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Abstract

The moving contact line of a thin fluid film can often corrugate into fingers, which is also known 

as a fingering instability. Although the fingering instability of Newtonian fluids has been studied 

extensively, there are few studies published on contact line fingering instability of non-Newtonian 

fluids. In particular, it is still unknown how shear-thinning rheological properties can affect the 

formation, growth, and shape of a contact line instability. Our previous study (Hu and Kieweg, 

2012) showed a decreased capillary ridge formation for more shear-thinning fluids in a 2D model 

(i.e. 1D thin film spreading within the scope of lubrication theory). Those results motivated this 

study's hypothesis: more shear-thinning fluids should have suppressed finger growth and longer 

finger wavelength, and this should be evident in linear stability analysis (LSA) and 3D (i.e. 2D 

spreading) numerical simulations. In this study, we developed a LSA model for the gravity-driven 

flow of shear-thinning films, and carried out a parametric study to investigate the impact of shear-

thinning on the growth rate of the emerging fingering pattern. A fully 3D model was also 

developed to compare and verify the LSA results using single perturbations, and to explore the 

result of multiple-mode, randomly imposed perturbations. Both the LSA and 3D numerical results 

confirmed that the contact line fingers grow faster for Newtonian fluids than the shear-thinning 

fluids on both vertical and inclined planes. In addition, both the LSA and 3D model indicated that 

the Newtonian fluids form fingers with shorter wavelengths than the shear-thinning fluids when 

the plane is inclined; no difference in the most unstable (i.e. emerging) wavelength was observed 

at vertical. This study also showed that the distance between emerging fingers was smaller on a 

vertical plane than on a less-inclined plane for shear-thinning fluids, as previously shown for 

Newtonian fluids. For the first time for shear-thinning fluids, these results connect trends in 

capillary ridge and contact line finger formation in 2D models, LSA, and 3D simulations. The 

results can provide us insights on how to optimize non-Newtonian fluid properties to minimize a 

fingering instability in many industrial and biological applications.
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1. Introduction

Gravity-driven thin film flow with fingering instability is of interest in many fields, such as 

industry (paints [1], contact lens manufacture [2], and microchip fabrication [3]), nature 

(lava flow [4] and glacier flow [5]), and biomedical applications (microbicidal drug delivery 

[6, 7], eye tears and substitutes [8]). In many of the applications, a uniform coating is 

desired with no dry spots. Thus, it is very important to understand the mechanics of the 

fingering instability at the moving contact line of a spreading thin film.

Numerous experimental and analytical/numerical studies have examined the dynamics of a 

gravity-driven contact line following the famous study of Huppert [9]. Schwartz [10] proved 

the contact line instability is controlled by surface tension effects. Troian et al. [11] carried 

out linear stability analyses (LSA) on thin film flow and derived the formulation under the 

limit of small wavenumber to show the capillary ridge was responsible for the instability. 

Bertozzi and Brenner [12] verified the LSA numerically and developed the transient model 

to investigate the transient growth of the fingering instability. Lin and Kondic [13] studied 

the instability of the thin film flowing down an inverted incline. These studies all assumed a 

constant flux configuration, however, in practical applications, constant-volume 

configuration is often needed. In our previous 2D study [6], we showed how the capillary 

ridge at the front of the flow evolves for a constant volume configuration. Espin and Kumar 

developed a 2D constant-volume model to study the thin film flow of colloidal suspensions, 

and showed both the particle concentration and the evaporation have a large impact on the 

front interface [14, 15]. Gonzalez and Gomba developed a predictive model and integral 

method to study the linear stability of the constant volume flow [16, 17]. All these studies 

provide a systematic approach to deal with the capillary ridge and contact line instability 

problem.

However, most of those previous studies were for Newtonian fluids. The fluids used in the 

above mentioned industrial and biomedical applications usually exhibit non-Newtonian 

behavior, especially shear-thinning behavior. There are few published studies on contact line 

instability of non-Newtonian fluids. Balmforth et al. [18] studied the instability of Bingham 

fluids using LSA and showed the yield stress stabilized the contact line. Spaid and Homsy 

[19, 20] used energy analysis for viscoelastic fluids to show elasticity has a stabilizing effect 
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on the capillary ridge. It is still unknown how the shear-thinning behavior, for non-

Newtonian fluids can affect the contact line instability. In our previous work [6], we 

completed a 2D analysis of shear-thinning fluids. Using travelling waves and numerical 

simulations of one-dimensional spreading, we found that increasing the shear-thinning 

behavior of polymer solutions decreased the capillary ridge height. This leads to the 

hypothesis for this study: that more shear-thinning fluids should have suppressed finger 

growth and longer finger wavelength, and that this should be evident in linear stability 

analysis and 3D numerical simulations. In summary, the relationship between the emergence 

and height of a capillary ridge in a 2D shear-thinning model has not previously been related 

to the linear stability analysis and 3D numerical model of the contact line instability. To 

solve this issue, we need to develop a contact line model of power-law fluids and identify 

the importance of different factors affecting fingering instability.

To verify the linear stability analysis for a Newtonian fluid, Kondic and Diez [21-25] 

numerically studied the 3D flow to simulate the fingering instability in the transverse 

direction. Lin et al. [26] studied 3D simulations for fluids on an inverted incline for 

unevenly distributed fluid viscosity. Those studies were also only for Newtonian fluids. Our 

research group has developed a 3D model for power-law fluids [27] and Ellis fluids [28] to 

study the spreading speed of a polymer solution and compare to experiments. However, 

those models did not incorporate the surface tension effect, and therefore cannot simulate 

the fingering instability.

The goals of this study were to: (a) in Section 2, develop a contact line model using LSA, 

and study how the shear-thinning effect would influence the finger growth, and (b) in 

Section 3, expand to 3D flow simulations with various perturbations to verify the LSA 

results.

2. Linear stability analysis

2.1 Methods for linear stability analysis

The fluid is described by power-law constitutive model:

where  is the stress tensor, m is the consistency of power-law fluid,  is the 

shear rate tensor,  is the velocity vector, and  is the 

second invariant of the shear rate tensor.

To describe the movement of the fluid's free surface flow down an incline, a wetting flow 

assumption and thin film lubrication approximation are commonly used. A non-dimensional 

partial differential equation (PDE) for the 3D flow (i.e. 2D spreading) of power-law fluids 

can be obtained for the height of the fluid as a function of space and time, h(x,y,t). A similar 

detailed derivation was shown in Perazzo et al. [30] and our previous publications on power-
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law models [6, 27]. The resulting non-dimensional thin film equation for a power-law fluid 

is:

(1)

where n is the power-law index and n < 1 indicates shear-thinning fluids. The dimensionless 

parameter D = cotα(Ca)1/3 reflects the magnitude of the normal component of gravity force 

(e.g. D = 0 is vertical, D = 1 is inclined). The dimensionless parameter Ca = μ0U/γ is the 

power-law capillary number, α is the inclination angle, and γ is the surface tension 

coefficient. U is a characteristic velocity and μ0 is a characteristic viscosity incorporating the 

power-law terms. These latter terms follow the dimensionless groups used for Newtonian 

fluids [12, 21], and were further modified for the power-law variation as described in more 

detail in Appendix D of our previous study [6].

To conduct a linear stability analysis (LSA), we first determine a traveling wave solution. 

The method described here for traveling waves and LSA follows the general approach 

described in detail for Newtonian fluids by previous authors, e.g. in [12, 21]. To find a 

traveling wave solution, we assume h(x, y, t) is y-independent to reduce Eq. 1 to its 2D form. 

Then, we assume constant flux boundary conditions such that the fluid height is flat far from 

the moving front: x → –∞, h → 1 and x → ∞, h → b, where b << 1 is the thickness of the 

precursor. This boundary condition leads to a traveling wave solution h0(x, t) in the x 

direction. Using a moving reference frame, x* = x – Ut traveling with velocity U, the 

following ODE for h0(x*, t) is obtained (dropping * from here forward)

(2)

where the boundary conditions also result in the following expressions

Eq. 2 was numerically solved (see Appendix C of [6]) for the traveling wave solution, which 

may form a capillary ridge. The presence and height of the ridge depends on many factors, 

such as D and the power-law index, n [6].

Next, we can use this traveling wave solution as the ‘base’ solution in the x direction. When 

we try to expand to the transverse y direction, we can simply assume the solution is in the 

form of a base state h0 with a perturbation h1, h(x, y, t) = h0(x) + ∈h1(x, y, y), where h0 , h1 

are of O(1) and ∈ << 1, and substitute it into the thin film PDE (Eq 1). Only terms that are 

on the order of ∈ are kept in the resulting equation, and h1 can be expressed as a Fourier 

transform using the superposition principle, h1(x, y, t) = , where q is the 
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wavenumber. We apply the Taylor series to expand the power terms in Eq. 1. The Taylor 

approximation is kept in the same order of ∈. We also use the traveling wave solution of Eq. 

2 to substitute the higher order terms. After simplification, we can obtain a PDE for g(x, t):

(3)

The solution of Eq. 3 provides information about the growth of an imposed perturbation, and 

how that growth depends on the wavenumber. The growth rate, σ, of g(x, t) is defined from 

the exponential time dependence of g = φ(x)eσt due to the homogeneity of Eq. 3, and that 

growth rate will be a function of the wavenumber. In the following sections, we will solve 

this PDE using both analytical analysis and numerical methods.

2.1.1 Small wavenumber analysis—To obtain an analytical solution of Eq. 3 for g(x,t) 

we follow the approach in [11, 21], summarized as follows. We first need to assume that the 

wavenumber q is small, so we can write

(4)

and the growth rate is thus

(5)

We substitute Eq. 4 and Eq. 5 into Eq. 3, and the second order, O(q2), terms give

(6)

We can integrate Eq. 6 over the domain in x [–∞, 0], and substitute φ0 for h0,x. After 

applying the traveling wave solution and φ1 → 0 at the boundary conditions, we can obtain 

the growth rate as a function of a base solution, h0:

(7)

Note, we assume precursor b = 0 to further simplify the problem, and directly compare to 

the result for Newtonian fluids in [21].
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Eq. 7 is used in this small wavenumber analysis to show why the capillary ridge examined in 

our previous 2D study [6] is important. When the base solution has a capillary ridge (i.e. 

h0(x) > 1), Eq. 7 indicates that the growth rate is positive, and thus the contact line is 

unstable. If the growth rate is negative, the perturbation does not grow, and the fingering 

instability is suppressed. This conclusion from Eq. 7 for our shear-thinning fluids is 

consistent with the studies for Newtonian fluids [11, 21]. The conclusion of this analytical 

solution for small wavenumbers connects this LSA analysis to our previous 2D model [6], 

where we investigated how the capillary ridge is affected by the shear-thinning effect and D, 

which in turn impact the base solution and thus growth rates. To completely and further 

examine the impact of these terms on the growth rate, we numerically solved for all 

wavenumbers as described in the next section.

2.1.2 Numerical approach—Following the procedure outlined by Kondic [21] for 

Newtonian fluids, the PDE for g(x,t) (Eq. 3) for arbitrary perturbation wavenumbers can be 

numerically solved with the following steps:

1. Obtain the traveling wave base solution, h0(x), using numerical methods for a 

constant-flux condition (as in our previous 2D power-law study [6]).

2. For a given wavenumber q and known base solution, h0(x), the PDE for g(x, t) (Eq.

3) can be solved numerically. We developed a C code to solve the PDE (Eq. 3) 

using an implicit finite difference scheme. We applied the Crank–Nicolson method 

for the time derivative and central difference for the space derivatives. Newton's 

method was used to solve the algebraic equations resulting from finite difference 

discretization.

3. Once g(x, t) is obtained, the growth rate σ as a function of wavenumber can be 

calculated by assuming g(x, t) depends exponentially on time using:

4. Solve for other q for all modes by repeating 2-3, and plot growth rate σ as a 

function of wavenumber q.

2.2 Results and discussion: LSA

Figure 1 shows the LSA results for Newtonian (n = 1) and shear-thinning fluids (n = 0.6, 

0.8). If the growth rate is positive, it indicates the contact line is not stable. We can see the 

growth rate is bigger on the vertical plane (D = 0) than the less-inclined planes (D = 0.5 and 

1) for all three fluids. Also, the growth rates are larger for Newtonian fluids than shear-

thinning fluids. For D = 2 , the growth rate is never positive, indicating the fingering 

instability is suppressed. The Newtonian results agreed with the existing studies in literature 

[12, 21]. It is interesting to see the most unstable wavenumbers for all three types of fluids 

on the vertical plane (D = 0) are the same, while for the flatter planes (D = 0.5 and 1), the 

most unstable wavenumbers for shear-thinning fluids are smaller than the Newtonian fluid. 

We will further discuss this in section 3, in conjunction with the 3D results.
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The impact of the precursor thickness on fingering instability has been investigated in 

previous studies for Newtonian fluids. Both numerical [12, 17] and experimental [31] 

studies have indicated that increasing the thickness of the precursor can suppress the 

fingering instability of Newtonian fluids. The growth rate curves of a shear-thinning fluid (n 

= 0.8) shown in Figure 2 indicate the same trend holds for the power-law fluid. As the 

precursor thickness increases, the growth rate is decreased.

In our previous 2D study [6], we found the capillary ridge height increases with increasing 

power-law index n, but decreases with increasing precursor thickness b. Those conclusions 

match these LSA results very well. This numerically shows the capillary ridge is directly 

related to the contact line fingering instability, which is consistent with the analytical 

analysis in 2.1.1.

3. 3D simulations

To further study the fingering instability, we decided to expand to the third, transverse 

direction and numerically solve the 3D thin film PDE (Eq 1). Finite Element Method (FEM) 

was used for this part of study. A finite element solver, Dolfin [32] was used for automated 

assembly of the variational forms of the thin film equation (Eq 1) over the computational 

domain. Some other libraries used in this study along with Dolfin are components of the 

open source FEniCS Project [33].

3.1 Finite element formulation

The weak form of equations can be derived from Eq. 1 as follows:

where q, v, p and o are test functions, and h′ is from the previous time step.

3.2 Numerical parameters

As shown in Figure 3, we suppose the flow is from left to right along the x direction. The 

boundary conditions in the flow direction are implemented as:

where Lx is the dimensionless length of the computational domain. In the lateral y direction, 

a periodic boundary condition is specified at y = 0 and y = Ly:
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For the initial condition, we used a step function similar to our 2D [6] and LSA studies (see 

Section 2): h = 1 at , and h = b at . To ease the simulation, the step 

function for the initial profile is smoothed as follows:

To impose the perturbation at the contact line, we substitute x = x0 − 0.2cos(2πy/λ) into the 

above equation, so the contact line is convex slightly into the flow direction, where λ is the 

single mode wavelength of the perturbation. The width of the computational domain for 

single mode simulations is set to the specified wavelength of the simulation. To simulate 

randomly imposed perturbations, we used a 50-mode sinusoidal function to perturb the 

contact line:

characterized by λi = 2Ly/i , where i = 1,2, ... 50 and Ly = 96. The amplitudes Ai of the 

sinusoidal functions are random numbers from [−0.2, 0.2].

All 3D simulations were performed on a Lagrange linear polynomial space with continuous 

Galerkin method, with element size of Δx = Δy = 0.2. For the time space, we used Crank–

Nicolson method with Δt = 0.01. Both the spatial mesh size and the time step were 

determined through convergence studies and consideration of computational runtime.

3.3 Results and Discussion: 3D simulations

3.3.1 Comparison with LSA—In this section, we test three perturbation wavelengths on 

both a Newtonian fluid (n = 1) and shear-thinning fluid (n = 0.6) to compare with the LSA 

results presented in Section 2. Both the vertical plane case (D = 0) and less-inclined plane 

case (D = 1) are investigated in this section. Note, we use a single mode perturbation by 

making the single wavelength equal to the domain length Ly in the y direction: λ = Ly.

D = 0 Case: We first show the simulation results for the vertical plane. Three wavelengths 

of perturbations are chosen for this series of simulations and are indicated with vertical lines 

in the LSA results for D = 0 (Figure 1a): λ = 4π, 8.7, and 2π. These were selected because 

the growth rates for the Newtonian fluid (n = 1) and shear-thinning fluid (n = 0.6) are either 

both positive at λ = 4π or both negative at λ = 2π. The λ = 8.7 was selected because the 

Newtonian fluid has the positive growth rate, whereas the shear-thinning fluid's growth rate 

approaches zero.

Figure 4 demonstrates the results of the 3D simulations over time with λ = 4π, 8.7, and 2π 

wavelength. For the top three cases (both Newtonian and shear-thinning fluids cases at λ = 

4π, Newtonian fluid case at λ = 8.7), the perturbed contact line evolved into a growing 

finger. This matches the LSA result in Figure 1a, which indicates growth rates for these 
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three cases are greater than zero. The simulations in Figure 4 also show that the 

perturbations of the Newtonian fluid (n = 1) grows faster than shear-thinning fluid (n = 0.6) 

for λ = 4π and λ = 8.7. Again, those trends match the LSA results (Figure 1a) showing the 

growth rate is bigger for Newtonian fluids at these wavelengths. As expected from the 

negative growth rate for λ =2π LSA results, the perturbations in the bottom two rows of 

Figure 4 are suppressed.

D=1 Case: Similar trends and comparisons to LSA can be found on a less-inclined plane (D 

= 1). The LSA results in Figure 1c indicate vertical lines at three wavenumbers selected for 

analysis here. The corresponding three wavelengths were: λ = 8π 18, and 4π. The growth 

rate for the Newtonian fluid (n = 1) and the shear-thinning fluid (n = 0.6) are either both 

positive at λ = 8π or both negative at λ = 4π. At λ = 18, only a Newtonian fluid has the 

positive growth rate, whereas the most shear-thinning fluid's growth rate approaches zero. 

The 3D simulations for these three single wavelength perturbations are shown in Figure 5. 

The simulations demonstrate that for cases with positive growth rates in the LSA results 

(Figure 1c), all contact lines evolve into fingers (top three rows in Figure 5). For those cases 

with zero or negative growth rate in the LSA results, the contact lines remain unchanged or 

become flat. In addition, as seen in the vertical case (D = 0, Figure 4), the contact line of the 

Newtonian fluid at D = 1 is more unstable than the shear-thinning fluid.

However, there is an important difference between the vertical and less-inclined cases. From 

the LSA results in Fig 1, we notice that the corresponding wavelength of the largest growth 

rate for the vertical case (λ = 4π for Newtonian) is much smaller than the most unstable 

wavelength for the less-inclined case (e.g. λ = 18 for Newtonian). This trend agrees with 

published laboratory experiments for Newtonian fluids [21]: the distance between emerging 

fingers were smaller on a vertical plane than on a less-inclined plane. That trend also 

occurred for shear-thinning fluids: the most unstable wavelength for the vertical case (λ = 4π 

for shear-thinning) is much smaller than the one for the less-inclined case (e.g. λ = 8π for n 

= 0.6 shear-thinning). The LSA results also show that the most unstable wavelength 

increases for more shear-thinning fluids, but that is only observed at smaller inclinations. In 

Section 3.3.2 below, we look for the same trends using 3D simulations with multiple mode 

perturbations, to better simulate a physical experiment.

To further compare growth rates, Figure 6 quantitatively compares the growth rate of a 

finger from 3D simulations and the growth rate of a perturbation from LSA results. The 

finger length, L, in the simulation is measured from tip to root and is normalized by the 

initial finger length L0 from the imposed initial condition. We can see for early times, the 

growth rate of the finger length from the 3D simulation matches very well with the LSA 

results. But at later times in the 3D simulation, the finger growth slows and approaches a 

slower constant speed. This behavior is because at longer times, only a small domain at the 

front is affected by the surface tension. Thus, the overall traveling speed is therefore decided 

by the traveling wave speed from the constant flux condition. This speed can be calculated 

using the similarity solution [6]. Similar results for Newtonian fluids can be found in the 

experimental study in [21], where comparison is made between experimental data and LSA.
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3.3.2 Simulation of multiple mode, randomly imposed perturbations—In 

addition to the single mode perturbation, it's also interesting to look at how the contact line 

is affected by multiple-mode, randomly imposed perturbations. Figure 7 shows the D = 0 

vertical case as an example to demonstrate how the initial perturbed contact line evolves into 

finger-like rivulets over time a for Newtonian fluid (Figure 7a, n = 1) and a shear-thinning 

fluid (Figure 7b, n = 0.6). The randomly perturbed contact line will corrugate into fingering 

patterns with similar distances between each finger, for a given simulation. The exceptions 

are the areas where two fingers with similar wavelength merge to form an ‘abnormal’ wider 

finger. This can also be observed in our laboratory experiments. An interesting finding is 

that the merging of the two fingers occurs earlier for the shear-thinning fluid (n = 0.6) in 

Figure 7b than Newtonian fluid (n = 1) in Figure 7a. Although the two fingers in the 

Newtonian case emerge at earlier times (not shown), they grow faster and stay independent 

for longer compared to the shear-thinning fingers, and this makes them more resistant to 

merging.

The typical distance between the fingering patterns is related to the most unstable 

wavenumber in LSA results, according to the existing literature for Newtonian fluids [21, 

26]. To check this for shear-thinning fluids, we can use the two D = 0 cases in Figure 7 to 

compare with the LSA results. According to Figure 6, LSA results are accurate at early 

times. Therefore, for the D = 0 cases, we chose t = 60 for the comparison. From Figure 7 at t 

= 60, there are seven fingers (prior to merging) across the width (of 96) at the contact line 

for both the Newtonian and shear-thinning cases. Therefore the average wavelength is 

approximately 96/7 ≈ 13.7. That is about 9% different from the most unstable wavelength 

(4π) for both n = 1 and n = 0.6, found from the D = 0 LSA results shown in Figure 1a.

Similar results can be found for the other 3D simulation cases of D and n, and are 

summarized in Figure 8 and Table 1. Figure 8 compares 3D simulations at one time point for 

all values of D and n. The times chosen for the contact line patterns in Figure 8 are based on 

the growth rate results shown in Figure 6 such that a time point is selected in the range when 

LSA corresponds to the 3D simulation. Similar to the D = 0 case, the average wavelength 

calculated from 3D simulations match the most unstable wavelength from LSA results 

quantitatively. However, unlike the D = 0 case, where the average distance between fingers 

are the same for the three types of fluids, the finger wavelength can vary as a function of 

shear-thinning for the less-inclined cases. For less-inclined simulations (D = 0.5 and 1), the 

n = 1 and 0.8 simulation finger patterns have one more finger than the n = 0.6 case. In the 

simulation for D = 2, the flattest inclination, the contact lines are completely stable. This is 

very apparent in the bottom row of Figure 8, and also evident in the LSA results (Figure 1d), 

where the growth rate is negative for all D = 2 simulations. Finally, the 3D simulations in 

Figure 8 and comparisons to LSA in Table 1 also confirm the results from single-mode 

simulations and published Newtonian LSA results: as the inclination approaches vertical, the 

finger wavelengths are smaller, and the growth rate is faster, and this is true for shear-

thinning fluids as well.
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4. Conclusions

In summary, the LSA results show that the contact line of a gravity-driven spreading front 

tends to be more unstable on the vertical plane (D = 0) than the less-inclined plane (D = 1). 

This trend can be applied for both Newtonian fluids and power-law fluids. We also found 

that for the same conditions, the growth rate for shear-thinning fluids is smaller than 

Newtonian fluids. These findings are further verified in our 3D simulation by comparing the 

growth rate of the finger length for a single-mode perturbation to the growth rate at the same 

wavelength in the LSA results. Simulations with multiple-mode, randomly imposed 

perturbations showed how fingers with a typical pattern distance are formed. This typical 

pattern wavelength is considered relevant to the most unstable growth rate in LSA results 

according to previous published studies for Newtonian fluids. We carried out a parametric 

study for different D and n and showed the average distance between finger patterns in our 

multiple-mode 3D simulations matched the LSA results. We also found that this typical 

wavelength is the same for both Newtonian and shear-thinning fluids in the vertical case, but 

it's different in the less-inclined case – the wavelength for a shear-thinning fluid is greater 

than that for a Newtonian fluid. The multiple-mode 3D simulations also showed the merging 

of fingers forming atypical patterns commonly observed in actual coating flows and 

experiments.

Practically, this study can be used in coating flow applications to help avoid the occurrence 

and/or magnification of the fingering patterns. To improve the coating processes in 

industrial and biomedical applications, we could optimize the fluid's shear-thinning 

properties in order to suppress the fingering instability and widen the finger wavelength. 

Additionally, since the connection between fingering instability and the capillary ridge was 

obtained here for shear-thinning fluids, the occurrence of the capillary ridge in our previous 

2D model can be used for quick assessment of predicted fingering instability at the contact 

line. Future studies will use this study as a framework to explore more complex contact line 

physics and rheological models, such as the Ellis’ model description of the Newtonian 

plateau observed at low shear rates in shear-thinning fluids.
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Highlights

• Linear stability analysis and 3D simulation of gravity-driven flow of power-law 

fluid

• Parametric study of power-law index and inclination angle on fingering 

instability

• More shear-thinning fluids suppress finger growth
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Figure 1. (Color online) The LSA growth rate as a function of wavenumber q and power-law 
index n
Comparison among different dimensionless numbers: D=0 (a), D=0.5 (b), D=1 (c) and D=2 

(d). Figure (b), (d) and the vertical lines in Figure (a) and (b) will be discussed later in 

Section 3 in conjunction with 3D simulations. (Other simulation parameters: precursor 

b=0.1, Δx=0.01, Δt=0.01.)
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Figure 2. (Color online) Effect of precursor thickness on LSA growth rate for a shear-thinning 
fluid
b=0.01 (black solid), b=0.025 (green dotted), b=0.05 (red circled), and b=0.1 (blue dotted). 

(Other simulation parameters: n=0.8, D=0, Δx=0.01, Δt=0.01)
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Figure 3. Schematic of the Boundary Conditions (BCs) for the 3D Numerical Simulation
The subscript on h indicates derivative. Flow is in the x-direction downhill to the right, and 

the domain width is Ly in the y-direction. The constant flux condition is the non-dimensional 

h = 1 at x = 0 for all time. The precursor boundary condition is indicated with h = b << 1 at 

the domain boundary x = Lx at all time.
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Figure 4. Time series of 3D simulations with single mode perturbation, for D = 0
Growth of the fingering patterns for both Newtonian (Row 1, 3, 5) and shear-thinning fluids 

(Row 2, 4, 6) on a vertical plane (D = 0) with perturbations of different wavelengths λ = 4π 

8.7, and 2π. From left to right: t = 0, 50, and 100. Lx = 20, Ly = λ for each simulation.
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Figure 5. Time series of 3D simulations with single mode perturbation, for D = 1
Growth of the fingering patterns for both Newtonian (Row 1, 3, 5) and shear-thinning fluids 

(Row 2, 4, 6) on a less-inclined plane (D = 1) with perturbations of different wavelengths λ= 

8π, 18, and 4π. From left to right: t=0, 100, and 200. Lx = 20, Ly = λ for each simulation.
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Figure 6. Comparison of growth rates from LSA (solid lines) and single mode 3D simulations 
(symbols)
The figure shows the finger length (normalized to initial length) vs time for four cases: n = 

1, D = 0; n = 1, D = 1; n = 0.6, D = 0; and n = 0.6, D = 1. For each case, the calculated 

growth from the 3D simulations (symbols) is compared to LSA prediction (solid lines). (All 

3D simulations and LSA results used perturbations of wavelength λ = 8π which provides a 

positive growth rate for all simulations.)
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Figure 7. Time-series of 3D simulations with multiple-mode, random perturbations for D = 0
Comparison between (a) Newtonian n = 1 and (b) shear-thinning n = 0.6 on a vertical plane 

(D = 0, Lx = 40, Ly = 96). (Left to right, for t = 0, 60, and 120.)
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Figure 8. A summary of contact line patterns for 12 simulation cases, each showing only one time 
point
The points selected were: t = 60, 80, 100 and 120 for D = 0, 0.5, 1 and 2 respectively. These 

time points are in the regime when the LSA results correspond with the linear portion of the 

3D numerical simulations in Figure 6. (Lx = 40, Ly = 96).
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Table 1
A summary of comparison between LSA most unstable wavelength (black – top line of 
each cell) and 3D characteristic wavelength (italic blue – bottom line of each cell)

For the top line in each cell, the most unstable wavelength from LSA results (summarized in Fig. 1a-d for four 

D values)) was calculated as 2π divided by the wavenumber at the maximum growth rate. For the bottom line 

of each cell, the characteristic wavelength of multi-mode simulations was calculated as the simulation width 

(96) divided by the number of fingers observed in the simulation. For the vertical case, no difference was 

observed between Newtonian and the most shear-thinning. For the inclined cases with fingering, the most 

unstable (LSA) and characteristic (3D) wavelength was longest for the most shear-thinning fluid.

D 0 0.5 1 2

n

1 2π/0.5=12.566
96/7=13.714

2π/0.4=15.708
96/6=16

2π/0.35=17.950
96/5=19.200

2π/0=∞
No finger

0.8 2π/0.5=12.566
96/7=13.714

2π/0.4=15.708
96/6=16

2π/0.3=20.944
96/5=19.200

2π/0=∞
No finger

0.6 2π/0.5=12.566
96/7=13.714

2π/0.35=17.952
96/5=19.200

2π/0.25=25.133
96/4=24

2π/0=∞
No finger
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