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Abstract
A new method for allylic alkylation of a variety of relatively non-stabilized carbon nucleophiles is
described herein. In this process of “deacylative allylation” the coupling partners, an allylic
alcohol and a ketone pronucleophile, undergo in situ retro-Claisen activation to generate an allylic
acetate and a carbanion. In the presence of palladium, these reactive intermediates undergo
catalytic coupling to form a new C–C bond. In comparision to unimolecular decarboxylative
allylation, a commonly utilized method for allylation of carbon anions, deacylative allylation is an
intermolecular process. Moreover, deacylative allylation allows the direct coupling of readily
available allylic alcohols. Lastly, the full utility of deacylative allylation is demonstrated by the
rapid construction of a variety 1,6-heptadienes via 3-component couplings.

Introduction
Decarboxylative allylation (DcA)1 has emerged as a convenient method for the generation
and allylation of carbon nucleophiles including ketone enolates,2a,b nitrile stabilized
anions,2c α-sulfonyl anions,2d,e 2-aza-allyl anions,2f,g and nitronates2h (Scheme 1). In
comparison to more classical couplings, DcA reactions are distinguished by the use of C–C
bond cleavage (decarboxylation) to generate the nucleophile.3 One hallmark of
decarboxylative metalation is that it has been shown to allow the site-specific generation of
a variety of carbon nucleophiles.2c,d,4 A second hallmark of DcA reactions is the ease with
which the reactants are synthesized and derivatized via mild acetoacetic estertype
substitution.5 As a testament to DcA’s utility, there has been significant interest in using the
reaction for the synthesis of natural products (Scheme 1).1,6 Despite the demonstrated utility
of DcA in natural product synthesis,6a,b the sensitivity of allyl esters often necessitates late-
stage introduction of the allylic ester via transesterification using excessive amounts of an
allylic alcohol and Otera’s catalyst (Scheme 1).7,8 Thus, a clear disadvantage of DcA is the
necessity to covalently link the nucleophilic and electrophilic coupling partners through an
ester linkage prior to decarboxylative coupling (e.g. in 1). Ultimately, it would be
advantageous if the same C–C bond formation could occur in an intermolecular fashion.
Such a process could obviate the need for the two-step transesterification/decarboxylative
allylation sequence and facilitate more rapid production of analogs.9
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We recently communicated the development of “deacylative allylation” (DaA) of
nitroacetone derivatives, where intermolecular C–C bond formation was facilitated by a
retro-Claisen condensation.10 As shown herein, the DaA process maintains several
hallmarks of decarboxylative allylation. Specifically, it A) allows the site-specific
generation of carbanions via C–C cleavage, B) allows rapid synthesis of precursors via
acetoacetic ester-like chemistries, and C) forms both nucleophilic and electrophilic reactive
intermediates in situ. While the literature is replete with reactions that proceed by C–C bond
cleavage via retro-Claisen condensation, these reactions typically utilize the acetyl unit only
as a readily cleavable activating group.11,12 In DaA reactions, the transfer of an acyl group
has a functional role in activating the allylic alcohol toward reaction with Pd(0) catalysts.
Thus, our approach is unique since both the nucleophile and the electrophile are activated by
a single C–C bond cleavage event.10,12 In addition to facilitating intermolecular allylations,
DaA is attractive since it results in alkylation of carbanions directly from allylic alcohols.13

Herein, we wish to report our findings that many ketone pronucleophiles can undergo
intermolecular deacylative allylation (Scheme 2). The utility of deacylative allylation is
further demonstrated by the rapid construction of 1,6-heptadienes via 3-component
bisallylation; such products have significant utility as precursors for cycloisomerizations and
cycloadditions.14

Development of Deacylative Allylation
Our driving hypothesis for deacylative allylation is that an allylic alkoxide can induce a
retro-Claisen condensation of an appropriately substituted ketone (Scheme 2). The retro-
Claisen reaction should produce a carbanion nucleophile and an allylic acetate that can be
coupled via palladium catalysis. A survey of the literature showed that there is a plethora of
examples of retro-Claisen cleavage reactions of α,α-disubstistuted nitroacetone
derivatives.15 The retro-Claisen condensation of nitroketones is generally facile because the
nitronate leaving group is more thermodynamically stable than the alkoxide nucleophile.16

Nitronates are also known to undergo facile allylic alkylation under standard Tsuji-Trost
conditions.17 Thus, α-nitroketones were ideal substrates for our preliminary investigations
and our desire to pursue efficient synthesis of 1,6-heptadienes led us to utilize α-allyl
nitroacetone (2a) as a model substrate. Initially it was observed that 2a underwent the
desired deacylative allylation quantitatively (eq. 1). However, the reaction conditions (5
equiv. K2CO3 and allyl alcohol, 2.5 mol % Pd(PPh3)4) were unattractive because excessive
amounts of alcohol and base were required and the method was not applicable to coupling of
substituted allylic alcohols.

(1)

Fortunately, by simply switching from K2CO3 to Cs2CO3 base, both the base and the
alcohol could be used in stoichiometric quantities. Moreover, the simple change in base
additive led to facile coupling of many other allylic alcohol derivatives with α,α-
disubstituted nitroacetone substrates (Table 1). For example, various commercially available
allylic alcohols including cinnamyl (3b), crotyl (3c), and 1-hexenyl (3d) alcohols were
successfully utilized as coupling partners. The cinnamyl and the hexenyl alcohols both gave
exclusively the linear regioisomeric product as expected for reactions proceeding via π-allyl
palladium intermediates.1,2h However, when crotyl alcohol was utilized, a mixture of linear/
branched regioisomers was isolated (l:b = 3.8:1) and the linear isomer was obtained as a
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mixture of E and Z isomers (E:Z = 5.6:1).1,18 The allylic alcohol coupling partner can also
contain substitution at the internal carbon, as was determined by the successful DaA of β-
methylallyl alcohol (3e). In addition to simple allylic alcohols, the dienyl allylic alcohol
underwent DaA to form product 3f in 78% yield; such products are potential substrates for
the elegant metal-catalyzed intramolecular [4+2] cycloaddition reactions of unactivated
dienes and dienophiles that have been developed by Livinghouse and others.19 While
primary allylic alcohols were compatible reaction partners in DaA, a secondary allylic
alcohol (1-hexen-3-ol) produced the desired product in just 25% yield (eq. 2). This suggests
that deacylative allylation exhibits a steric selectivity for coupling of primary allylic
alcohols.

(2)

In addition to nitroacetone derivatives, nitrophenylacetylacetone derivatives also underwent
smooth coupling with various allylic alcohols to produce allylated nitroarylketones (Table 1,
4a–d). However, attempts to allylate the more basic p-acetylarylketone enolate showed that
only allyl alcohol gave product in high yield (4e). Furthermore, an unsubstituted
phenylketone product was allylated in low yield (4f, Table 1). Thus, it was apparent that
relatively high enolate stability (pKa < 20 in DMSO) was required for C–C bond formation
under these conditions.

Deacylative Allylation of Ketone Enolates
With the goal of developing a more broadly applicable deacylative allylation, we screened
reaction conditions to improve the yield of product 4f (Table 2). A screen of solvents
indicated that, in nonpolar solvents such as toluene, deacylation was sluggish and the desired
C–C bond formation was ineffective (entry 1). The somewhat more polar solvent, THF, did
promote deacylation but did not lead to substantial allylation (entry 3). Finally, good yields
of the DaA product could be isolated in various polar aprotic solvents (entries 4–7), with the
best conversion to 4f occurring in N-methylpyrrolidinone (entry 7). Subsequently, a brief
screening of bases revealed that strong bases such as potassium tert-butoxide or sodium
hydride gave excellent results (entries 8–10). Not only is NaH a much less expensive base
than Cs2CO3, but reaction completion using NaH was realized in a shorter time-frame at a
lower temperature of 60 °C. Thus, further studies of reaction scope were done primarily
under conditions similar to that of entry 10.

Next, a variety of α-aryl 1,3-diketones were prepared by facile copper-catalyzed enolate
arylations followed by mild alkylation.20 Subsequent treatment under the reaction conditions
for deacylative allylation showed that the optimized reaction conditions worked well for the
DaA of many different α-aryl acetylacetone derivatives (Table 3). As expected, aryl ketones
that contain an electron withdrawing group worked quite well in the deacylative allylation
reaction, giving high yields of the desired products 4e–k. For example, the reaction was
compatible with electron deficient aryl ketones (4e and 4h) and benzonitriles (4g) as well as
with meta-nitro (4i–j) and fluoro (4k) substituents. It was particularly gratifying to find that
challenging electron rich aromatic ketones and dialkyl ketones that lack an α-aryl group
could be allylated cleanly (4m–4p).
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Next, we examined the regioselectivity of deacylation in unsymmetric 1,3-diketone
substrates that have the potential for reaction at two different carbonyl groups. For
indanones and α or β-tetralone, DaA was completely regioselective for cleavage of the
exocyclic acetyl over the cyclic ketone (eqs. 3 and 4). While exocyclic acetyl groups can be
selectively cleaved, there is little selectivity for cleavage of an acetyl vs. a benzoyl group
(eq. 5). Given the lower electrophilicity of esters vs. ketones, it is not surprising that the
cleavage of an acetyl group is preferred over the cleavage of an ethyl ester (eq. 6).
Nonetheless, this reaction does illustrate that the retro-Claisen reaction is faster than
transesterification of the ethyl ester to the allyl ester. Finally, an aryl β-ketoester substrate
did not react chemoselectively when Cs2CO3 was utilized as the base (Scheme 3); the DaA
product (4s) and a decarboxylative allylation product were formed in a ~1:1 ratio.
Interestingly, switching to NaH as the base resulted in complete selectivity for deacylative
allylation.

(3)

(4)

(5)

(6)

Having identified β-diketones that undergo deacylative allylation with allyl alcohol, we
turned our attention to varying the allylic alcohol coupling partner (Table 4). In general,
these reactions were as robust as with simple allyl alcohol but often required longer reaction
times for reaction completion. β-Methallyl alcohol underwent deacylative allylation with
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similar rates to that of allyl alcohol (4t–4w, Table 4), while hexenyl alcohol generated good
to high yields of products in 3 hours (4aa–4dd). Cinnamyl alcohol was generally the slowest
reacting allylic alcohol, usually requiring 8–12 h for reaction completion (4x–z). Prenyl
alcohol was also a viable coupling partner, although it gave a noticeably lower yield than the
other allyl alcohols used (4ee). It was particularly exciting that 3-cyclopropyl allyl alcohol
was also an excellent coupling partner (4ff–gg). The inclusion of the vinyl cyclopropane
onto these allylated compounds represents an efficient synthesis of chiral [5+2] precursor
substrates (Scheme 4).21

In addition to the coupling of ketone enolates via deacylative allylation, we wished to
demonstrate the potential utility of deacylation for the generation and allylation of other
nucleophiles. α-Aryl cyanocarbonyl compounds are versatile chemical building blocks that
can be readily elaborated via classic alkylation (such as K2CO3/MeI), palladium-catalyzed
α-arylation22 and allylic alkylation (Scheme 4).23 Thus, a deacylative allylation of
cyanoacetones could lead to a broad array of α-quaternary allylated nitriles.2a,24,25

To begin, we investigated the reaction of an α-phenyl cyanoacetone derivative under the
conditions that were previously developed for the DaA of 1,3-diketones (eq. 7). Under these
conditions, the α-cyanoketone underwent high yielding DaA to generate 5a rapidly at room
temperature.

(7)

As table 5 shows, deacylative allylations of a variety of phenylacetonitriles with allyl
alcohol were successful. As before, deacylative allylation provides a straightforward route to
1,6-heptadienes (Table 5, 5a–c). While these targets were our focus, DaA of simple alkyl-
substituted nitriles was also feasible (5d, 5h). In addition, a variety of aryl substituents
including heteroaromatic, polyaromatic, and electron rich aromatics were compatible with
the coupling conditions (5e–g). That said, longer reaction times were necessary to couple
electron-rich aryl acetonitrile derivatives (5g, 5h).

Following the successful coupling of allyl alcohol via deacylative allylation, the DaA
reactions of quaternary α-aryl cyanoacetones with various allyl alcohols were investigated
(Table 6). Cinnamyl and hexenyl alcohol gave good yields of a single regioisomer (5i–j) and
β-methallyl alcohol reacted cleanly (5j). Prenyl alcohol was also a viable coupling partner;
however, it underwent coupling without significant regioselectivity, giving a 55:45 mixture
of prenylation (5l) and reverse-prenylation (5m).26 A potential explanation for this
regiochemical outcome involving inner-sphere vs. outer-sphere allylation has been
previously discussed.2c

The ability to allylate electron rich α-aryl nitriles via DaA suggested that we might be able
to demonstrate the utility of DaA via the production of a key intermediate in the synthesis of
verapamil (Scheme 5).25,27,28 The required precursor 5o was synthesized in 2-steps from the
commercially available homoveratronitrile by acetylation and substitution with isopropyl
idodide (Scheme 6).29 Here the use of an α-cyanoketone provided significant synthetic
advantages. First, the substitution of isopropyl iodide with the relatively non-basic α-
cyanoenolate allowed the construction of a sterically hindered quaternary carbon center.
Second, the acetyl group acts as a blocking group, allowing only a single alkylation. Next,
we chose to initiate our pursuit of 5o using the DaA conditions that successfully coupled
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allyl alcohol and the para-methoxy substrate corresponding to product 5g (Table 5, NaH,
DMSO, 60 °C, 12h). Unfortunately, the requisite isopropyl containing substrate gave < 5%
yield of the desired product 5o. However, use of an additional equivalent of NaH allowed
the synthesis of the verapamil intermediate (5o) in good yield (Scheme 6). Moreover, the
deacylative allylation was performed on a gram-scale, suggesting that the DaA reaction is
reasonably scalable.30 From this intermediate, verapamil can be synthesized following
Nelson’s 3-step protocol.27a

While DaA worked well for the synthesis of 5o, the need to acylate the substrate prior to
deacylation was clearly synthetically inefficient. To fully realize the synthetic utility of
DaA, we thought it may be possible to construct the same compound beginning with readily
available α-cyanoesters (Scheme 7). We further expected that α-cyanoester reactants would
enable introduction of the arene using Hartwig’s arylation method,22 which does not work
well with α-cyanoketones. However, for this process to be a success, an allylic alcohol
would need to induce a retro-Claisen condensation of an ester carbonyl. This process was
expected to be challenging since ester carbonyls have a reduced electrophilicity in
comparison to their acetyl analogs (eq 6).

To begin, we investigated the deacylative allylation of several α-aryl cyanoacetic ester
derivatives. We were pleased to find that ethyl cyanoacetate derivatives (synthesized by
Hartwig’s arylation) could be utilized in deacylative allylation reactions.22 As table 7 shows,
not only could cyanoacetic esters be used to access the previously synthesized compounds
such as 5a, but they also allowed extension of the methodology to deacylative allylation of
substrates that were prepared by cyanoacetate bisarylation (5p–q). 22 Related quaternary
diarylacetonitrile derivatives often exhibit interesting biological activity.31

There are two possible pathways for formation of allylated products from α-cyanoesters.
First, a retro-Claisen condensation could be initiated by the allylic alkoxide, producing a
nitrile stabilized anion and allylic carbonate, which subsequently undergo Pd-catalyzed
coupling (path A, Scheme 8). Second, the allylic alkoxide could induce transesterification to
produce an allyl ester which could undergo decarboxylative allylation (path B, Scheme 8).2c

To examine which pathway is followed, an α-cyano ethyl ester was treated under our
reaction conditions in the absence of palladium. After 15 minutes, the reaction was
quenched by the addition of acid. These conditions led to the formation of the protonation
product in 81% yield (eq. 8). Moreover, analysis of the crude reaction mixture by 1H NMR
spectroscopy showed the ~80 % of the allyl alkoxide converted to allyl ethyl carbonate.32

The formation of this nitrile in high yield indicates that the reaction likely proceeds via
preferential retro-Claisen activation (path A).

(8)

Interestingly, the retro-Claisen allylation reactions of ethyl esters required an excess of the
allylic alcohol. We hypothesized that higher concentrations of allyl alkoxide were required
due to the build-up of ethoxide as the allylation progresses (via decarboxylation of the
byproduct ethyl carbonate). This ethoxide can perform a competing retro-Claisen
fragmentation, which funnels the reaction down an unproductive pathway toward diethyl
carbonate formation (Scheme 9). Therefore, we posited that the higher concentration of allyl
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alcohol was necessary to more effectively compete with ethoxide for the requisite retro-
Claisen activation.

Since we previously showed that 2° alkoxides are ineffective at inducing retro-Claisen
fragmentation (eq. 2), we envisioned that isopropyl cyanoacetates, which would produce
isopropoxide, would obviate the need for excess allyl alcohol. Indeed, a single equivalent of
allylic alkoxide can effectively out-compete the byproduct isopropoxide in the retro-Claisen
activation, allowing the allylation to occur in good to excellent yields (Table 8).

To demonstrate the synthetic flexibility of cyanoester reactants, the verapamil precursor 5o
was synthesized in 91% overall yield, via palladium-catalyzed nitrile anion arylation,22

alkylation of the stabilized enolate,5 and DaA (Scheme 10).

3-Component Unsymmetric Bisallylation
As detailed above, a variety of 1,6-heptadienes can be prepared in good to excellent yields
via DaA of α-allyl ketones. Such ketones were readily prepared by palladium-catalyzed
Tsuji-Trost allylation of stabilized enolate nucleophiles. Since both of these processes
utilized a palladium-metal catalyst to effect the transformation, we hypothesized that the
process could be done in a single tandem operation that would synthesize these important
cycloisomerization substrates via a one-pot, 3-component coupling (Scheme 11). 14,19,21,33

Our strategy for 3-component bisallylation is highlighted in scheme 11. An intial Tsuji-Trost
allylation of the stabilized enolate should produce a substrate that is poised to undergo
deacylative allylation. For selective 3-component bisallylation to produce chiral products
containing two different allyl groups, it is desirable that the two allylation events are
kinetically distinct. Since the Tsuji-Trost allylation of nitroketones is usually complete
within minutes at room temperature34 and DaA was anticipated to proceed more slowly,
unsymmetric bisallylation should be possible.

To investigate the 3-component coupling, the general conditions developed for deacylative
allylation were utilized; however, an extra equivalent of base was added to facilitate the
initial Tsuji-Trost allylation. In the 3-component coupling, nitroacetone derivatives were
coupled with allyl tert-butyl carbonates and allylic alcohols in the presence of 2.5 mol%
Pd(PPh3)4 and 1 equivalent of Cs2CO3; a second equivalent of base is provided by
the tBuCO3

− leaving group (Table 9). As shown in table 9, 2b was synthesized in one pot
from methyl nitroacetone, cinnamyl carbonate, and allyl alcohol in an 89% yield (Table 9);
the same product can be derived from cinnamyl acetate in 81% yield. Comparison of
products 2b/2b’, 2d/2d’, and 2f/2f’ demonstrates that the allylic carbonate and alcohol
coupling partners can be interchanged with little effect on the transformation. Aside from
coupling methyl nitroacetone (2b–f), α-aryl (2g), α-benzyl (2h), and more functionalized
nitroacetone derivatives (2i–2k) underwent bisallylation in good yield. As noted vida supra,
even potentially base sensitive methyl esters were compatible with the reaction conditions
(2i–2k). In addition to bisallylation, starting from unsubstituted nitroacetone and utilizing 2
equivalents of cinnamyl carbonate and 1 equivalent of allyl alcohol, 3 new C–C bonds can
be made in single operation in an 81% yield (eq. 9). Finally, cyclic α-nitroketones can be
utilized in our bisallylation and lead to products with a pendant carboxylic acid (eq. 10).

(9)
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(10)

Next, we turned our attention to developing a 3-component bisallylation of ketones (Table
10). In this instance, we investigated the scope of the transformation using commercially
available allylic acetates and allylic alcohols as coupling partners. In contrast to the
nitroacetone substrates, higher yields of 3-component bisallylation of the diketones were
obtained if reagents were added sequentially and if the alcohol was injected as its
corresponding alkoxide. A lag-time between the addition of allylic acetate and allylic
alcohol of 5–10 minutes gave the best results. Presumably, this is due to the necessity to
complete the Tsuji-Trost allylation with cinnamyl acetate before a second allylic acetate is
generated via acyl transfer to allyl alkoxide. Nonetheless, the procedure is operationally
simple and the yields of unsymmetrically bisallylated ketones are good.

Simple α-phenyl acetylacetone was shown to couple in good yield with cinnamyl acetate
and allyl or β-methyl allyl alcohol (Table 10). α-Aryl acetylacetone derivatives with various
electron-withdrawing substituents were shown to couple nicely in this 3-component
reaction, with ketones (4ii), nitriles (4jj), and nitro groups (4kk, 4t) all providing products in
good yield. Finally, β-tetralone was an excellent substrate for bisallylations utilizing allyl
alcohol or hexenyl alcohol (4z and 4ll).

The same protocol that was used to perform bisallylations of acetylketone derivates was
applied to the 3-component bisallylation of α-cyanoacetones (Table 11). Under these
conditions, α-phenyl cyanoacetone underwent bisallylation with cinnamyl acetate as well as
hexenyl acetate (5b and 5c, respectively). An α-pyridyl cyanoketone was also bisallylated in
good yield (5u and 5v, Table 11); 5v was also synthesized on gram scale using just 0.5 mol
% Pd without a substantial drop in yield (eq. 11).30 Finally, other α-aryl cyanoacetones,
including 2-naphthyl and ortho-chlorobenzene reacted cleanly to give bisallylated products
in good yield.

In addition to α-aryl cyanoacetones, substrates that are derived from the arylation of
cyanoacetates were also competent coupling partners for bisallylation (eq. 12). As before,
the ethyl substrate required an excess of the allylic alcohol and the isopropyl acetate could
be used in a near stoichiometric amount.

(11)
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(12)

Conclusions
We have developed deacylative allylation as a method for the intermolecular allylic
alkylation of carbon nucleophiles using readily available allylic alcohols. DaA is made
possible by the high energy of allylic alkoxides in DMSO (pKa~30), which leads to a facile
retro-Claisen activation to produce nitronates (pKa ~ 17), enolates (pKa ~ 18–25), and nitrile
stabilized anions (pKa ~ 23).16,35 Thus, the retro-Claisen activation is currently limited to
the generation of nucleophiles with a pKa(DMSO) < 25. Moreover, the retro-Claisen
activation is only facile with 1° allylic alkoxides. In addition to producing reactive
nucleophiles, the retro-Claisen reaction also results in acylation of the allylic alcohol to
produce an allylic acetate. This acylation event activates the allyl alcohol toward formation
of palladium-π-allyl electrophiles. Thus, the retro-Claisen condensation activates both the
nucleophile and electrophile toward Pd-catalyzed C–C coupling. A further benefit of DaA is
the use of activated ketone substrates that are readily functionalized. Thus, one can readily
construct the desired nucleophiles prior to DaA. These features allow three-component
couplings of ketones, allylic acetates, and allylic alcohols to produce useful 1,6-heptadienes
in one pot. It is anticipated, that intermolecular deacylative allylation will be a powerful
complement to intramolecular decarboxylative allylations.
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Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
We acknowledge the National Institute of General Medical Sciences (NIGMS 1R01GM079644) for funding.

References
1. Weaver JD, Recio A III, Grenning AJ, Tunge JA. Chem. Rev. 2011; 111:1846. [PubMed:

21235271]
2. (a) Shimizu I, Yamada T, Tsuji J. Tetrahedron Lett. 1980; 21:3199.(b) Tsuda T, Chujo Y, Nishi S,

Tawara K, Saegusa T. J. Am. Chem. Soc. 1980; 102:6381.(c) Recio A III, Tunge JA. Org. Lett.
2009; 11:5630. [PubMed: 19921827] (d) Weaver JD, Tunge JA. Org. Lett. 2008; 10:4657.
[PubMed: 18785744] (e) Weaver JD, Ka BJ, Morris DK, Thompson W, Tunge JA. J. Am. Chem.
Soc. 2010; 132:12179. [PubMed: 20715821] (f) Burger EC, Tunge JA. J. Am. Chem. Soc. 2006;
128:10002. [PubMed: 16881615] (g) Yeagley AA, Chruma JJ. Org. Lett. 2007; 9:2879. [PubMed:
17580888] (h) Grenning AJ, Tunge JA. Org. Lett. 2010; 12:740. [PubMed: 20088536]

3. Decarboxylative C–C bond formation is a rapidly growing field: (a) Goossen LJ, Collet F, Goossen
K. Isr. J. Chem. 2010; 50:617. (b) Myers AG, Tanaka D, Mannion MR. J. Am. Chem. Soc. 2002;
124:11250. [PubMed: 12236722] (c) Tanaka D, Myers AG. Org. Lett. 2004; 6:433. [PubMed:
14748611] (d) Tanaka D, Romeril SP, Myers AG. J. Am. Chem. Soc. 2005; 127:10323. [PubMed:
16028944] (e) Forgione P, Brochu M-C, St-Onge M, Thesen KH, Bailey MD, Bilodeau F. J. Am.
Chem. Soc. 2006; 128:11350. [PubMed: 16939247] (f) Gooßen LJ, Deng G, Levy LM. Science.
2006; 313:662. [PubMed: 16888137] (g) Gooßen LJ, Rodríguez N, Melzer B, Linder C, Deng G,
Levy LM. J. Am. Chem. Soc. 2007; 129:4824. [PubMed: 17375927] (h) Gooßen LJ, Rudolphi F,
Oppel C, Rodríguez N. Angew. Chem. Int. Ed. 2008; 47:3043. (i) Shang R, Fu Y, Li J-B, Zhang S-
L, Guo Q-X, Liu L. J. Am. Chem. Soc. 2009; 131:5738. [PubMed: 19338301] (j) Shang R, Yang Z-
W, Wang Y, Zhang S-L, Liu L. J. Am. Chem. Soc. 2010; 132:14391. [PubMed: 20873805] (k)
Lindh J, Sjöberg PJR, Larhed M. Angew. Chem. Int. Ed. 2010; 49:7733. (l) Fields WH, Chruma JJ.
Org. Lett. 2010; 12:316. [PubMed: 20000671] (m) Torregrosa RRP, Ariyarathna Y, Chattopadhyay
K, Tunge JA. J. Am. Chem. Soc. 2010; 132:9280. [PubMed: 20565096]

4. (a) Tsuji J, Minami I, Shimizu I. Tetrahedron Lett. 1983; 24:1793.(b) Torregrosa RRP, Ariyarathna
Y, Chattopadhyay K, Tunge JA. J. Am. Chem. Soc. 2010; 132:9280. [PubMed: 20565096]

Grenning and Tunge Page 9

J Am Chem Soc. Author manuscript; available in PMC 2012 September 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript
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Yang S-C, Feng W-H, Gan K-H. Tetrahedron. 2006; 62:3752. (d) Gan K-H, Jhong C-J, Shue Y-J,
Yang S-C. Tetrahedron. 2008; 64:9625. Rhodium: (e) Muraoka T, Matsuda I, Itoh K. J. Am. Chem.
Soc. 2000; 122:9552. Ruthenium: (f) Burger EC, Tunge JA. Org. Lett. 2004; 6:2603. [PubMed:
15255701] (g) Koelle U. Chem. Rev. 1998; 98:1313. [PubMed: 11848934] (h) Trost BM, Fraisse
PL, Ball ZT. Angew. Chem. Int. Ed. 2002; 41:1059. (i) Constant S, Tortoioli S, Mueller J, Linder D,
Buron F, Lacour J. Angew. Chem. Int. Ed. 2007; 46:8979. (j) Burger EC, Tunge JA. Chem.
Commun. 2005:2835. (k) Constant S, Tortoioli S, Müller J, Lacour J. Angew. Chem. Int. Ed. 2007;
46:2082. Molybdenum: (l) Belda O, Moberg C. Acc. Chem. Res. 2004; 37:159. [PubMed:
15023083] (m) Trost BM, Lautens M. J. Am. Chem. Soc. 1987; 109:1469. (n) Trost BM, Zhang Y.
J. Am. Chem. Soc. 2006; 128:4590. [PubMed: 16594693] (o) Trost BM, Lautens M. J. Am. Chem.
Soc. 1982; 104:5543. Iridium: (p) He H, Zheng X-J, Li Y, Dai L-X, You S-L. Org. Lett. 2007;
9:4339. [PubMed: 17854201] (q) Madrahimov ST, Markovic D, Hartwig JF. J. Am. Chem. Soc.
2009; 131:7228. [PubMed: 19432473] Iron: (r) Trivedi R, Tunge JA. Org. Lett. 2009; 11:5650.
[PubMed: 19921783] (s) Jarugumilli GK, Cook SP. Org. Lett. 2011; 13:1904. [PubMed: 21391714]
(t) Mayer M, Czaplik WM, Jacobi von Wangelin A. Adv. Synth. Catal. 2010; 352:2147.

8. (a) Otera J, Ioka S, Nozaki H. J. Org. Chem. 1989; 54:4013.(b) Otera J, Dan-oh N, Nozaki H. J.
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9. Newhouse T, Baran PS, Hoffmann RW. Chem. Soc. Rev. 2009; 38:3010. [PubMed: 19847337]
10. Grenning AJ, Tunge JA. Angew. Chem. Int. Ed. 2011; 50:1688.
11. For some recent examples of C–C bond cleavage by retro-Claisen see: (a) Han C, Kim EH, Colby

DA. J. Am. Chem. Soc. 2011; 133:5802. [PubMed: 21443226] (b) Brodsky BH, Du Bois J. Org.
Lett. 2004; 6:2619. [PubMed: 15255705] (c) Kawata A, Takata K, Kuninobu Y, Takai K. Angew.
Chem. Int. Ed. 2007; 46:7793. (d) Biswas S, Maiti S, Jana U. Eur. J. Org. Chem. 2010:2861. (e)
Deb I, Seidel D. Tetrahedron Lett. 2010; 51:2945. (f) He C, Guo S, Huang L, Lei A. J. Am. Chem.
Soc. 2010; 132:8273. [PubMed: 20518466] (g) Rao CB, Rao DC, Babu DC, Venkateswarlu Y.
Eur. J. Org. Chem. 2010:2855. (h) Wei Y, Liu J, Lin S, Ding H, Liang F, Zhao B. Org. Lett. 2010;
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14. For recent reviews of various metal-catalyzed cycloisomerization reactions see: (a) Aubert C,
Fensterbank L, Garcia P, Malacria M, Simonneau A. Chem. Rev. 2011; 111:1954. [PubMed:
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16683779] (b) Wender PA, Love JA, Williams TJ. Synlett. 2003:1295. (c) Wender PA, Husfeld
CO, Langkopf E, Love JA. J. Am. Chem. Soc. 1998; 120:1940. (d) Wender PA, Husfeld CO,
Langkopf E, Love JA, Pleuss N. Tetrahedron. 1998; 54:7203.
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Khim. 1986; 22:1565.

26. Prenylation can often be challenging due to competing elimination but works best with highly
stabilized anions: (a) ref. 1, and references therein Trost BM, Malhotra S, Chan WH. J. Am.
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27. (a) Theodore LJ, Nelson WL. J. Org. Chem. 1987:1309.(b) Wu L, Hartwig JF. J. Am. Chem. Soc.
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16524293] and references there in. (b) see the supporting information for a complementary, high
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yielding acetylation using acetyl-imidazole that is base on a reported method for the acetylation of
nitroalkanes: (c) Crumbie RL, Nimitz JS, Mosher HS. J. Org. Chem. 1982; 47:4040.

30. See supporting information for a detailed procedure.
31. Quaternary cyano diarylmethanes and derivatives thereof are heavily patented compounds for their

theraputic use. For example, they are important intermediates in the synthesis of Darifenacin and
Methadone: (a) Baker D, Burce M, Cahn A, Thomas M. Novel Combination of therapeutic agents.
PCT Int. Appl. WO2010097114, A1 20100902. 2010 Feb. 9. (b) Tyagi OD, Ray PC, Chauhan YK,
Rao K, Reddy N, Reddy D. Improved process for producing darifenacin. PCT Int. Appl.
WO2009125430, A2 20091015. 2009 Oct. 15. (c)Barnett CJ. Modification of methadone synthesis
process step. US Patent. 4,048,211. 1977 Sept. 13.

32. In addition to allyl ethyl carbonate, a small quantity (~10%) of diallyl carbonate is formed. The
observed diallyl carbonate can arise from transesterification followed by retro-Claisen
condensation or from retro-Claisen condensation followed by transesterification.

33. For a single example of a bisallylation via Tsuji-Trost/decarboxylative allylation see: Tsuji J,
Shimizu I, Minami I, Ohashi Y. Tetrahedron Lett. 1982; 23:4809.

34. Stabilized nitroalkanes undergo mild and/or rapid high yielding Tsuji-Trost allylation: (a) Ono N,
Hamamoto I, Kaji A. J. Org. Chem. 1986; 51:2832. (b) Genet JP, Ferroud D. Tetrahedron Letters.
1984; 25:3579. (c) Fu Y, Etienne MA, Hammer RP. J. Org. Chem. 2003; 68:9854. [PubMed:
14656124] (d) Tsuji J, Yamada T, Minami I, Yuhara M, Nisar M, Shimizu I. J. Org. Chem. 1987;
52:2988.

35. (a) nitroalkane pKa’s: Bordwell FG, Vanier NR, Matthews WS, Hendrickson JB, Skipper PL. J.
Am. Chem. Soc. 1975; 97:7160. (b) ketone pKa’s: Bordwell FG, Harrelson JA Jr. Can. J. Chem.
1990; 68:1714. (c) nitrile pKa’s: Bordwell FG, Cheng J-P, Bausch MJ, Bares JE. J. Phys. Org.
Chem. 1988; 1:209.
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Scheme 1.
Decarboxylative Allylation
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Scheme 2.
Deacylative Allylation
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Scheme 3.
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Scheme 4.
DaA of α-cyanoketones and esters
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Scheme 5.
Verapamil intermediate
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Scheme 6.
Synthesis of a Verapamil Precursor from Homoveratronitrile
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Scheme 7.
DaA of cyanoacetic ester
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Scheme 8.
Mechanisms of allylation
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Scheme 9.
Inhibition by ethoxide
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Scheme 10.
Synthesis of a Verapamil Precursor from Isopropyl Cyanoaceate
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Scheme 11.
New Approaches to the Synthesis of 1,6-heptadienes
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Table 1

Deacylative Allylation of Nitroketones and Derivatives

a
2.5 mol % Pd(PPh3)4, 1.2 equiv. allyl alcohol, 1 equiv. Cs2CO3 80 °C, overnight, DCM:DCE (1:1) for nitro compounds, THF for acetylacetone

derivatives

b
>20:1 l:b.
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c
10 mol % Pd(PPh3)4

d
5.6 1: E:Z, 3.8:1, l:b

e
DCE, 7h
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Table 3

DaA of 1,3-diketones with allyl alcohols

a
1.0:1.05 ketone:allyl alcohol, 1.1 equiv. NaH, 2.5 mol % Pd(PPh3)4 60 °C

b
DMSO, 3h

c
THF, 60 min.
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d
NMP, Cs2CO3 80 °C, 12h

e
THF, 12h

f
2.1 equiv. NaH
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Table 4

Deacylative Allylation of Acetylacetone Derivatives

a
1.0:1.05 ketone:allyl alcohol, 1.1 equiv. NaH, 2.5 mol % Pd(PPh3)4,

b
THF,

c
NMP, Cs2CO3, 80 °C,
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d
DMSO,

e
MeCN
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Table 5

Deacylative Allylation of Cyanoacetone Derivatives

a
1:1.05 cyanoacetone : allylic alcohol, 1.1 equiv. NaH

b
60 °C, 12h
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Table 6

DaA of α-Arylcyanoacetones with Allylic Alcohols

a
1:1.05 cyanoacetone:allylic alcohol, 1.1 equiv. NaH, 2.5 mol % Pd(PPh3)4

b
inseparable mixture
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Table 7

Deacylative Allylation of Ethyl Cyanoactate Derivatives

a
1:5 ethyl cyanoacetone:allylic alcohol, 1.1 equiv. NaH, 2.5 mol % Pd(PPh3)4

b
DMSO

c
>20:1 l:b
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Table 8

Deacylative Allylation of Isopropyl Cyanoacetate Derivatives
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Table 9

3-Component Bisallylation of Nitroacetone Derivatives

(a)
1:1:1.2 Nitroacetone:allyl carbonate:allyl alcohol, 2.5 mol % Pd(PPh3)4, 1 equiv. of Cs2CO3, DCM:DCE (1:1), 80 °C, 12h.

(b)
81% yield using 2 equiv. of Cs2CO3 and cinnamyl acetate.

(c)
10 mol % Pd(PPh3)4
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Table 10

3-Component Bisallylation of Acetylacetones

(a)
1:1:1.1 ketond, cinnamly acetate, allylic alcohol, 2.1 equiv. NaH, 2.5 mol % Pd(PPh3)4, 60 °C THF

(b)
DMSO

(c)
MeCN
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(d)
Cs2CO3
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Table 11

3-Component Bisallylation of Cyanoacetone Derivatives

(a)
1:1:1.1 cyanoacetone : allylic acetate : allylic alcohol, 2.1 equiv. NaH, 2.5 mol % Pd(PPh3)4, DMSO, 60 °C

(b)
THF

(c)
10:1 l:b in DaA
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