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Abstract

Ischemia initiates a complicated biochemical cascade of events that triggers neuronal death. In this 

study, we focused on glutamate –mediated neuronal tolerance to ischemia-reperfusion. We 

employed an animal model of life-long excess release of glutamate, the glutamate dehydrogenase 

1 transgenic (Tg) mouse, as a model of in vivo “glutamate preconditioning”. Nine- and 22-month 

old Tg and wild type (wt) mice were subjected to 90 min of middle cerebral artery occlusion 

followed by 24 hr reperfusion. The Tg mice suffered significantly reduced infarction and edema 

volume, compared with their wt counterparts. We further analyzed proteasomal activity, level of 

ubiquitin immunostaining, and MAP2A expression to understand the mechanism of 

neuroprotection observed in the Tg Mice. We found that in the absence of ischemia, the Tg mice 

exhibited higher activity of the 20S and 26S proteasomes while there were no significant 

differences in the level of hippocampal ubiquitin immunostaining between wt and Tg mice. A 

surprising observation was that of a significant increase in MAP2A expression in neurons of the 

Tg hippocampus following ischemia-reperfusion, compared with that in wt hippocampus. The 

results suggest that increased proteasome activity and MAP2A synthesis and transport might 

account for the effectiveness of glutamate preconditioning against ischemia-reperfusion.
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INTRODUCTION

Stroke results in a rapid cessation of blood flow that compromises energy metabolism in 

affected brain tissues and leads to large increases in glutamate release (Benveniste et al., 

1984). Glutamate is ubiquitously distributed in the brain, is present in concentrations that are 

higher than those of any other amino acid (Fonnum, 1984), and functions as the principal 

excitatory neurotransmitter in the central nervous system (CNS). Previous studies have 

demonstrated that blocking ionotropic glutamate receptors significantly reduces ischemic 

damage (Sims & Muyderman, 2010). This is attributed to the triggering by the released 
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glutamate of an intracellular excitotoxic cascade involving an excessive accumulation of 

calcium (Ca2+) and activation of downstream pathways that cause cell death. Therefore, 

impeding the development of excitotoxicity in animal experimental stroke has been a 

frequently targeted mechanism in the development of neuroprotective stroke treatments 

(O’Collins et al., 2006; Minnerup et al., 2012). The effect of over 20 anti-excitatory drugs 

has been evaluated in over 270 preclinical studies, yet none of them have been shown to be 

effective in the treatment of stroke in humans (O’Collins et al., 2006).

There are increased efforts to identify potential strategies to protect neurons following 

ischemic stroke. A current focus is on understanding the protective mechanisms that induce 

tolerance following ischemic preconditioning. Current knowledge suggests that 

preconditioning with a brief period of ischemia is an effective approach to decrease neuronal 

death after a more severe ischemic episode (Kirino, 2002). The same concept can also be 

applied to excitotoxicity where preconditioning with a mild glutamate-induced stress can 

promote a tolerant state that reduces the injury caused by a subsequent, more severe 

glutamate exposure. The effect of glutamate preconditioning in the development of 

resistance to a subsequent ischemic insult has been assessed previously, although such 

preconditioning was produced in in vitro, not in vivo, preparations through the addition of 

exogenous glutamate or glutamate analogs, such as receptor agonists or antagonists. For 

example, the death of cortical neurons in primary culture following in vitro ischemia is 

prevented by pre-exposure of the cells to N-methyl-D-aspartate (NMDA), a selective 

glutamate NMDA receptor agonist (Lin et al., 2008). In other studies, the ischemic 

preconditioning of primary hippocampal neurons was disrupted following exposure to the 

NMDA receptor inhibitor MK-801 (Mabuchi et al., 2001), and the ischemic preconditioning 

of co-cultures of neurons and glial cells was suppressed following exposure to the NMDA 

receptor inhibitor 3-((D)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (Grabb & 

Choi, 1999). Both of these studies provided indirect evidence of glutamate involvement in 

the process of ischemic preconditioning. However, there are no studies that have examined 

the role of endogenous, moderate excess synaptic glutamate release and subsequent receptor 

activation in vivo on ischemia-induced neuronal damage.

In the present study, our main objective was to determine whether moderate excess synaptic 

release of endogenous glutamate throughout the lifespan of an organism, could lead to 

increased ischemic tolerance, i.e., a preconditioning-like state, and thus protect neurons from 

ischemia in an in vivo model. We used transgenic (Tg) mice that overexpress the gene for 

glutamate dehydrogenase 1 (Glud1) only in neurons, not in glial cells, of the CNS. These Tg 

mice are characterized by an increase in GLUD1 enzyme levels and activity (Bao et al. 

2009; Hascup et al. 2011), relatively modest, yet significant, increases in brain glutamate 

concentrations (approximately 10–15% above wild-type littermates) throughout the lifespan 

(Bao et al. 2009; Choi et al. 2014), and a moderate increase (30–40% higher levels than 

normal) in depolarization-induced synaptic glutamate release (Bao et al. 2009; Michaelis et 

al. 2011). Unlike other models of excessive accumulation of extracellular glutamate (from 

150% to approximately 30-fold increases in glutamate levels) because of null mutations of 

glial glutamate transporters or of regulators of such transporters (Rothstein et al. 1996; 

Tanaka et al. 1997; Zeng et al. 2007), the Glud1 Tg mice do not suffer from massive 
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neuronal damage in the brain or an early death. Thus, the Glud1 Tg mice offer a potentially 

good model for probing the effect of moderately increased, pulsatile, chronic release of 

endogenous glutamate by neurons on the development of resistance to an ischemic episode 

in adult and aged mice.

The hypothesis that we are testing is that chronic exposure of neurons to moderate levels of 

synaptically released glutamate would activate protective pathways that reduce damage after 

a stroke. Both gene ontology and pathway analyses of whole genome expression differences 

between Glud1 Tg and wt mice have identified many genes that are related to glutamate and 

intracellular signaling as being over-expressed in the Tg mice (Wang et al. 2010; Wang et al. 

2014). Some of these genes might lead to the development of resistance to ischemia. Our 

results demonstrated that the Glud1 Tg mice were more resistant to ischemia/reperfusion, 

compared with wt mice. In order to ascertain the potential molecular mechanisms for the 

observed resistance to ischemia in the Glud1 Tg mice, we explored the effect of glutamate 

hyperactivity on the proteolytic activity of the 20S and 26S proteasomes, and of glutamate 

hyperactivity and ischemia on the levels of ubiquitinated proteins. Proteasomal activity is 

decreased and ubiquitinated proteins accumulate following middle cerebral artery occlusion 

(MCAO) (Alves-Rodrigues et al. 1998; Keller et al. 2000a; Keller et al. 2000b), while intact 

proteasome activity is related to rapid ischemic tolerance (Meller et al. 2008). We 

hypothesized that in the Glud1 Tg mice, the proteasome activity might be elevated and less 

affected by ischemia, thus providing relative neuroprotection from an ischemic episode. This 

hypothesis was based in part on the observed increases in the genomic expression of 

ubiquitin proteasome system (UPS) enzymes in Glud1 Tg compared with wt mice (Wang et 

al. 2010; Wang et al. 2014).

To assess the susceptibility of neurons to the injurious effects of ischemia in Tg and wt 

mice, we examined the immune-labeling of neuronal cell bodies and dendrites by antibodies 

to microtubule-associated protein-2A (MAP2A). Acute glutamate- or NMDA-induced 

neuronal damage manifests as dendrite varicosities in neurons labeled with anti-MAP2A 

antibodies (Hoskison et al. 2007; Ikegaya et al. 2001). We previously showed that labeling 

with anti-MAP2A antibodies shows discontinuities in dendrites of 9-month old Glud1 Tg 

mice but without evidence of varicosities (Bao et al. 2009).

MATERIALS AND METHODS

Generation of Glud1 Tg mice

All experiments were conducted with the approval of the University of Kansas Institutional 

Animal Care and Use Committee. The Glud1 Tg mice were generated as described (Bao et 

al., 2009). Briefly, linearized DNA containing the cDNA of mouse GLUD1 was injected 

into fertilized C57BL6/SJL hybrid mouse oocytes. The cDNA was placed under the control 

of the Nse (neuron-specific enolase) promoter (Bao et al., 2009). The animals used in the 

present study were male, 9-month (mo)-old Tg and wt. This age was selected as this is the 

age when CNS transcriptomic and structural differences between the Tg and wt are most 

significant (Bao et al., 2009; Wang et al., 2010; Michaelis et al., 2011; Wang et al., 2014). 

In studies designed to determine the effects of aging on ischemia-induced brain damage, 22-

mo old mice were used.
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In vivo ischemia model

Reversible occlusion of the middle cerebral artery was induced using a well-established 

protocol (Clark et al., 1997). The mice were anesthetized with 3% Isoflurane and oxygen 

and maintained with 1.5% Isoflurane, or to desired anesthetic effect, throughout the 

procedure. Buprenorphine was used as the analgesic and was injected pre-operatively at 0.05 

mg/kg. Male mice were subjected to MCAO followed by a 24 hour (hr) period of 

reperfusion. At the whole-brain level, TTC (2,3,5-triphenyltetrazolium chloride 

monohydrate) staining was used to assess brain damage (Ito et al., 1997). Brain edema 

volume (Vedema) was also measured from the coronal sections that were stained by TTC by 

determining the volumes of both the ipsilateral (affected) hemisphere (VIpsi) and the 

contralateral hemisphere (Vcontra) and using the equation: Vedema =Vcontra - VIpsi (Yan et al., 

2011).

Measurement of proteasomal activity

Brain tissues from 9-mo old wt and Tg mice were homogenized and 20 μg of the cell 

homogenate proteins were incubated with proteasome activity assay buffer in which their 

ability to cleave the fluorogenic peptide substrate, Succinyl-LeuLeuValTyr-7-amino-4-

methly-coumarin (Suc-LLVY-AMC) was determined (Figueiredo-Pereira et al., 1994). The 

assay buffer used in the measurement of the 26S proteasome function consisted of 50 mM 

Tris (pH 7.4), 5mM MgCl2, 2 mM DTT, 2 mM ATP and Suc-LLVY-AMC (80 μM in 1% 

DMSO, Sigma-Aldrich). The buffer employed for the determination of 20S proteasome 

function contained 20 mM HEPES (pH 7.8), 0.5 mM EDTA, 0.03% SDS and 80 μM Suc-

LLVY-AMC. The hydrolysis of Suc-LLVY-AMC into AMC was detected using a 

fluorescence plate reader at ex 380 nm and em 440 nm.

Immunohistochemistry

Immunostaining and statistical analyses were performed using methods similar to those 

described previously (Bao et al., 2009) but with minor modifications in the initial steps of 

preparation of brain tissue following MCAO. Specifically, before fixation of the hemisected 

brain tissue (ipsilateral vs. contralateral hemispheres), 2 mm coronal sections were obtained 

as described above for the assessment of the effects of MCAO on brain at the macroscopic 

level using TTC staining. For the confocal microscopy studies, the 2 mm coronal sections 

were fixed and permeabilized and then subjected to rapid freezing and cryo-microtome 

sectioning into ~25 μm thick sections. The cryotome sections were incubated overnight in 

buffer containing a combination of the primary antibodies against ubiquitin (polyclonal; 

rabbit; 1:250; Cell Signaling) and against MAP2A (monoclonal; mouse; 1:250; Millipore). 

The sections were subsequently rinsed in PBS and incubated with fluorescent dye-labeled 

secondary antibodies (Alexa 568 goat anti-rabbit and Alexa 488 goat anti-mouse) at 37 °C 

for 2 hrs. Cortical and hippocampal regions were examined by confocal microscopy on a 

Leica SPE2 laser confocal microscope. Pixel density counts were determined using the 

Leica Application Suite software. The results reported are from the hippocampus as 

neuronal structure was frequently better preserved than in the cerebral cortex, albeit still 

showing extensive damage. The averaged pixel densities from each sub-layer of each region 

of the hippocampus, i.e., from the stratum oriens (SO), stratum pyramidale (SP) and stratum 
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radiatum (SR) of the CA1 and CA3 regions, from 3 pairs of animals, were statistically 

analyzed and graphed.

Statistical analysis

Student’s t-test and one-way or three-way ANOVA were used to determine statistically 

significant differences employing SigmaPlot 12.5. The level of significance was set at P ≤ 

0.05.

RESULTS

Lower brain infarct and edema volume in Glud1 Tg vs. wt mouse brain following MCAO

Nine-mo old male wt and Tg mice were subjected to MCAO followed by a 24 hr period of 

reperfusion. Using TTC staining, we assessed the extent of brain damage. The reduction of 

TTC by dehydrogenases in living cells leads to the formation of water-insoluble red 

formazan crystals, which outlines the area and volume of surviving tissue. This method can 

be used to determine percent infarct size (Ito et al., 1997). The results revealed that the 

Glud1 Tg mice had a 30% decrease in infarct volume compared to their wt cohorts (Figure 

1B). Brain edema volume was measured using 2 mm coronal sections by determining the 

difference between the volumes of both the ipsilateral hemisphere and the contralateral 

hemisphere. As shown in Figure 1C, the Glud1 Tg mice had a significantly lower edema 

volume following MCAO than the wt mice. Together, these results support our hypothesis 

that chronic exposure to moderate levels of glutamate released at synapses can protect 

against an ischemic insult.

Increased basal levels of proteasomal activity in the brain of Glud1 Tg vs. wt mice

Next, we attempted to define molecular components of the adaptive mechanisms that 

allowed the Glud1 Tg mice to be more resistant to ischemia. The ubiquitin-proteasome 

system (UPS) plays an essential role in ischemic tolerance (Meller et al., 2008; Meller, 

2009). To identify whether differences in the UPS between Tg and wt mice might account 

for the observed differential sensitivity to ischemia in these two types of mice, we measured 

the proteasomal activities in brain tissue of the Glud1 Tg and wt cohorts. Brain tissue from 

9-mo old wt and Tg mice that had not been subjected to MCAO were homogenized, and 

proteasomal function was assessed. An ATP-free assay buffer was used to differentiate 20S 

proteasomal function from the 26S proteasomal function. We found that basal proteasomal 

activities of both the 26S and 20S proteasome (i.e., in the absence of any prior treatment) 

were significantly elevated in the Glud1 Tg mice compared with those in wt mice (Figure 2).

Ubiquitin labeling in hippocampus following MCAO in Tg and wt mice

The differentially higher activity of the 26S and 20S proteasomes in Glud1 Tg vs wt mouse 

brain fit with the previously observed elevated gene expression of UPS enzymes in the Tg 

mouse hippocampus (Wang et al. 2010). Increases in UPS mRNA levels and, as shown in 

the present study in the proteasome activity in Glud1 Tg mice, might represent adaptive 

responses to increases in the levels of damaged proteins brought about by glutamate hyper-

stimulation of neurons in these mice. Overall increases in the activity of the UPS might 

account for the delayed appearance of significant accumulation of ubiquitin protein 
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aggregates in brain neurons of Glud1 mice that is observed around the age of 16–20 months 

(Bao et al., 2009). However, ischemia-reperfusion, we reasoned, may cause an increased 

burden in terms of damaged proteins in both wt and Tg mice (Alves-Rodrigues et al. 1998; 

Keller et al. 2000b). The effect of ischemia-reperfusion on ubiquitinated protein 

accumulation and proteasome degradation might be expected to be greater in the Tg than the 

wt mouse but these mice might have adapted to the increased burden of ubiquitinated 

proteins. We examined the levels of immunolabeled ubiquitinated proteins in brain sections 

from Glud1 Tg and wt mice, both under baseline conditions and following cerebral artery 

occlusion. In contrast to our expectation, there were no significant differences in overall 

immune labeling of ubiquitin or ubiquitinated proteins in neurons of either the CA1 or the 

CA3 region of the hippocampus of Tg and wt mice subjected to ischemia (one-way 

ANOVA, Holm-Sidak post-hoc pairwise comparisons, P>0.05 for all comparisons; data not 

shown). The same was true also for the levels of immune reactivity under baseline 

conditions. The lack of differential labeling between wt and Tg mice matched the 

observations reported previously for 9 month old Glud1 Tg and wt hippocampus (Bao et al. 

2009).

Increased MAP2A labeling in the hippocampus of the Glud1 Tg mice following MCAO

MAP2 is a microtubule-associated protein that is critical for the maintenance of normal 

cytoskeletal architecture in neurons and for the overall function of neurons (Yan et al., 

2010). MAP2 is localized in cell bodies and dendrites and is a useful marker of surviving 

neurons and a probe of dendrite structure (Bao et al. 2009; Hoskison et al. 2007; Ikegaya et 

al. 2001). In a previous study of 9-mo old Glud1 Tg mice, it was noted that the 

hyperglutamatergic state in the brain of the Tg animals led to a diminution of MAP2A 

labeling by the anti-MAP2A antibodies, while the structure of dendrites remained relatively 

well preserved (Bao et al. 2009). These changes were attributed to a possible disruption of 

either MAP2A mRNA transport to or suppression of protein synthesis within the dendrites 

(Rehbein et al. 2000). In the present study, under baseline conditions, we observed a 

significant reduction in overall MAP2A labeling in both cell bodies and dendrites, and in 

both CA1 and CA3 regions of the hippocampus of the Glud1 Tg as compared with that of 

the wt mice (Fig. 3, 4). Remarkably, following the induction of ischemia-reperfusion, the 

labeling of MAP2A in neuronal cell bodies and dendrites of the Tg mice was markedly 

enhanced above that observed at baseline, whereas the labeling of the hippocampus neurons 

in wt mice was markedly reduced in both the ipsilateral and contralateral CA1 and CA3 

hippocampal regions (Fig. 5, 6).

Lower brain infarct and edema volume in aged Glud1 Tg mice vs wt mice

Focal ischemia leads to increases in infarct volume in aged animals (Davis et al., 1995; 

Sutherland et al., 1996), and the effectiveness of preconditioning in inducing protection 

against severe ischemia has been reported to be decreasing with advancing age (He et al., 

2005). To determine whether the relative ischemia tolerance observed in our model of 

glutamate preconditioning, i.e., the Glud1 mice, was altered by aging, we determined brain 

damage (infarct and edema volumes) in 22-mo old Tg and wt mice after MCAO and 

reperfusion. Figure 7 shows that the Glud1 Tg mice at 22 mos of age were protected in 

terms of decreases in infarct and edema volumes, compared to their age-matched wt 
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counterparts (P < 0.005). Statistical analyses showed that there were no significant 

differences between the 22-mo old and the 8-mo old mice of the same genotype.

DISCUSSION

The key observation made in the present study was that either adult or aged Glud1 Tg mice 

exhibited significantly greater resistance to ischemia-reperfusion than the Wt mice of the 

same age. The mechanisms for such tolerance to the effects of ischemia-reperfusion are still 

unknown. The first mechanism considered in the present study was that of a proteasome-

mediated resistance to ischemia-reperfusion.

It is known that excess glutamate can induce the formation of reactive oxygen species 

(ROS) (Armstead et al., 1989; Duchen, 2000; Kahlert et al., 2005; Parfenova et al., 2006) 

and that ROS can alter proteasome activities (Ullrich et al., 1999; Ding et al., 2003; Grune et 

al., 2004; Aiken et al., 2011). The proteasome proteolytic pathways represent the main 

mechanisms responsible for the degradation of damaged or unwanted proteins. These 

pathways play an important role in maintaining normal cellular homeostasis, as null mutants 

for the proteasome subunits result in lethal phenotypes (Heinemeyer et al., 1991; Orlowski, 

1999). Protein unfolding and aggregation are also dominant pathogenic events in vulnerable 

ischemic neurons (Ge et al., 2007). A study by Liu et al. (2005) showed that ischemic 

preconditioning alleviated protein aggregation in neurons. Whether this reduction is due to a 

decrease in overall cell damage or the result of an enhanced ability by neurons tolerant to 

ischemia in eliminating the irreparably damaged proteins has yet to be elucidated. Therefore, 

we tested the hypothesis that chronic exposure of neurons to increased levels of synaptic 

glutamate release, i.e., glutamate preconditioning, might lead to an increase in proteasome 

activity. We observed significant increases in both the 20S and 26S baseline proteasome 

activities in Glud1 mouse brains as compared with those of wt mice. Ubiquitination is a key 

step in the degradation process of many proteins. Contrary to our hypothesis that elevated 

proteasomal activity would lead to decreases in ubiquitinated proteins following an episode 

of ischemia-reperfusion, we did not observed any difference in the level of ubiquitin 

immunoreactivity following ischemia-reperfusion in hippocampal neurons of the Tg, 

compared with those of the Wt mice. In summary, the increase of the proteasome activities 

but not of ubiquitination suggests that the proteasomal degradation pathways are involved in 

the neuroprotective effect of chronic glutamate synaptic release.

The molecular dynamics that lead to increases in proteasome activity in the Glud1 mice are 

not known. Following an episode of stroke, the loss of ATP impairs the activity of the 26S 

proteasome (Keller et al., 2000). The 26S proteasome is an ATP-dependent protease 

composed of a core proteinase, the 20S proteasome, and two PA700 regulatory particles (the 

19S complex) on both ends (Coux et al., 1996). These subunits associate and dissociate in an 

ATP-dependent manner, thus conditions of decreased ATP levels would bring about the 

dissociation of the subunits (Tanahashi et al., 2000). Following transient forebrain ischemia, 

the ATP-dependent re-association of the 20S catalytic and PA700 regulatory subunits to 

form the 26S proteasome is severely impaired in the hippocampus (Asai et al., 2002). The 

increased baseline proteasome activity in Glud1 mouse brains might offer relative resistance 

to the ischemia-induced loss of ATP. However, the present studies did not link the 
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protective effect of chronic glutamate synaptic release in brain to the activation of 

proteasome degradation of proteins.

Besides the differential activities of the proteasomes in the Tg vs. wt brains, the opposite 

responses of neurons to ischemia-reperfusion in terms of the MAP2A levels in Tg and wt 

hippocampus, was one of the most remarkable differential characteristics observed. MAPs 

are key regulators of neuronal morphogenesis (Popa-Wagner et al., 1999). The so-called 

“late MAPs”, MAP2A and MAP2B, have a profound effect on the organization of cellular 

microtubules (Lewis et al., 1989), provide structural stabilization during process outgrowth 

(Chen et al., 1992), and assist in the maintenance of proper synaptic circuitry in the mature 

brain (Marsden et al., 1996; Popa-Wagner et al., 1999). MAP2A is preferentially associated 

with dendritic processes (Binder et al., 1986). Stress conditions can alter MAP2 levels in the 

brain cortex and hippocampus (Yan et al., 2010), and MAP2 localization and protein levels 

are disrupted in response to the stress induced by high extracellular glutamate levels (Arias 

et al., 1997). Cerebral ischemia reduces MAP2 immunoreactivity in the hippocampus and 

cortex of both neonatal (Malinak & Silverstein, 1996) and adult rats (Kitagawa et al., 1989; 

Dawson & Hallenbeck, 1996). The most significant loss of MAP2 following ischemia is in 

the CA1 region in both rats (Inuzuka et al., 1990) and gerbils (Yoshimi et al., 1991). The 

susceptibility of MAP2 to ischemia and excitotoxicity has been attributed to the elevation of 

intracellular Ca2+ concentrations that lead to rapid MAP2 proteolysis by calcium-activated 

proteinases (Kitagawa et al., 1989). However, some have reported that MAP2 levels in the 

penumbra surrounding the core of the ischemic lesion, as well as in surviving neurons at the 

core of ischemic tissue, are increased rather than decreased (Li et al. 1998). The same is true 

for MAP2 levels following episodes of severe epileptic seizures in rats (Jalava et al. 2007). 

Thus, under conditions of increased glutamate release to the extracellular environment of 

neurons, i.e., ischemic penumbra and post-ictal state, certain neuronal populations respond 

to the stress by increasing the intracellular levels of MAP2 proteins.

In our studies, we observed that following MCAO, MAP2A was significantly increased in 

the CA1 region of the Glud1 Tg mice compared to the wt littermates. This striking increase 

in MAP2 immunolabeling is more likely a result of increased protein levels and not an 

increase in the number of dendritic processes. This suggests that unlike the wt mice, the 

Glud1 Tg mice may have a preserved ability to synthesize some of the components required 

for structural repair and maintenance (Popa-Wagner et al., 1999). Since some MAP2 is 

synthesized in the cell body and then transported to dendrites (Okabe & Hirokawa, 1989), 

while a substantial amount of MAP2A is synthesized in dendrites from mRNA that has been 

transported to dendritic sites (Rehbein et al. 2000), it would appear that the Glud1 Tg mice 

have improved protein and mRNA transport processes that lead to enhanced recovery 

following cerebral ischemia. In more recent studies, we have observed significant increases 

in the levels of proteins involved in the transport of membrane bound organelles in neurons, 

the kinesins, in mRNA levels for these proteins, and in overall axoplasmic transport in Tg 

vs. wt neurons (P. Lee et al., submitted for publication). Therefore, the possibility that 

neurons from the hyperglutamatergic mice might recover more readily the transport of 

particle-bound mRNA and local synthesis of MAP2A than neurons from wt mice seems 

possible but has to be examined in greater detail in future studies.

Badawi et al. Page 8

J Neurosci Res. Author manuscript; available in PMC 2016 April 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Previous studies have reported that the degree of preconditioning-induced protection is 

significantly diminished in aged rats (Fenton et al., 2000; He et al., 2005). In humans, 

transient ischemic attacks (TIA) were found to be neuroprotective against ischemic strokes. 

However, the protective mechanisms of TIAs were not present in elderly patients over the 

age of 65 (Della Morte et al., 2008). To determine whether the tolerance induced by 

glutamate preconditioning was preserved in aged mice, we evaluated brain infarct size in 22-

mo old Glud1 Tg mice after MCAO and reperfusion. We showed that glutamate 

preconditioning was at least as, if not more, effective in the aged (22-mo) compared with the 

young adult (9-mo) mice. This was consistent with the results of another study in which 

gerbils preconditioned with 1.5 min of ischemia before a subsequent 5-min occlusion of 

both carotid arteries (global ischemia), exhibited differential levels of resistance to ischemia 

(Dowden & Corbett, 1999). The young animals had 53–67% protection of CA1 neurons 

while the older animals exhibited approximately 75% protection (Dowden & Corbett, 1999). 

The authors attributed this difference to the decrease in density and sensitivity of NMDA 

receptors that occur in the aged rodent brain (Gonzales et al., 1991).

In conclusion, the phenomenon of ischemic preconditioning in the brain is well documented. 

In this report, for the first time, we demonstrate that in vivo increased synaptic release of 

glutamate can induce ischemic tolerance and maintain cell viability in young adult mice that 

were subjected to cerebral artery occlusion. This protection was preserved in the aged 22-mo 

old mice. The increase in MAP2 levels following ischemia-reperfusion in the resistant 

Glud1 Tg mice, may suggest an enhancement in protein synthesis and protein and mRNA 

transport to distal processes in these mice. Increases in MAP2A synthesis and transport 

under conditions of neuronal stress may be an important component of the glutamate 

preconditioning process that leads to ischemic tolerance and, potentially, to tolerance to 

other stressful stimuli.
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ABBREVIATIONS

AMC 7-amino-4-methly-coumarin

ATP adenosine triphosphate

CA carbonic anhydrase

CNS central nervous system

EAAT-2 excitatory amino acid transporter-2

Glud1 glutamate dehydrogenase gene

MAP microtubule-associated proteins

MCAO middle cerebral artery occlusion
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mo month

NMDA N-methyl-D-aspartate

nse neuron-specific enolase

ROS reactive oxygen species

rt-PA recombinant tissue plasminogen activator

SO stratum oriens

SP stratum pyramidale

SR stratum radiatum

Tg transgenic

TIA transient ischemic attack

TTC 2,3,5-triphenyltetrazolium chloride monohydrate

UBE ubiquitin-conjugating enzymes

UPS ubiquitin proteasome system

wt wild type
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Figure 1. Effect of MCAO on brain tissue damage in Wt vs. Glud1 Tg mice
Brain damage was determined by TTC staining after mice were subjected to 90 min 

ischemia followed by 24 hr reperfusion. (A) Representative TTC staining of brain coronal 

sections proceeding from frontal to caudal. Sections were taken from the 1 mm position of 

the frontal pole and proceeded in 2 mm intervals to 5 mm. (B) Quantification of infarct 

volume was determined in TTC stained sections. (C) Quantification of brain edema volume 

estimated from TTC stained sections (n=5). Data presented as means ± SEM. *p < 0.05 Tg 

vs. wt mice.
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Figure 2. Increased brain proteasomal activity in the Glud1 Tg mice
Activities of the (A) 26S and the (B) 20S proteasome were assayed by determining their 

ability to cleave Suc-LLVY-AMC (n=3). Data presented as means ±SEM. *p<0.05 Tg vs. 

wt mice.
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Figure 3. Immune-labeling of MAP2A in the hippocampus of Glud1 Tg and wt mice under 
baseline conditions
Representative immunofluorescent images showing labeling of MAP2A in the CA1 and 

CA3 regions of the hippocampus in a pair of 9-mo old Glud1 Tg and wt mice that were not 

subjected to in vivo ischemia-reperfusion. All images were obtained using identical laser 

intensity and fluorescence amplification. SO, stratum oriens; SP, stratum pyramidale; SR 

stratum radiatum. Scale bar =12 μm.
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Figure 4. Quantification of MAP2A immunoreactivity in CA1 and CA3 regions of the 
hippocampus of Tg and wt mice under baseline conditions
The mean pixel densities (±SEM) of MAP2A immune labeling in the CA1 and CA3 regions 

represent the average of measurements obtained from multiple subfields from the three 

layers of each region of the hippocampus of 3 Tg and 3 wt mice. The data were analyzed by 

one-way ANOVA with post hoc analysis of pairwise comparisons (Holm-Sidak) and the 

significant differences between measurements are indicated.
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Fig. 5. Immune labeling of MAP2A in the hippocampus of Glud1 Tg and wt mice ipsilateral to 
the side of MCAO
Representative immunofluorescent images showing labeling of MAP2A in the ipsilateral 

CA1 and CA3 regions of the hippocampus in a pair of 9-mo old Glud1 Tg and wt mice that 

were subjected to in vivo ischemia-reperfusion. All images were obtained using identical 

laser intensity and fluorescence amplification. SO, SP, and SR, same as in figure 3. Scale 

bar =14 μm.
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Figure 6. Quantification of MAP2A immunoreactivity in CA1 and CA3 regions of the 
hippocampus on the ipsilateral (A) and contralateral (B) sides to MCAO in Tg and wt mice
The mean pixel densities (±SEM) of MAP2A immune labeling in the CA1 and CA3 regions 

represent the average of measurements obtained from multiple subfields from the three 

layers of each region of the hippocampus, ipsilateral (A) or contralateral (B) to MCAO of 3 

Tg and 3 wt mice. The data were analyzed by one-way ANOVA with post hoc analysis of 

pairwise comparisons (Holm-Sidak) and the significant differences between measurements 

are indicated.
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Figure 7. Effect of MCAO on brain tissue damage in 22 month old Wt and Glud1 Tg mice
Brain damage was determined by TTC staining in 8-mo and 22-mo old Wt and Glud1 Tg 

mice after 90 min ischemia followed by 24 hr reperfusion. (A) Representative TTC staining 

of brain coronal sections proceeding from frontal to caudal. Sections were taken from the 1 

mM position of the frontal pole and proceeded in 2 mm intervals to 5 mm. (B) 

Quantification of infarct volume determined by TTC stained sections. (C) Quantification of 

brain edema volume estimated from TTC stained sections (n=3). Data presented as means ± 

SEM. *p < 0.05 Tg vs. wt mice.
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