

Chemistry

General Methods—1HNMR were recorded at 400 or 500 MHz (Bruker DRX-400 Bruker 

with a H/C/P/F QNP gradient probe) spectrometer and 13C NMR spectra were recorded at 

100 or 125 MHz (Bruker DRX 500 with broadband, inverse triple resonance, and high 

resolution magic angle spinning HR-MA probe spectrometer); chemical shifts are reported 

in δ (ppm) relative to the internal reference chloroform-d (CDQ3, 7.27 ppm) or dimethyl 

sulfoxide-d6 (DMSO-d6, 2.50 ppm). High resolution mass spectra (FAB) were recorded with 
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a LCT Premier (Waters Corp., Milford, MA) spectrometer. The purity of all compounds was 

determined to be >95% as determined by HPLC analysis. TLC was performed on 

glassbacked silica gel plates (Uniplate) with spots visualized by UV light. All solvents were 

reagent grade and when necessary, were purified and dried by standard methods. 

Concentration of solvents occurred via the use of a rotary evaporator operating at reduced 

pressure.

General procedure for the synthesis of urea derivatives: 1-(8-methyl-7-((1-

methylpiperidin-4-yl)oxy)-2-oxo-2H-chromen-3-yl)-3-phenylurea (1) Phenyl isocyanate (17 

mg, 0.14 mmol) was added to a solution of amine 639 (20 mg, 0.07 mmol) in 

dichloromethane (2 mL) and stirred at r.t. overnight. The resulting mixture was concentrated 

and purified via column chromatography (SiO2, 10:1 CH2Cl2: methanol) to afford 1 as a 

light brown amorphous solid (22 mg, 78 %): 1H NMR (400 MHz, CDQ3) δ 8.75 (s, 1H, 

NH), 8.52 (s, 1H, NH), 8.42 (s, 1H), 7.54 (d, J = 7.7 Hz, 2H), 7.23 – 7.12 (m, 3H), 6.93 (t, J 
= 7.3 Hz, 1H), 6.80 (d, J = 8.8 Hz, 1H), 4.39 (m, 1H), 2.70~2.62 (m, 1H), 2.40~2.33 (m, 

2H), 2.32 (s, 3H), 2.32 (s, 3H), 2.06 – 1.82 (m, 2H), 1.90~1.88 (m, 2H). 13C NMR (126 

MHz, DMSO) δ 158.31, 155.48, 152.28, 148.17, 139.27, 128.93, 125.25, 122.61, 122.21, 

120.39, 117.99, 113.45, 113.40, 110.96, 71.60, 51.58, 45.14, 29.77, 8.16. HRMS (ESI+) m/z 

[M+H+] calcd for C23H26N3O4 408.1923; found 408.1919.

1-(3′,6-dimethoxy-[1,1′-biphenyl]-3-yl)-3-(8-methyl-7-((1-methylpiperidin-4-yl)oxy)-2-

oxo-2H-chromen-3-yl)urea (2) Compound 2 was obtained as a white amorphous solid (15 

mg, 82%): 1H NMR (500 MHz, CDCl3+CH3OH) δ 8.26 (s, 1H), 7.33 – 7.29 (m, 2H), 7.19 

– 7.14 (m, 2H), 6.97 – 6.95 (m, 2H), 6.82 (d, J = 8.8 Hz, 1H), 6.74 (d, J = 8.1 Hz, 2H), 4.39 

(m, 1H), 3.70 (s, 3H), 3.65 (s, 3H), 2.60 (m, 2H), 2.40 (m, 2H), 2.25 (s, 3H), 2.17 (s, 3H), 

1.91 (m, 2H), 1.81 (m, 2H). 13C NMR (126 MHz, CDQ3+CH3OH) δ 159.62, 159.02, 

155.78, 153.52, 152.56, 148.66, 139.45, 131.64, 130.85, 128.82, 124.95, 122.57, 122.49, 

121.91, 121.75, 120.06, 115.08, 114.68, 113.90, 112.45, 111.94, 110.44, 55.79, 55.04, 

51.66, 45.41, 29.78, 7.97. HRMS (ESI+) m/z [M+H+] calcd for C3iH34N3O6 544.2448; 

found 544.2443.

1-([1,1′-biphenyl]-3-yl)-3-(8-methyl-7-((1-methylpiperidin-4-yl)oxy)-2-oxo-2H-chromen-3-

yl)urea (3) Compound 3 was obtained as a brown amorphous solid (27 mg, 76%): 1H NMR 

(500 MHz, DMSO) δ 9.60 (s, 1H, NH), 8.73 (s, 1H, NH), 8.44 (s, 1H), 7.88 (s, 1H), 7.65 – 

7.61 (dd, J = 8.3, 1.1 Hz, 2H), 7.52 – 7.47 (m, 2H), 7.42 – 7.37 (m, 2H), 7.36 – 7.32 (m, 

1H), 7.31 – 7.27 (dt, J = 7.6, 1.3 Hz, 1H), 7.11 – 7.06 (d, J = 8.9 Hz, 1H). 4.54 (m, 1H), 2.59 

(m, 2H), 2.31 (m, 2H), 2.23 (s, 3H), 2.22 (s, 3H), 1.95 (m, 2H), 1.73 (m, 2H). 13C NMR 

(126 MHz, DMSO) 5 158.29, 155.55, 152.31, 148.14, 140.93, 140.19, 139.81, 129.48, 

128.93, 127.54, 126.61, 125.21,122.46, 120.62, 120.49, 117.04, 116.17, 113.35, 113.28, 

110.93, 72.06, 51.83, 45.66, 30.23, 8.09. HRMS (ESI+) m/z [M+H+] calcd for C29H30N3O4 

484.2236; found 484.2232.

1-(6-methoxy-[1,1′-biphenyl]-3-yl)-3-(8-methyl-7-((1-methylpiperidin-4-yl)oxy)-2-oxo-2H-

chromen-3-yl)urea (4) Compound 4 was obtained as a white amorphous solid (22 mg, 

71%): 1H NMR (500 MHz, CDCl3) δ 8.60 (s, 1H), 8.43 (s, broad, 2H, NH), 7.60 (dd, J = 

8.8, 2.6 Hz, 1H), 7.55 – 7.50 (m, 3H), 7.39 (t, J = 7.5 Hz, 2H), 7.35 – 7.31 (m, 1H), 7.25 (d, 
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J = 8.6 Hz, 1H), 6.93 (d, J = 8.9 Hz, 1H), 6.83 (d, J = 8.8 Hz, 1H), 4.42 (m, 1H), 3.79 (s, 

3H), 2.68 (m, 2H), 2.42 (m, 2H), 2.38 (s, 3H), 2.09 (s, 3H), 2.04 (m, 2H), 1.91 (m, 2H). 13C 

NMR (126 MHz, CDQ3+CH3OH) δ 159.65, 155.85, 153.56, 152.57, 148.66, 138.05, 

131.68, 131.04, 129.29, 127.81, 126.87, 124.91, 122.60, 122.43, 121.77, 119.91, 114.68, 

113.83, 111.90, 110.45, 71.37, 55.75, 51.76, 45.52, 29.90, 7.96. HRMS (ESI+) m/z [M+H+] 

calcd for C30H32N3O5 514.2342; found 514.2339.

1-(3′-methoxy-[1,1′-biphenyl]-3-yl)-3-(8-methyl-7-((1-methylpiperidin-4-yl)oxy)-2-

oxo-2H-chromen-3-yl)urea (5) Compound 5 was obtained as a brown amorphous solid (15 

mg, 76%): 1H NMR (500 MHz, DMSO) δ 9.59 (s, 1H, NH), 8.73 (s, 1H, NH), 8.44 (s, 1H), 

7.84 (s, 1H), 7.52 – 7.49 (d, J = 8.6 Hz, 1H), 7.43 – 7.35 (m, 3H), 7.32 – 7.28 (dt, J = 7.0, 

1.8 Hz, 1H), 7.22 – 7.18 (m, 1H), 7.16 – 7.13 (t, J = 2.1 Hz, 1H), 7.11 – 7.07 (d, J = 8.9 Hz, 

1H), 6.99 – 6.94 (dd, J = 8.2, 2.5 Hz, 1H), 4.55 (m, 1H), 3.83 (s, 3H), 2.60 (m, 2H), 2.33 (m, 

2H), 2.24 (s, 3H), 2.23 (s, 3H), 1.96~1.92 (m, 2H), 1.73~1.72 (m, 2H). 13C NMR (126 MHz, 

DMSO) δ 159.66, 158.29, 155.54, 152.30, 148.15, 141.71, 140.80, 139.74, 130.00, 129.43, 

125.23, 122.46, 120.73, 120.50, 118.95, 117.19, 116.27, 113.36, 113.29, 112.95, 112.24, 

110.93, 71.99, 55.10, 51.80, 45.60, 30.17, 8.10. HRMS (ESI+) m/z [M+H+] calcd for 

C30H32N3O5 514.2342; found 514.2346.

Biology

Antibodies and Reagents: Antibodies targeting Akt 1/2/3 and actin were purchased from 

Santa Cruz Biotechnology. The antibody targeting Hsp90 was purchased from Thermo 

Scientific (PA3-013). The following antibodies were purchased from Cell Signaling: EGF 

Receptor, p44/42 MAPK, P-p44/42 MAPK, MEK1/2, P-MEK1/2, pAkt, BRaf, CRaf, Her3/

ErbB3 and Her2/ErbB2. Geldanamycin was purchased from Sigma Aldrich and sorafinib, 

vemurafinib and TAK-632 were purchased from Selleckchem.

Cell Culture: the media for each cell line was supplemented with streptomycin (500 μg/mL), 

penicillin (100 units/mL), and 10% FBS. MCF7 cells were maintained in Advanced 

DMEM/F12 (1:1; Gibco) supplemented with L-glutamine (2 mM). A549 cells were 

maintained in F12K (Cellgro). MRC-5 cells were maintained in DMEM (Cellgro). Cells 

were grown in a humidified atmosphere (37 °C, 5% CO2) and passaged when confluent.

Anti-proliferation: cells were grown to confluence, seeded (2000 cells/well, 100 μL total 

media) in clear, flat-bottom 96-well plates and allowed to attach overnight. Compound at 

varying concentrations in DMSO (1% DMSO final concentration) was added. Cells were 

returned to the incubator for an additional 72 h. After 72 h, cell growth was determined 

using an MTS/PMS cell proliferation kit (Promega) per the manufacturer’s instructions. 

Cells that incubated in 1% DMSO were used as 100% proliferation (i.e. DMSO = 100% 

growth) and the relative growth for each compound concentration was compared to 1% 

DMSO. IC50 values were calculated from two separate experiments performed in triplicate 

using GraphPad Prism 6.0.

Western Blot: cells were grown to confluence and seeded at 0.4 × 106 cells/well/2 mL. Cells 

were incubated for 24 hours and treated with compound in DMSO (0.25% DMSO final 

concentration), or vehicle (DMSO) for the indicated amount of time. Cells were harvested in 
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cold PBS and lysed using MPER (Thermo Scientific) supplemented with protease and 

phosphatase inhibitors (Roche) according to manufacturer’s directions. Lysates were 

clarified at 14,000g for 15 minutes at 4° C. Protein concentrations were determined using 

the Pierce BCA protein assay kit per the manufacturer’s instructions. Equal amounts of 

protein (15 μg) were electrophoresed under reducing conditions (10% acrylamide gels), 

transferred to PVDF, and immunoblotted with the corresponding antibody. Membranes were 

incubated with an appropriate horseradish peroxidase-labeled secondary antibody, developed 

with a chemiluminescent substrate, and visualized.

Co-immunoprecipitation: A549 cell lines were plated in 10 cm cell culture dishes or T25 

flasks and allowed to grow to ~80% confluency. A549 cell lines were received DMSO 

(0.1%) (Vehicle), or the indicated drugs dissolved in DMSO at indicated concentrations for 

24 h. After drug treatments A549 cell lines were harvested in lysis buffer containing 0.1% 

NP40, 50 mM Tris (pH 7.5), 150 mM NaCl, protease and phosphatase inhibitor cocktails 

(Roche). Lysates were clarified and protein concentration was determined using BCA assay. 

For co-immunoprecipitation, 500 μg of total protein was diluted to 500 μL total volume in 

lysis buffer and incubated with 10 μl of primary antibody overnight at 4 °C with rocking. 

Immune complexes were captured with 30 μL of DynaBeads Protein G (Invitrogen) for 3 h 

with rocking at 4 °C. Protein G Bead complexes were washed three times with lysis buffer 

and eluted with sample buffer. Samples were then boiled and subjected to SDS-PAGE and 

Western blot analysis.

Luciferase Refolding Assay: Compound at varying concentrations in DMSO (1% DMSO 

final concentration) was added to wells of a white, round-bottom 96-well plate containing 50 

μL of DMEM media. Luciferase-expressing PC3-MM2 cells were grown to confluence, 

collected, and incubated for 8–12 min at 50 °C in pre-warmed DMEM media until 

bioluminescence of luciferase was reduced to 1% of the initial counts. Cells were added 

(60,000 cells/50 μL) to wells (final concentration of 60,000 cells/100 μL), and the plate was 

returned to the incubator for 1 h. After 1 h, 100 μL of luciferase substrate reagent (75 mM 

tricine at pH7.8, 24 mM MgSO4, 0.3 mM EDTA, 2 mM DTT, 0.313 D-luciferin, 0.64 mM 

coenzyme A, 0.66 mM ATP, 150 mM KCl, 10% Triton-X, 20% glycerol, and 3.5% DMSO) 

was added to wells, and the bioluminescence was immediately read (0.5 s integration time). 

Cells that were incubated in 1% DMSO were used as 100% bioluminescence (i.e., DMSO = 

100% refolding), and the relative refolding for each compound concentration was compared 

to that in 1% DMSO. The concentrations for each compound were in triplicate, and dose-

response curves were generated using GraphPad Prism 5.0.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Structures of novobiocin, compound 1 and 2.
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Figure 2. 
(A) Western blot for Hsp90 client proteins (EGFR, Her2 and Raf) and Hsp90 using MCF7 

and A549 cell lysates treated for 12 hours with vehicle (0.25% DMSO), a low concentration 

(L; half the IC50 value) or a high concentration (H; five-times the IC50 value) of compound 

1 or 2 (B) The luciferase refolding activity of Hsp90 in PC3-MM2 cells with vehicle 

(DMSO), compounds 1 and 2, and the positive control, KU-257. The concentrations used 

were 0–100 μM.
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Figure 3. 
Structures and the overlay of compound 2 (green) with sorafenib (gray; a kinase inhibitor 

that targets B-Raf and C-Raf), TAK-632 (magenta; a kinase inhibitor that targets C-Raf and 

wild-type B-Raf) and with vemurafenib (yellow; an inhibitor of mutant B-Raf).

Hall et al. Page 15

J Med Chem. Author manuscript; available in PMC 2017 May 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
(A) Western blot for proteins of the MAPK pathway (EGFR, C-Raf, MEK, ERK) and 

phosphorylated MEK and ERK (p-MEK and p-ERK) from A549 cell lysates treated for two 

to 12 hours with five times the IC50 value of 2 or vehicle (0.25% DMSO) (B) Western blot 

for proteins of the MAPK pathway and phosphorylated MEK and ERK from A549 cell 

lysates treated for 12 or 24 hours with five-times the IC50 value of 2 or vehicle (0.25% 

DMSO).
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Figure 5. 
Western blot for proteins Her3 and wild-type B-Raf from A549 cell lysates treated for 12 or 

24 hours with five-times the IC50 value of 2, sorafenib, vemurafenib, TAK-632 or vehicle 

(0.25% DMSO).
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Figure 6. 
A. Co-immunoprecipitation of B-Raf from A549 cell lysates treated for 24 hours with five-

times the IC50 value of 2, sorafenib, or vehicle (0.25% DMSO). B-Raf immunoprecipitated 

c-Raf in sorafenib treated cells, but not 2 treated cells. B. Proposed mechanism of action for 

compound 2 and sorafenib. In wild type B-Raf cells, basal level of B-Raf C-Raf dimerization 

occurs. In sorafenib treated cells, the B-Raf C-Raf dimerization is prevalent causing 

activation of the MAPK pathway, resulting in growth. In contrast, compound 2 prevents 

hetero-dimerization of B-Raf and C-Raf, and consequently, the MAPK pathway is not 

activated.
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Figure 7. 
(A) Western blot for Hsp90 client proteins (EGFR, Her2 and C-Raf) and Hsp90 using A549 

cell lysates treated for 12 or 24 hours with a high concentration (five-times the IC50 value) 

of 3, 4, 5 or vehicle (0.25% DMSO). (B) Western blot for proteins of the MAPK pathway 

(EGFR, C-Raf, MEK, ERK) and phosphorylated MEK and ERK (p-MEK and p-ERK) from 

A549 cell lysates treated for 12 or 24 hours with five-times the IC50 value of 4, 5 or vehicle 

(0.25% DMSO).
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Scheme 1. 
Synthesis of novobiocin-based urea analogs.
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Scheme 2. 
Continued synthesis of novobiocin-based urea analogs.
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Table 1

IC50 values determined for compounds 1 and 2 against the MCF7 and A549 cancer cell lines as well as the 

normal human cell line, MRC5.

IC50 Values (μM)

Cell Line 1 2

MCF7 0.77 ± 0.01 0.17 ± 0.07

A549 0.24 ± 0.00 0.15 ± 0.02

MRC-5 3.6 4.3
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Table 2

IC50 values of compounds 3, 4 and 5 against the A549 lung cancer cell line.

Compound A549 Cell Line IC50 Values (μM)

3 0.06 ± 0.02

4 0.41 ± 0.13

5 0.28 ± 0.04
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