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Abstract

Disulfiram (DSF), a treatment for alcohol use disorders, has shown some clinical effectiveness in 

treating addiction to cocaine, nicotine, and pathological gambling. The mechanism of action of 

DSF for treating these addictions is unclear but it is unlikely to involve the inhibition of liver 

aldehyde dehydrogenase (ALDH2). DSF is a pro-drug and forms a number of metabolites, one of 

which is N-acetyl-S-(N,N-diethylcarbamoyl) cysteine (DETC-NAC). Here we describe a 

LCMS/MS method on a QQQ type instrument to quantify DETC-NAC in plasma and intracellular 

fluid from mammalian brain. An internal standard, the N,N-di-isopropylcarbamoyl homolog 

(MIM: 291 > 128) is easily separable from DETC-NAC (MIM: 263 > 100) on C18 RP media with 

a methanol gradient. The method's linear range is 0.5–500 nM from plasma and dialysate salt 

solution with all precisions better than 10% RSD. DETC-NAC and internal standards were 

recovered at better than 95% from all matrices, perchloric acid precipitation (plasma) or formic 

acid addition (salt) and is stable in plasma or salt at low pH for up to 24 h. Stability is observed 

through three freeze-thaw cycles per day for 7 days. No HPLC peak area matrix effect was greater 
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than 10%. A human plasma sample from a prior analysis for S-(N,N-diethylcarbamoyl) glutathione 

(CARB) was found to have DETC NAC as well. In other human plasma samples from 62.5 mg/d 

and 250mg/d dosing, CARB concentration peaks at 0.3 and 4 nM at 3 h followed by DETC-NAC 

peaks of 11 and 70 nM 2 h later. Employing microdialysis sampling, DETC-NAC levels in the 

nucleus accumbens (NAc), medial prefrontal cortex (mPFC), and plasma of rats treated with DSF 

reached 1.1, 2.5 and 80 nM at 6 h. The correlation between the appearance and long duration of 

DETC-NAC concentration in rat brain and the persistence of DSF-induced changes in 

neurotransmitters observed by Faiman et al. (Neuropharmacology, 2013, 75C, 95–105) is 

discussed.
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1. Introduction

Disulfiram (DSF; PubChem CID: 3117), originally identified as a treatment for alcohol 

addiction [1], has now been found to also have potential for the treatment of several other 

substance use disorders. These include addiction to cocaine [2,3], nicotine [4], marijuana [5] 

and the behavioral addiction pathological gambling [6,7]. The pharmacological basis for 

DSF's use in alcohol addiction is its ability to inhibit liver mitochondrial aldehyde 

dehydrogenase (ALDH2) [1]. While the mechanism by which DSF acts to treat non-

alcoholic substance abuse disorders and pathological gambling behaviors is unclear, it is 

unlikely to involve the inhibition of ALDH2.

DSF is a pro-drug that is metabolized to a number of metabolites (Fig. 1). The metabolic 

pathways, including the drug metabolizing enzymes identified in DSF's bioactivation, have 

been described previously [8–11]. S-methyl diethyldithiocarbamate sulfoxide (DETC-

MeSO) (Fig. 1) is the DSF metabolite that inhibits ALDH2 [12,13] and it is also believed to 

be responsible for the disulfiram–ethanol reaction seen in DSF-treated patients after ethanol 

ingestion. The carbamoylation of glutathione by DETC-MeSO leads to the formation of S-

(N,N-diethylcarbamoyl) glutathione (CARB) (Fig. 1) [14,15].

CARB is found in the bile of rats after the administration of either DSF or 

diethyldithiocarbamate (DDTC) [15] and in the plasma of human volunteers treated with 

DSF [16]. In microdialysis studies in rats, CARB is found in the nucleus accumbens (NAc) 

shell, and in plasma of rats following intraperitoneal DSF administration [17]. When CARB 

is administered intravenously, CARB is found in the medial prefrontal cortex (mPFC) in 

addition to the NAc and plasma. In the brain, CARB administration increases dopamine, 

decreases gamma-aminobutyric acid and has a biphasic effect on glutamate. Similar findings 

were observed in rats following intraperitoneal DSF administration. These effects were 

absent in rats concurrently administered DSF and N-benzylimidazole, a cytochrome P450 

inhibitor. Inhibition of DSF bioactivation blocks the formation of DSF-metabolites while 

attenuating any changes in these neurotransmitters [17]. Of interest is that after CARB 

administration, CARB disappears rapidly (half-life of approximately 4 min) from the NAc, 
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mPFC, and plasma. Yet, changes in dopamine, gamma-aminobutyric acid, and glutamate 

persist for almost 2-h. Although the reason for this is not readily apparent, one explanation 

could be the formation of another bioactive metabolite downstream from CARB (Fig. 1).

In previous studies Heemskerk et al. [16] observed both CARB and an unidentified peak in 

the plasma (Fig. 2A) of human volunteers treated with DSF. Preliminary mass spectrometry 

studies suggested that the unidentified peak was N-acetyl-S-(N,N-diethylcarbamoyl) cysteine 

(DETC-NAC; Fig. 2B). Additionally, Hu et al., [18] found DETC-NAC in the urine of rats 

treated with either DSF or diethyldithiocarbamate (DDTC) and Nagendra and Faiman 

(unpublished results) detected DETC-NAC in urine from rats treated with DETC-MeSO. 

These observations are consistent with the metabolic elimination of DETC-MeSO through 

the mercapturate pathway – a means by which potentially toxic alkylating agents are 

eliminated [19]. Because DETC-NAC is the result of the S-carbamoylation of glutathione by 

DETC-MeSO, (e.g. the formation of CARB) DETC-NAC is probably the product of the 

mercapturate pathway. However, that DETC-NAC is produced in the liver and kidneys as 

part of phase II metabolism does not explain the presence of CARB and (potentially) DETC-

NAC in the mammalian brain.

To better understand this juxtaposition of DSF metabolites and neurotransmitter transmitter 

changes [17], studies were carried out to firstly, identify the aforementioned unknown peak 

as DETC-NAC (Fig. 2A) and secondly, to design a HPLC– or UHPLC–MS/MS 

methodology appropriate for quantifying DETC-NAC in human plasma, and in the NAc, 

mPFC, and plasma of rats. The present findings are the first report identifying DETC-NAC 

in plasma from human volunteers treated with DSF and the appearance of DETC-NAC in 

the NAc and mPFC and in plasma from rats after DSF administration. The finding of 

DETC-NAC in the NAc and mPFC, two brain regions associated with the reward pathway, 

may provide a rationale for the use of DSF in the treatment of several substance abuse 

disorders such as cocaine abuse, nicotine abuse, and the behavioral addiction pathological 

gambling.

2. Methods and materials

2.1. Chemicals and reagents

The artificial cerebrospinal fluid solution was prepared as previously described [20]. 

Components of the artificial cerebrospinal fluid solution, formic acid, perchloric acid (70%, 

w/v), and HPLC grade methanol were purchased from Fisher (Fairlawn, NJ, USA). 

Ammonium bicarbonate, N-acetyl-L-cysteine, diethylcarbamoyl chloride and N,N-

diisopropylcarbamoyl chloride were purchased from Sigma–Aldrich (St. Louis, MO, USA). 

Ketamine was purchased from Fort Dodge Animal Health (Fort Dodge, IA, USA) and 

xylazine was purchased from Lloyd Laboratories (Shenandoah, IA, USA). Nanopure water 

was prepared using a Water Pro Plus purification system (Labconco, Kansas City, MO, 

USA). Blank pooled human plasma was purchased from Innovative Research (Novi, MI, 

USA).
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2.2. Synthesis of DETC-NAC and DIPC-NAC

DETC-NAC and N-acetyl-S-(N,N-di-isopropylcarbamoyl) cysteine (DIPC-NAC) were 

synthesized by the same method: 1 g diethylcarbamoyl chloride or N,N-

diisopropylcarbamoyl chloride dissolved in 35 mL of pyridine was added to an 8 mL 

aqueous solution of N-acetyl-L-cysteine (0.33 g, 2.02 mmol) over 5 minutes at 0 °C. The 

mixture was stirred overnight at 25 °C and then concentrated in vacuo. The residual paste 

was purified by flash column chromatography using a methanol: ethyl acetate solvent 

mixture specific to each product. Product fractions were concentrated in vacuo to generate a 

milky white solid.

The structure of DETC-NAC and DIPC-NAC was confirmed, in each case by triplicate 

exact mass determinations and 1H, 13C NMR experiments. The exact mass of DETC-NAC 

([M+H]+, C10H19N2O4S, theoretical exact mass: 263.1066) was 263.1063 ± 0.0036, −1.14 

ppm from the theoretical mass. The exact mass of DIPC-NAC ([M+H]+ C12H23N2O4S 

theoretical exact mass: 291.1379) was 291.1408 ±0.00056, +2.9 ppm from the theoretical 

mass. DETC-NAC purified by flash column chromatography (5:95 methanol:ethyl acetate) 

produced a white solid (68.2%). Spectral data matched previously reported results [18].

DIPC-NAC, purified by flash column chromatography (3:97 methanol:ethyl acetate) 

produced a white solid (62.8%). 1H NMR (500 MHz, deuterium oxide) δ 4.39 (dd, J = 8.6, 

4.0 Hz, 1H), 4.17 (d, J = 11.7 Hz, 1H), 3.65 (s, 1H), 3.42–3.35 (m, 1H), 3.10 (ddd, J = 14.2, 

8.6,0.8 Hz, 1H), 1.99 (d, J = 0.7 Hz, 3H), 1.34–1.15 (m, 13H). 13C NMR (126 MHz, 

deuterium oxide) δ 176.32, 173.44, 166.93, 54.77, 50.47, 47.32, 31.71, 21.90, 19.82, 19.21.

2.3. Analytical methods

2.3.1. LC method for UV and mass spectrometric detection—HPLC–UV (HPLC 

coupled to a UV/visible detector) experiments were performed modifying the method of 

Heemskerk et al. [16] with three alterations. (1) The HPLC was a Waters Alliance 2695 

(Waters Co., Milford, MA, USA) equipped with a Waters 2487 absorbance detector set to 

215 nm controlled with Waters Mass-Lynx 4.1 software. (2) An alternate guard column (2 

mm × 20 mm guard column packed, in-house, with 5 μm SB-C18 Agilent Zorbax resin; 

Agilent Technologies, Santa Clara, CA, USA) was used to protect the resolving column. (3) 

HPLC mobile phase: solvent A consisted of water, methanol and formic acid (99:1:0.1, 

v/v/v) while solvent B consisted of methanol, water and formic acid (99:1:0.1, v/v/v). The 

sample (50 μL) was loaded at 15% B and a linear gradient (3% B/min rate of change, 500 

μL/min flow rate) ending at 80% B was used to resolve the analytes. Between injections, the 

column was re-equilibrated at 5% B for 3-min. For HPLC–MS/MS, HPLC-columns and 

mobile phase compositions used in the experiments are as described in Heemskerk et al. [16] 

on a Waters Acquity chromatograph with a Phenomenex Kinetex column (phase C18; 

diameter, 2.1 mm × 50 mm; particles size, 1.7 μm; pore size, 100 Å). The HPLC-gradient 

was altered as follows: The sample was loaded onto the column using a 50 μL injection 

volume at 5% B and was resolved in a 6-min gradient of 11% B per minute then to 90% B at 

400 μL/min. The first 2 min of gradient was diverted to waste and between injections, the 

column was washed for 2-min at 80% B and re-equilibrated at 5% B for 1.5-min.
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2.3.2. Mass spectrometric conditions—Mass spectrometry was performed using the 

parameters described by Heemskerk et al. [16] on a Micromass Quattro Ultima (Micromass 

Ltd. Manchester, UK). Optimal cone voltage and collision energies were 35 V and 15 V for 

DETC-NAC and 35 V and 10 V respectively for DIPC-NAC. Voltages and collision 

energies used to detect CARB were identical to those used by Heemskerk et al. [16]. Data 

processing was performed using Waters MassLynx 4.1 and GraphPad Prism 5 (GraphPad 

Software Inc., La Jolla, CA, USA).

2.4. Stability assay

The stability of DETC-NAC was studied under a number of analysis and storage conditions. 

The stability at low pH was assessed in quintuplicate using a protein-free extract of plasma 

(protein was removed by perchloric acid-mediated protein precipitation) spiked with 150 μM 

DETC-NAC. The samples were incubated at room temperature and sampled at 2-, 4-, 6- and 

24-h prior to analysis by HPLC–UV. The stability of DETC-NAC before and after 

precipitation was tested in a similar way using aliquots of pooled human plasma aliquots 

spiked with 150 μM DETC-NAC. Quintuplicate plasma aliquots were allowed to incubate at 

room temperature for 2-, 4-, 6- and 24-h before sample pretreatment and analysis. The 

stability in storage conditions was assessed by analyzing 150 μM spiked plasma after three 

freeze thaw cycles and at 1-, 3- and 7-days after storage at −20 °C. External calibration of 

DETC-NAC was performed using five point calibration curves of 50 μM–250 μM in plasma; 

a calibration range selected to accommodate the large DETC-NAC concentration used 

specifically in this stability assay.

2.5. Validation of quantitative HPLC–MS/MS assay

Matrix-induced suppression of DETC-NAC ionization was assessed using a post-column 

infusion method described previously [21]. Briefly DETC-NAC was infused post-column 

into the HPLC eluent stream entering the mass spectrometer. In MIM mode, DETC-NAC's 

263 > 100 transition were monitored while pre-treated, DETC-NAC free, plasma samples 

were resolved by the HPLC-column. No significant matrix-induced suppression of DETC-

NAC ionization was indicated by this method. The intra and inter-day stability of the 

method was quantitatively assessed by comparing calibration curves produced on each of 

four consecutive days. The standard curves were produced by analyzing plasma samples 

spiked with 1.0, 5.0, 10.0, 50.0, and 100.0 nM DETC-NAC. The linearity of the method was 

successfully determined out to 500 nM.

2.6. In vivo studies

2.6.1. Human studies—Two human studies were carried using a subset of samples from 

a study of patients receiving disulfiram. The first analysis was to confirm that DETC-NAC 

was formed after the administration of DSF to a healthy volunteer as suggested from our 

previous studies [16] (Fig. 2A and B). In those studies a female volunteer weighing 69 kg 

and 160 cm in height without any substance use disorder was recruited. DSF (250 mg/day) 

was given for 3-days. On the fourth day (24-h after the last dose of DSF and after an 8-h 

overnight fast) after an overnight fast, an antecubital venipuncture was carried out and blood 

drawn to obtain a base-line drug concentration at zero time (t0). A dose of DSF was then 
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administered and blood drawn 1-, 2-, 4-, 6-, 8-, and 10-h after DSF dosing. The 2-h time 

point was selected to evaluate the analytical method developed for DETC-NAC (Figs. 2B, 3, 

and 4). The procedures used and patient characteristics are described in the previous study 

(Fig. 2A and B) [16].

The second analysis was carried out to determine the plasma concentration-time profile for 

DSF administered to three healthy volunteers (without substance use disorders) at two 

different doses, these being 62.5 mg/day and 250 mg/day (Fig. 5A and B). Disulfiram 62.5 

mg/day was administered with staff observation for 3-days. On the fourth day, (24-h after 

the last dose of DSF and after an 8-hour overnight fast) an antecubital venipuncture was 

performed and 7 mL of blood drawn into a heparinized tube to obtain a baseline plasma 

DETC-NAC concentration at t0. A urine sample also was collected prior to DSF dosing 

which was negative for recent use of illicit substances (opiates, cocaine, amphetamines, 

marijuana and benzodiazepines). The 62.5 mg dose of DSF was then administered and blood 

samples drawn at 1-, 2-, 4-, 8-, 10-, and 12-h after DSF dosing. This was followed by a 4-

day wash out period. This identical protocol was then repeated with a dose of 250 mg/day 

DSF. After each blood draw, and for each dose studied, the blood sample was immediately 

centrifuged, separated, and the plasma was frozen at −70 °C until analysis could be carried 

out.

In both healthy subject studies, voluntary, written, and informed consent was obtained. The 

study was reviewed and approved by the Institutional Review Board at the University of 

California, San Francisco (UCSF).

2.7. Rat studies

2.7.1. Animals and surgeries—Male Sprague–Dawley rats (Charles River Laboratories, 

Wilmington, MA) weighing between 300 and 400 g were used. The rats were housed in a 

temperature and humidity controlled facility (University of Kansas Animal Care Unit, 

Lawrence, KS, USA) maintained on a 12-h light/dark cycle with access to food and water ad 

libitum. Twenty-four hours before initiating the studies, the rats were brought into the 

laboratory, housed individually, and acclimated. All microdialysis studies were carried out 

during the light phase. Prior to surgery, the rats were anesthetized employing isofluorane 

inhalation, and given a subcutanaeous mixture of ketamine, xylazine, and acepromazine. 

The anesthetic doses, and animal preparation for surgery have been described previously 

[20].

DSF was administered via a recently developed an intraperitoneal method that minimizes 

animal handling [17]. Plasma samples were collected using an intravenous PE-10 cannula 

implanted into the external femoral vein as described by Kaul et al. [20].

2.7.2. Rat microdialysis and rat plasma studies—The infusion pump and fraction 

collector installation as well as the exact manner by which microdialysis probes were 

implanted into rat brains for NAc and mPFC measurements and the jugular vein for plasma 

measurements has been described previously [17]. Briefly, holes were drilled through the 

skull. Guide cannulas were positioned 2 mm above the NAc and mPFC, and then replaced 

with microdialysis probes. Coordinates relative to the bregma were +1.5 mm anterior, +0.9 
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mm lateral, and −6.2 mm ventral for the NAc shell and +3.7 mm anterior, +0.7 mm lateral, 

and −1.0 mm ventral for the mPFC [22]. A microdialysis probe was inserted into the jugular 

vein for sampling of plasma DETC-NAC. Post-surgery sample collection, DSF preparation, 

DSF administration, and brain harvesting procedures were performed as described by 

Faiman et al. [17]. Post-surgery, brain and vascular probes were perfused (2 μL/min) with 

the artificial cerebrospinal fluid solution and Ringer's solution respectively. Sample 

collection was initiated 24-h after surgery similar to a previously used procedure [23].

DSF (200 mg/kg) was prepared as a suspension in saline, sonicated, and the suspension 

administered through the specially prepared intraperitoneal cannula. Microdialysis samples 

were collected every 15-min for 6-h. Following the experiment, the rats were killed and their 

brains removed, fixed in 10% (v/v) formalin, embedded in paraffin wax and sectioned for 

histological confirmation of probe placement using procedures previously described [17]. 

Only probes which exhibited at least 85% of active dialysis membrane in the NAc shell and 

the mPFC were included for analysis.

All animal experiments were conducted in accordance with guidelines established by the 

Institutional Animal Care and Use Committee at the University of Kansas. Experiments 

were carried out in accordance with NIH guidelines and met AAALAC standards.

2.8. Determination of DETC-NAC in plasma and brain dialysate

2.8.1. HPLC–MS/MS sample preparation—DETC-NAC and DIPC-NAC stock 

solutions were made at 1 mM concentrations in 100 mM ammonium bicarbonate buffer. 

CARB and S-(N,N-di-n-propylcarbamoyl) glutathione (homologous internal standard for 

CARB) solutions were prepared and diluted as described in Heemskerk et al. [16]. Calibrant 

solutions were prepared from these stock solutions using either water or Ringer's solution 

for quantitation of DETC-NAC or CARB or both in dialysate.

DETC-NAC concentrations in dialysate samples were quantified using a five point 

calibration curve derived from quintuplicate Ringer's solutions spiked with 1.0, 5.0, 10.0, 

50.0 and 100.0 nM of DETC-NAC. Prior to HPLC–MS/MS analysis of dialysate samples, 

40 μL of 1% (v/v) formic acid per 20 μL of dialysate sample to increase the volume of 

sample for the auto injector and, presumably, enhance or preserve chromatographic 

focusing.

An internal standard, DIPC-NAC, was incorporated into all plasma and calibrant samples. 

Human plasma, 100 μL aliquot, was supplemented with 55 μL of water, 10 μL of DIPC-

NAC solution (100 nM) and the mixture vortexed for 5 s. For calibration, the proportions 

were modified as follows: 100 μL of plasma, 45 μL water, 10 μL of DIPC-NAC (100 nM) 

and 10 μL of a DETC-NAC calibration stock solution. Plasma proteins in both sample and 

standard mixtures were precipitated by the addition of 35 μL perchloric acid (5 s vortex, 5 

min incubation at 0 °C) and the precipitate was discarded after centrifugation (5 min, 11,000 

× g, 25 °C). The supernatant was retained and analyzed.

2.8.2. Microdialysis probe calibration—The characteristics of the implanted 

microdialysis probes were evaluated at the end of each experiment. Based upon triplicate 
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experiments, the in vivo extraction efficiency for DETC-NAC was as follows (mean ± 

standard error): 53.7 ± 9.8% for the brain probes and 81.3 ± 10.8% for the plasma vascular 

probe.

3. Results and discussion

3.1. DETC-NAC identified in previous study

We investigated the unidentified peak (Fig. 2A) described by Heemskerk et al. [16] by re-

running the patient plasma sample in question. The HPLC–MS/MS conditions used were 

identical to Heemskerk et al. [16] except for the addition of a DETC-NAC specific 263 > 

100 Da transition that we identified through empirical examination of the DETC-NAC 

specific collision-induced disassociation spectrum (Fig. 3A). As shown in Fig. 2B, the 

unknown peak was explicitly identified as DETC-NAC based on their identical 

chromatographic retention times. This led us to develop a DETC-NAC specific quantitation 

method to facilitate clinical studies of this DSF metabolite.

3.2. Quantitation of DETC-NAC: method development

3.2.1. Internal standard selection—Robust LC–MS/MS based quantification requires 

an internal standard closely matching the solubility, chemical activity, ionization and 

structure of the intended analyte as closely as practically possible [24]. Because it was 

impractical to purchase a stable isotope mimic of the analyte or to synthesize one using 

isotope-labeled precursors, we chose to synthesize DIPC-NAC, a close structural relative of 

DETC-NAC. This strategy was similar to that employed previously by Heemskerk et al. 

[16].

The collision-induced dissociation spectra of both DETC-NAC and DIPC-NAC were 

examined and we determined that the most abundant MIM transitions corresponded to the 

carbamoyl fragment from both molecules. For DETC-NAC this transition is 263–100 u (Fig. 

3A) and for DIPC-NAC, this transition is 291–128 u (Fig. 3B).

3.2.2. HPLC conditions—Our DETC-NAC HPLC–MS/MS quantitation method is an 

adaption of the CARB specific LC-methodology developed by Heemskerk et al. [16]. We 

retained, for the same reasons, their choice in LC-column technology and large (50 μL) 

sample loading volumes. We modified their LC-gradient as follows: (1) an analyte focusing 

phase with 5% methanol, (2) a gradient elution of 11%/min increase of solvent B (99% 

methanol), (3) a washing phase of 80% solvent B, and (4) a re-equilibration phase at the 

initial conditions. The typical selectivity and sensitivity of this HPLC–MS/MS method can 

be seen in Fig. 4.

3.2.3. Addressing: (1) ion suppression, (2) recovery, and (3) stability

1. Matrix-based ion-suppression of DETC-NAC and DIPC-NAC was assessed by a 

post-column infusion assay described previously [16]. There was no indication (e.g. 

peak area change of greater than 10%) that either analyte-ion suffered suppression 

during the relevant chromatographic retention times.
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2. The fact that perchloric acid-mediated protein precipitation is a routine method for 

extracting and concentrating either acidic-or neutral drugs from biological matrices 

[5] notwithstanding, we evaluated our ability to quantitatively recover DETC-NAC 

from perchloric acid-treated plasma samples by quantifying DETC-NAC detected 

(after incubation) in DETC-NAC spiked samples prepared in either plasma or 

water. The mean analytical recovery 99.1 ± 3.3% demonstrates that DETC-NAC is 

stable both in the presence of perchloric acid and at 21 °C for at least 24-h (Table 

S1).

3. The destabilizing effects of freeze-thaw events on DETC-NAC were assessed by 

subjecting spiked samples to three freeze–thaw cycles and storage at −20 °C for up 

to 7 days. No significant degradation was observed (Table S2).

3.2.4. Linearity, accuracy, precision and limits of quantitation—The linearity and 

accuracy of this method was assessed by generating calibration curves from quintuplicate 

samples comprised of blank pooled human plasma spiked with DETC-NAC. As can be seen 

in Table S3, acceptable levels of accuracy, within 5% of expectation, precision (within 10% 

over the 1 nM–500 nM range), and linearity were achieved. These levels were maintained 

when the inter-day repeatability of the method was assessed by the generation of calibration 

curves covering the 1.0 nM–100.0 nM range over four successive days. The limit of 

quantitation was not determined below 1 nM as this concentration was adequate for 

subsequent analyses.

3.2.5. Determination of DETC-NAC in human plasma—The utility of this LC–MS 

method in humans was examined. Three volunteers were given two separate doses of DSF in 

a crossover study (Fig. 5) After an oral dose of 62.5 mg of DSF, an average lag of 

approximately 1-h was observed before a significant concentration of DETC-NAC appeared 

in the plasma of each patient (Fig. 5A). This lag period is due to not only the delay in 

stomach emptying time, but also to the poor solubility and absorption characteristics of DSF. 

A peak DETC-NAC concentration occurred approximately 6-h after dosing (Fig. 5A). 

DETC-NAC was still seen in plasma 10-h after DSF dosing. In both experiments a non-zero 

concentration of both CARB and DETC-NAC was observed at t0 (Fig. 5A and B). After a 

62.5 mg dose of DSF (Fig. 5A), the average concentration of CARB and DETC-NAC at t0 

was 0.09 nM and 1.6 nM respectively. We believe that these concentrations of CARB and 

DETC-NAC are reflective of the variability typically seen in cases where the analyte 

concentration in a sample is close to the assay's limit of detection. After a 250 mg dose of 

DSF, the average t0 concentration of CARB and DETC-NAC was even greater than that 

seen after the administration of a 62.5 mg of DSF (0.50 nM and 26.0 nM respectively) (Fig. 

5B). This was a cross-over study and the same patients were used. Since DSF was given 

daily for 3 days and plasma analysis initiated on the fourth day, the DETC-NAC at t0 

appears to reflect the carry-over from the previous days dosing. This is suggested by the 

finding that for the 62.5 mg/day dose of DSF, the average area under the DETC-NAC curve 

(AUC) was 61.9 h μg/ml. For the 250 mg/day dose, the AUC was almost 8-fold higher at 

483.8 h μg/ml. In both cases the average time when maximal plasma concentration achieved 

post administration (i.e. the Tmax) was approximately 6-h. The ratio of the maximum DETC-

NAC concentration observed (i.e. ratios of the respective Cmax) between the two doses of 
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DSF was 5.6 and close to the 4-fold difference between the 62.5 and 250 mg/day dose of 

DSF.

3.2.6. DETC-NAC in plasma and NAC and MPFC of rats—The validated method 

was used to generate DETC-NAC concentration profiles as a function of time in plasma and 

in the NAc and mPFC of DSF-treated rats (Fig. 6). Initially, there is a lag of approximately 

50 min in the plasma, NAc and mPFC before DETC-NAC increases. This delay most likely 

reflects both the slow absorption characteristics of DSF and the metabolism required to form 

DETC-NAC (Fig. 1). In both the plasma and the respective brain regions, DETC-NAC 

remains elevated for at least six hours. Although, there is some variability at each time point 

this likely reflects the variability in DSF absorption, the poor solubility of DSF in vivo, and 

the complexity of DSF metabolism.

3.2.7. Biological significance of the sequential appearance of CARB and 
DETC-NAC—This work was initiated on the suspicion that an unknown DSF metabolite 

had been detected in the plasma of a human volunteer [16]. In the course of developing and 

validating an accurate, repeatable and precise HPLC–MS/MS assay to identify and quantify 

this molecule, we observed pharmacokinetic phenomena consistent with the conclusion that 

DETC-NAC is the terminal metabolite of DSF.

Firstly, DETC-NAC consistently trails the appearance of CARB and with a longer duration 

in rats (Fig. 6) and humans (Fig. 5). Secondly, administration of two different doses of DSF 

to a patient volunteer consistently produced a peak DETC-NAC concentration 4 h after DSF 

dosing. Thirdly, the maximum plasma concentration of DETC-NAC after the 250 mg/day 

dose of DSF was approximately four times greater than that of the 62.5 mg/day dose of 

DSF. We conclude that DETC-NAC is a metabolite of DSF and is formed from CARB as 

suggested previously by Hu et al. [18].

Furthermore the juxtaposition of the appearance of CARB and DETC-NAC suggests that 

DETC-NAC might be responsible for neurotransmitter changes that persisted in DSF- and 

CARB-treated rats long after the disappearance of CARB [17]. The rat studies described 

above (Fig. 6) were carried out to better correlate the appearance of DETC-NAC with the 

timing of changes in brain neurotransmitter levels in rats treated with DSF [17]. DETC-

NAC in rat plasma as well as in the NAc and mPFC rose in tandem after an initial lag period 

(Fig. 6) consistent with the supposition that DETC-NAC may either cause or prolong the 

perturbation in neurotransmitter levels seen in the previous study and attributed to the 

presence of CARB. The observed lag in DETC-NAC appearance relative to CARB is 

explained as DETC-NAC is the mercapturic acid pathway product [19] of CARB. This lag is 

seen in the human patient following a 62.5 mg/day dose of DSF but not after a second 250 

mg/day dose. We attribute this to the fact that this was a cross-over study conducted in the 

same patient with an insufficient wash-out time (3-days) allotted between doses. From the 

present studies, we note that the lag time in the appearance of DETC-NAC is similar to the 

delay in changes observed in dopamine, gamma-aminobutyric acid, and glutamate levels 

during the microdialysis studies carried out on DSF-treated rats [17]. The correlation 

between CARB and DETC-NAC detected in brain regions and perturbations in 

neurotransmitter levels plus clinical studies suggesting DSF's efficacy in addiction therapy 
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requires further study. Such studies would be meritorious given the fact that various 

neurotransmitters including dopamine, gamma-aminobutyric acid, and glutamate have been 

implicated in alcohol [25], cocaine [26], and in nicotine use disorders [27] in an attempt to 

understand the biological basis of these addictions.

Studies over the last several decades have now shown that DSF is not a simple drug 

molecule but rather a pro-drug that forms a number of metabolites during its bioactivation 

[11,28,29] (Fig. 1). Other than the DSF metabolite DETC-MeSO, which is responsible for 

the inhibition of ALDH2 [12], the pharmacological actions of the various DSF metabolites 

are not understood. It is only recently that the DSF metabolite CARB has been found to 

produce changes in dopamine, gamma-aminobutyric acid, and glutamate in the NAc and 

mPFC [17], two brain regions of the reward pathway. The finding of DETC-NAC in the 

NAc and mPFC, and in plasma of rats after DSF administration (Fig. 6) also indicates that 

even though mercapturic acid formation and elimination by the kidney as a detoxification 

process is expected [19], the observation that DETC-NAC is found in the brain of rats 

treated with DSF is a novel finding. DETC-NAC also is found in urine of rats after DETC-

MeSO (Nagendra and Faiman unpublished results) or after DSF administration [18]. These 

observations coupled with our discovery of CARB [17] and DETC-NAC in the plasma of 

DSF-treated patients (Fig. 2A and B) suggest that CARB and DETC-NAC formation 

respectively may reflect a final pathway in DSF metabolism via the mercapturate pathway 

[19]. The enzymatic suite powering the mercapturate pathway is concentrated in the liver 

and kidneys with instances where mercapturate intermediates are shuttled between them via 

the vascular system. This could represent one explanation for the presence of both CARB 

and DETC-NAC in the plasma of DSF-treated mammals. The presence of CARB [17] and 

DETC-NAC (Fig. 5) in the NAc and mPFC of DSF-treated rats indicates that both can cross 

the blood–brain barrier.

4. Conclusion

In conclusion, we have developed a sensitive, selective, and robust HPLC–MS/MS method 

for quantitative analysis of DETC-NAC utilizing, as an internal standard, the DETC-NAC 

structural homolog N-acetyl-S-(N,N-di-isopropylcarbamoyl) cysteine. We demonstrated the 

effectiveness of the assay during studies of DSF-treated rats and human patients wherein 

DETC-NAC levels were monitored in a variety of biological matrices thereby demonstrating 

the flexibility of the method.

The results from the current studies are the first report identifying DETC-NAC in the plasma 

of human volunteers, and in the NAc, mPFC and in plasma of rats after DSF administration. 

Based upon these observations, it is not unreasonable to suggest that DETC-NAC also 

would be found in the brain of human subjects receiving DSF. These observations invite 

speculation about how DETC-NAC might influence neurotransmitters levels. Microdialysis 

studies carried out by Faiman et al. [17] demonstrated that rats dosed with DSF experience 

perturbations in their dopamine, gamma-aminobutyric acid and glutamate levels in the NAc 

and mPFC that persisted as CARB levels declined. In human studies (Fig. 5) after DSF 

administration, the peak appearance of CARB in plasma (Fig. 5) precedes that of DETC-

NAC, and that the concentration of DETC-NAC is always greater than CARB. Furthermore 
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DETC-NAC in plasma is maintained while the concentration of CARB begins to return to 

baseline. Perturbations in the neurotransmitter levels in the brains of DSF- and CARB-

treated rats persist beyond the clearance of CARB [17]. The significance of these 

observations in the treatment of various addictions is intriguing and remains to be 

established in future studies employing an animal model to establish proof of concept.
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Abbreviations

ALDH2 aldehyde dehydrogenase

AUC area under the curve

CARB carbamathione/S-(N,N-diethylcarbamoyl) glutathione

DSF disulfiram

DDTC diethyldithiocarbamate

DDTC-Me S-methyl-N,N-diethyldithiocarbamate

DDTC-MeSO S-methyl-N,N-diethyldithiocarbamate sulfoxide

DDTC-MeSO2 S-methyl-N,N-diethyldithiocarbamate sulfone

DETC-Me S-methyl-N,N-diethylthiocarbamate

DETC-MeSO S-methyl-N,N-diethylthiocarbamate sulfoxide

DETC-MeSO2 S-methyl-N,N-diethylthiocarbamate sulfone

DETC-NAC N-acetyl-S-(N,N-diethylcarbamoyl) cysteine

DIPC-NAC N-acetyl-S-(N,N-di-isopropylcarbamoyl) cysteine

HPLC–UV HPLC with UV detection

mPFC medial prefrontal cortex

NAc nucleus accumbens

t0 zero time

Winefield et al. Page 13

J Pharm Biomed Anal. Author manuscript; available in PMC 2016 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
The bioactivation of DSF.
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Fig. 2. 
Identification of DETC-NAC in human plasma. The unknown peak previously found at a 

transition of 407 → 100 u upon analysis of human plasma [16] (Fig. 2A), is identified as 

DETC-NAC (Fig. 2B) the transition is MH+ to carbamoyl fragment observed in Fig. 3.
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Fig. 3. 
Fragmentation of DETC-NAC (A) and the internal standard DIPC-NAC (B) with the 100 

m/z and 128 m/z fragments used in MIM indicated.
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Fig. 4. 
HPLC–MS/MS (selected reaction monitoring) elution profile of typical chromatographic 

resolution and detection of DETC-NAC and DIPC-NAC in the plasma samples from a 53 

year old female volunteer dosed with 250 mg DSF (see human studies).
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Fig. 5. 
The concentration profiles of DETC-NAC and CARB in the plasma of a human volunteer 

following an oral dose of (A) 62.5 mg DSF followed by a 3 day delay then (B) a 250 mg 

DSF dose. Error bars show the standard error of the mean.
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Fig. 6. 
Concentrations of DETC-NAC in the plasma, NAc and mPFC of rats (n = 3) after dosing 

with DSF (200 mg/kg, intraperitoneal). Error bars show the standard error of the mean.
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