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Abstract

Skeletal muscle has a remarkable ability to respond to different physical stresses. Loading muscle 

through exercise, either anaerobic or aerobic, can lead to increases in muscle size and function 

while, conversely, the absence of muscle loading stimulates rapid decreases in size and function. 

A principal mediator of this load-induced change is focal adhesion kinase (FAK), a downstream 

non-receptor tyrosine kinase that translates the cytoskeletal stress and strain signals transmitted 

across the cytoplasmic membrane by integrins to activate multiple anti-apoptotic and cell growth 

pathways. Changes in FAK expression and phosphorylation have been found to correlate to 

specific developmental states in myoblast differentiation, muscle fiber formation and muscle size 

in response to loading and unloading. With the capability to regulate costamere formation, 

hypertrophy and glucose metabolism, FAK is a molecule with diverse functions that are important 

in regulating muscle cell health.
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Introduction

Skeletal muscle is a remarkably plastic tissue that is capable of responding to changes in 

muscle workload. The ability of the muscle to detect changes in cytoskeletal tension and 

initiate the appropriate signal is the responsibility of proteins that detect cytoskeletal tension, 

termed mechanosensors. Mechanosensors relay the information throughout the muscle cell 

to change gene transcription and protein expression. Skeletal muscle contains multiple types 

of mechanosensors with diverse responses to changes in tension. Changes in the activity of 
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ion channels and signaling through sarcomeric proteins like titin are the result of changes in 

muscle tension [Reviewed in (Burkholder 2007; Gautel 2011; Tidball 2005)]. This review 

will focus on the role of focal adhesion kinase (FAK), a prominent and well-studied protein 

that responds to changes in cellular tension. FAK is a 125 kDa non-receptor tyrosine kinase 

that lies within and coordinates signals through a multiprotein complex called the focal 

adhesion complex (Schaller et al. 1995). Focal adhesion complexes anchor the cytoplasmic 

tails of heterodimeric membrane-spanning proteins called integrins, forming a continuous 

link between the cytosol and extracellular matrix (ECM) (Hanks et al. 2003). FAK is similar 

to proline-rich tyrosine kinase [Pyk2; also commonly referred to as FAK2, protein tyrosine 

kinase 2-beta (PTK2β), cell-associated kinase-beta (CAK-β) or calcium-dependent tyrosine 

kinase (CADTK)] in amino acid sequence, structure and substrates. However, their cellular 

functions are distinct with Pyk2 being highly cell-specific and its activation being 

independent of ECM and integrin interactions, which are most likely the main activator of 

FAK in skeletal muscle (Orr and Murphy-Ullrich 2004). FAK also has similar qualities to 

integrin-linked kinase (ILK), an important component of the focal adhesion complex. The 

role of ILK in skeletal muscle is largely unknown but it has been demonstrated to respond 

positively in skeletal muscle following overload (Chaillou et al. 2013) and transgenic 

integrin overexpression (Boppart et al. 2011). Furthermore, muscle-specific HSACre-driven 

ILK knockout resulted in decreased hypertrophic intracellular signaling, myotendinous 

junction organization and insulin receptor stability (Wang et al. 2008).

In skeletal muscle, the focal adhesion complex is densely localized within the costamere 

(Anastasi et al. 2008; Bloch and Gonzalez-Serratos 2003) and myotendinous junction 

(Burkin and Kaufman 1999; Mayer et al. 1997), which are the main force transducers of 

skeletal muscle. The costamere, composed of the dystroglycan and focal adhesion complex 

(Bloch and Gonzalez-Serratos 2003), transmits sarcomeric forces laterally to the 

extracellular matrix, while the myotendinous junction transmits forces longitudinally 

through the tendon to bone. Since integrins have no known kinase activity, they must rely on 

the focal adhesion complex, primarily through FAK, to signal changes in cytoskeletal 

loading.

FAK has multiple roles within skeletal muscle. It is activated by receptor tyrosine kinases 

for growth factors, such as insulin (Bisht et al. 2007) and insulin-like growth factor-1 

(IGF-1) (Crossland et al. 2013) and can regulate myoblast development and muscle fiber 

formation (Quach et al. 2009). The latter function is intriguing because the convergence of 

myogenesis, nutritional control of muscle homeostasis and muscle loading provide a 

meeting point between prominent hypertrophy and anti-apoptotic signals that reinforce the 

importance of FAK signaling during muscle development and homeostasis.

Regulation of FAK activation

The following is a brief summary of the structure and autoregulation of FAK that is meant to 

provide basic structural information for the reader. For more detailed reviews, please refer to 

(Frame et al. 2010; Hall et al. 2011; Parsons 2003). The structure of FAK (Fig. 1) shares 

characteristics of other focal adhesion complex and membrane-bound proteins, such as talin. 

FAK is composed of three major domains: an N-terminal 4.1 ezrin, radixin, moesin (FERM) 
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domain, a kinase domain and the C-terminal focal adhesion targeting (FAT) domain 

(Parsons 2003). The FERM domain targets and organizes proteins to the cell membrane 

(Baines et al. 2014) and is a major regulator of FAK activity. Deletion of the initial 375 

residues of the FAK FERM domain leads to a constitutively active enzyme (Cooper et al. 

2003). Additionally, the FERM domain of FAK can bind to the cytoplasmic portion of the 

β1 integrin tail (Schaller et al. 1995), creating a logical docking point to stabilize or signal 

through the focal adhesion complex. A linker domain, which contains the major 

phosphorylation site at tyrosine 397, connects the FERM domain and kinase domain. The 

kinase domain contains two tyrosine residues that are important for optimal FAK function, 

tyrosines 576 and 577 (Schaller et al. 1994). The FAT domain’s main responsibility is 

directing FAK to the focal adhesion complex (Hildebrand et al. 1993). FAK-related non-

kinase (FRNK) is a protein transcribed from the FAT portion of the FAK gene (PTK2) and 

acts to inhibit FAK in many cell types, including skeletal muscle (Klossner et al. 2013).

Lietha and colleagues (Lietha et al. 2007) were able to crystallize an autoinhibited form of 

FAK and describe the mechanisms that block kinase activity in the inactive form of FAK. 

The structure of the autoinhibited enzyme showed binding of the FERM domain to the 

kinase domain, essentially burying the linker that contains tyrosine 397. The location of the 

FERM domain during this interaction also protects the important tyrosines of the kinase 

domain, tyrosines 576 and 577, from phosphorylation (Lietha et al. 2007). Movement of the 

FERM domain allows tyrosine 397 to become exposed to the cytosol, after which it is 

quickly autophosphorylated (Schaller et al. 1994). What exactly causes the initial shift in the 

FERM domain is unknown but there is evidence that acidic phospholipids such as 

phosphatidylinositol 4,5-bisphosphate can induce a change in the position of FERM and 

thereby activate FAK (Cai et al. 2008). Phosphorylation of tyrosine 397 creates high affinity 

binding sites for proteins that contain Src Homology (SH) 2 and 3 domains, including the 

tyrosine kinase, cSrc. cSrc phosphorylates tyrosines 576 and 577 of FAK to fully activate its 

kinase activity (Schaller et al. 1994).

FAK expression and function during muscle development

Muscle development is a coordinated process in which transcription factors like myogenin 

and MyoD induce terminal differentiation of myoblasts. Upon differentiation, these 

myoblasts then fuse together to form multi-nucleated myotubes. In this early form of 

muscle, the ECM and sarcolemmal proteins are important in regulating and coordinating 

proper myogenesis. Since integrins are major effectors of laminin binding and are used to 

stabilize muscle during myogenesis (Burkin and Kaufman 1999), it would be logical that 

FAK would be an important regulator of myoblasts during these states. Indeed, FAK activity 

is necessary for expression of MyoD and other important cell cycle regulators such as Cdo 

and Cdc42 in C2C12 cells (Han et al. 2011).

Myoblast proliferation and differentiation

Differentiation of myoblasts for 3 days activated FAK (Goel and Dey 2002a). However, the 

state of FAK activation can alter cell cycle progression and commitment to differentiation of 

muscle progenitor cells. Ectopically increasing expression of a constitutively active 

membrane-bound wild-type FAK promoted cell proliferation in quail myoblasts while a 
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tyrosine to phenylalanine inactivating mutation of the main activation site of FAK promoted 

differentiation and multinucleated myotube formation (Sastry et al. 1999). Ectopic over-

expression of certain α integrin subunits altered FAK phosphorylation, with the RGD-

sequence binding α5 integrin having no affect on FAK phosphorylation and the laminin-

binding α6 integrin decreasing FAK phosphorylation (Sastry et al. 1999), providing 

evidence that the evolution of the ECM and integrin to which it is bound can alter the state 

of FAK activation in early muscle development. The addition of insulin to myoblasts 

stimulated FAK phosphorylation in proliferating cells but rapidly decreased phosphorylation 

in differentiated muscle cells within 5 min, followed by a gradual increase in 

phosphorylation levels back to near-baseline after 30 min (Goel and Dey 2002a). Expression 

of a dominant-negative FAK in C2C12 myoblasts results in a loss of RhoA-induced α-actin 

promoter activity (Wei et al. 2000), suggesting that the presence of functional FAK is 

necessary for important fundamental gene expression in muscle cells.

The level of FAK activation also responds to cues for differentiation. FAK phosphorylation 

levels decreased when myoblasts were switched from proliferating medium to 

differentiating medium but then gradually increased when cells were maintained in 

differentiation medium for 1–6 days (Clemente et al. 2005; Goel and Dey 2002a). Other 

studies of C2C12 cells found that total FAK decreases gradually during differentiation while 

phosphorylated FAK gradually increases (Nguyen et al. 2014). Similarly, primary myoblasts 

incubated with differentiation media show decreases in total and phosphorylated FAK over 

the course of 96 h (Quach et al. 2009). Clemente et al (2005) localized FAK to lamellipodia 

and filopodia in proliferating myoblasts. However, following 24 h in differentiating 

medium, there were no apparent lamellipodia or filopodia and FAK was localized to large 

patches on the cytoplasmic surface of the cytoplasmic membrane. Transfection of 

differentiating myoblasts with wild-type FAK prevented differentiation-associated decreases 

in the cell cycle regulator cyclin D1 and prevented expression of myogenin mRNA and 

protein. Further, FAK overexpression reduced upregulation of creatine kinase activity 

(Clemente et al. 2005). The decreases in total FAK expression associated with 

differentiation may be due to targeting to the ubiquitin–proteasome pathway for proteolytic 

destruction after ubiquination by the E3 ligase mitsugumin 53 as protein levels decrease 

during differentiation without any change in mRNA levels (Nguyen et al. 2014). In 

regulating the muscle cell cycle, FAK translocation to the nucleus following binding to the 

heterochromatin interacting methyl CpG-binding protein 2 (MBD2) induces myogenin 

expression by decreasing MBD2 protein interactions within the myogenin promoter (Luo et 

al. 2009). In summary, FAK expression and activity are reduced early after the cell commits 

to differentiation and this decrease is critical to correct progression of differentiation. Once 

differentiation programs are initiated, FAK activity is restored, presumably to participate in 

other integrin functions including fusion of myoblasts with each other or with existing 

muscle fibers.

Myoblast fusion

There is evidence that FAK is necessary for proper myoblast fusion. FAK has been shown to 

be expressed at higher levels in myotubes compared to myoblasts (Fluck et al. 1999). 

Satellite cell-specific FAK knock out mice had a fourfold decrease in regenerating fibers 3 
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days after BaCl2-induced injury and inhibition of FAK by its FAT domain or siRNA 

prevented myoblast fusion (Quach et al. 2009). The mechanism behind this appears to be 

decreases in FAK-regulated expression of important myofusion proteins such as the β1D 

integrin and caveolin-3 (59). Furthermore, knockdown of heparan sulfate endosulfatases 

disrupts phosphorylated FAK sarcolemmal localization and can inhibit myoblast fusion 

(Tran et al. 2012).

Costamere formation

FAK has a functional role in costamere synthesis, most likely stabilizing and signaling 

through the protein scaffold around the cytoplasmic portion of integrins. There is no 

evidence that FAK routinely localizes to the dystroglycan complex but integrins have been 

implicated as being critical to proper costamere formation (Balaban et al. 2001; Fujita et al. 

2007) and FAK’s downstream signaling ability makes it a prominent component for 

costamere genesis. During muscle development, costamere formation is delayed compared 

to myofibrillar formation (Quach and Rando 2006), meaning that there has to be a more 

developed myofiber in order for the maturation of the costamere. This is most likely related 

to muscle specific gene expression and the need for some type of contractility in the muscle 

cell to correctly form the costamere and sarcomere (De Deyne 2000; Fujita et al. 2007; 

Quach and Rando 2006). Inhibition of FAK by a dominant-negative FAT or FAK siRNA in 

myotubes resulted in lower levels of costamere organization as measured by 

immunofluorescence of vinculin, the first protein associated with costameres (Pardo et al. 

1983) and a protein that connects the many proteins of the focal adhesion complex (Bloch 

and Gonzalez-Serratos 2003), and myofiber formation (Quach and Rando 2006).

Other proteins that can regulate FAK during development

Protein kinase C (PKC) negatively-regulates FAK phosphorylation and focal adhesion 

complex localization during the differentiation of myoblasts but stimulates FAK 

phosphorylation while in the proliferating stage (Goel and Dey 2002b). PKC increases FAK 

phosphorylation and cell spreading in α5-null myoblasts, suggesting that PKC may work 

through FAK in an inside-out signaling pathway, independent of integrins, which creates 

more ECM binding capabilities for the cell (Disatnik and Rando 1999). PKC-null myoblasts 

have lower levels of phosphorylated FAK and exogenous transfection of PKC increases 

FAK phosphorylation in C2C12 cells (Madaro et al. 2011).

FAK activation can also occur following ligand binding of the neogenin receptor. Neogenin 

is a membrane receptor protein that binds to a family of proteins called netrins that are 

structurally similar to laminin. Netrins are secretory proteins that aid in localizing axons and 

have been shown to be important in other cell types (Lai Wing Sun et al. 2011). In its 

cytosolic tail, neogenin can bind and activate FAK (Li et al. 2004). In mouse embryos that 

had neogenin knocked-out by gene trapping, myotubes were smaller and there was an 

almost complete inhibition of FAK activation (Bae et al. 2009). In non-gene trapped 

myoblasts, recombinant netrin increased FAK phosphorylation after 30 min but neogenin 

knockout myoblasts had no FAK phosphorylation response (Bae et al. 2009).
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FAK and actin dynamics

As mentioned previously, FAK may have a role in actin dynamics (Wei et al. 2000), and in 

muscle, most likely functions through activation of RhoA and downstream signaling through 

FAK and serum response factor (SRF) (Wei et al. 1998). RhoA is a small GTPase that 

works in coordination with the striated muscle activator of Rho signaling (STARS) to help 

regulate the formation of filamentous actin and SRF is a transcription factor that can control 

actin dynamics and many integral proteins of the muscle cell cycle (Lamon et al. 2014). To 

our knowledge, there is no explicit interaction between STARS and FAK in skeletal muscle 

but there is a potential for RhoA-induced FAK regulation. In cardiac muscle tissue, FAK 

activation following cell stretch is dependent on RhoA (Torsoni et al. 2005) and inhibition 

of RhoA with an exoenzyme prevented FAK autophosphorylation (Del Re et al. 2008). In 

skeletal muscle, RhoA protein expression decreases following 3 days of hindlimb unloading 

and increases following reloading (McClung et al. 2004). We have seen RhoA decrease 

similarly to FAK following downhill running (Graham et al. 2015). SRF can colocalize with 

both RhoA and FAK (Sakuma et al. 2003) and unloading decreased SRF protein expression 

along with FAK protein expression in rat hindlimb muscles (Gordon et al. 2001). 

Furthermore, decreased SRF expression is associated with decreased levels of FAK in 

dystrophic muscle (Sakuma et al. 2004). The limited information regarding the 

RhoA/FAK/SRF pathway in muscle suggest that they may have a role in muscle and actin 

regulation but more research is needed to clearly elucidate the function of this pathway.

Cytokine regulation through FAK

The literature is sparse in regards to the ability of cytokine signaling to modulate FAK 

expression or activation in skeletal muscle. Exposing C2C12 cells to exogenous TNFα 

increases FAK expression. Silencing of FAK with siRNA in TNFα-exposed C2C12 cells, or 

an inactivating tyrosine to phenylalanine mutation on the main activation site of FAK, 

decreases IL-6 production, suggesting that FAK participates in the regulation of the 

expression of inflammatory cytokines (Tseng et al. 2010). This concept of IL-6 regulation 

by FAK is intriguing due to the large IL-6 response typically seen after intense exercise 

(Pedersen and Febbraio 2008).

Mechanisms for muscle hypertrophy

FAK and cSrc

Activation of cSrc by FAK has been implicated in the hypertrophy of cardiac muscle 

(Franchini 2012; Torsoni et al. 2003) but evidence is lacking regarding cSrc’s role in 

skeletal muscle. In overloaded cardiac muscle, pressure-related hypertrophy is associated 

with activation of FAK and extracellular signal-related kinase (ERK) 1/2 (Franchini et al. 

2000). Conversely, inhibition of FAK or cSrc decreases ERK1/2 activation following cell 

stretch (Torsoni et al. 2003). In skeletal muscle, ERK1/2 responds to various types of muscle 

loading (Boppart et al. 2001; Hornberger et al. 2005; Williamson et al. 2003) and is 

important for muscle hypertrophy and overall homeostasis (Shi et al. 2009). Thus the 

prospect of a FAK/cSrc/ERK1/2 relationship warrants investigation. Cyclic strain decreases 

phosphorylation of cSrc at tyrosine 527, the main inhibitory site on this kinase, thus 
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activating cSrc; this effect is maintained for 60 min in cultured C2C12 (Kumar et al. 2004). 

We have observed that in rat soleus, total and activated cSrc protein expression are not 

affected by 90 min of eccentric downhill running at 2 and 48 h post-exercise despite 

decreases in FAK levels (Graham et al. 2015) We have also found that cSrc activation is 

decreased 56 days following spinal cord injury (SCI) in rat gastrocnemius with no changes 

in total or activated ERK1/2 (Graham, manuscript in review). This suggests that in skeletal 

muscle, direct FAK and cSrc signaling through ERK1/2 may occur (1) less than 2 h 

following exercise; (2) during the immediate time-frame following unloading or paralysis 

or; (3) independently of ERK1/2 in load-induced cell signaling.

The FAK/PI3K/Akt pathway

In skeletal muscle it is likely that there is cross-talk between FAK and the 

phosphatidylinosital-3 kinase (PI3K) pathway (Fig. 2). The PI3K pathway includes Akt, 

mechanistic target of rapamycin (mTOR) and p70S6 kinase (p70S6k). mTOR is a protein 

kinase and serves as a master controller of cell size and protein synthesis (Reiling and 

Sabatini 2006). Its activity responds to many signals that include nutritional changes, growth 

factors and changes in muscle loading (Baar and Esser 1999; Baar et al. 2006; Bodine 2006; 

Goodman et al. 2011). Phosphorylation of tyrosine 397 of FAK results in binding of FAK to 

the SH2 domain of the 85 kDa subunit of PI3K, which can lead to increases in PI3K activity 

(Chen et al. 1996). FAK may modulate mTOR through inhibition of tuberous sclerosis 

complex 2 (TSC2) by phosphorylation, which results ultimately in destabilization and 

proteolytic destruction of TSC2. TSC2 is a negative regulator of mTOR. The first evidence 

for a FAK/TSC2 interaction came from studies of 293T and NIH3T3 cells. These studies 

demonstrated that FAK binds and phosphorylates TSC2 on a residue between 609 and 1080; 

over-expression of a mutant FAK lacking kinase activity decreased phosphorylation of 

p70S6k and eukaryotic 4E-binding protein-1 (4E-BP1) (Gan et al. 2006). This observation 

has been recently reproduced in C2C12 myoblasts; incubation of these cells with IGF-1 

increased FAK autophosphorylation and increased TSC2 phosphorylation as measured by 

Western blotting in cells incubated with scrambled siRNA. Moreover, knockdown of FAK 

expression using FAK-specific siRNA resulted in decreased TSC2 phosphorylation and 

decreased p70S6k and 4E-BP1 phosphorylation and puromycin-labeled nascent polypeptide 

chains compared to scrambled siRNA (Crossland et al. 2013). Conversely, overexpression 

of FAK increased p70S6k phosphorylation independent of Akt activation in rat tibialis 

anterior (Klossner et al. 2009). Consistent with these findings, FAK appears to mediate 

responses in rat skeletal muscle of p70S6K and 4EBP1 to administration of acetaminophen. 

Eight weeks of daily acetaminophen administration leads to a threefold greater expression of 

total and phosphorylated FAK and similar changes are seen in the downstream proteins 

p70S6k and 4E-BP1. These changes affected only the soleus and not the gastrocnemius, 

suggesting that acetaminophen may increase hypertrophic signaling through FAK in a 

muscle/fiber-type dependent manner (Graham, in review).

FAK appears to have a role in the control of energy metabolism and glucose uptake within 

skeletal muscle through insulin and PI3K signaling. Adenovirus delivered anti-sense FAK 

blunts glucose uptake, insulin-stimulated GLUT-4 translocation and glycogen synthesis in 

L6 cells (Huang et al. 2006). Insulin-resistant C2C12 cells have a 40 % decrease in basal 
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FAK phosphorylation and insulin-resistant rats had a roughly 60 % decrease in basal FAK 

phosphorylation with no change in total FAK expression (Bisht et al. 2007). Overexpression 

of FAK increases labeled glucose uptake in insulin-sensitive cells by approximately 40 % 

and insulin-resistant cells by 29 % while overexpression of dominant-negative mutant FAK 

renders wild-type cells insulin-resistant (Bisht et al. 2007). Insulin can initiate actin 

remodeling and colocalization of FAK with remodeled actin which increases the ability of 

GLUT-4 to translocate to the sarcolemma, increasing insulin sensitivity (Bisht and Dey 

2008). Intriguingly, GLUT-4 translocation is blunted by wartmanin, a PI3 K inhibitor, in 

cells over-expressing FAK by preventing actin remodeling, suggesting crosstalk between 

FAK and PI3K in insulin action (Bisht and Dey 2008). Insulin sensitivity can be 

manipulated by changing the phosphorylation state of FAK by known PI3K pathway 

regulators, SHP2 and PTEN. Inhibition of SHP2 and PTEN by siRNA increases FAK 

phosphorylation (Gupta and Dey 2009) and, in C2C12 cells, SHP2 has been found to 

directly bind to FAK, preventing its activity (de Oliveira et al. 2009).

FAK and the response to altered loading

Animal and culture models

FAK is inactivated by cytoskeletal forces (Rahnert and Burkholder 2013). The cellular 

localization of FAK, principally along the cytoplasmic surface of the sarcolemma (Wilson et 

al. 2014, 2012), allows it to be readily available for activation by integrins. While a direct 

link between mechanotransduction-induced FAK activation and muscle hypertrophy is still 

speculative, it has been well established that FAK responds quickly to both overload and 

unloading. Roosters that had their left wings overloaded with 10 % of their body weight for 

1.5 and 7 days had increased FAK expression and increased FAK autophosphorylation at 

tyrosine 397 (Fluck et al. 1999). Further, FAK was observed in the belly of the muscle, 

providing the first evidence that FAK could be localized outside of the myotendinous 

junction (Fluck et al. 1999). Another component of this study used gastrocnemius ablation in 

rats to overload the soleus. The overloaded soleus had increases in FAK expression at 1 and 

8 days post-surgery (Fluck et al. 1999). Gordon et al. (Gordon et al. 2001) used hindlimb 

unloading of female rats to examine the FAK response to changes in muscle loading in 

different muscle groups. The fast twitch plantaris and predominantly fast-twitch 

gastrocnemius had lower baseline levels of FAK expression compared to the soleus and had 

lower FAK expression following 7 days of unloading while the soleus surprisingly increased 

its expression of total FAK. The soleus, but not the plantaris or gastrocnemius, had 

decreases in levels of FAK phosphorylation compared to control rats after unloading 

(Gordon et al. 2001). In parallel studies, the effects of muscle overloading achieved by 

gastrocnemius ablation were examined; the soleus had increases in autophosphorylated FAK 

at 1 and 8 days post-surgery. The plantaris had increases in total FAK expression both 1 and 

8 days post-overload but only had increases in expression of phosphorylated FAK at 8 days 

post-surgery (Gordon et al. 2001). Recently, Klossner et al (Klossner et al. 2013) used 

multiple experiments to analyze the time course of alterations in FAK activation response in 

muscle loading. Increased FAK phosphorylation occurred quickly, within 20 s after a 2 s 

passive stretch of the soleus. Soleus overloading by gastrocnemius ablation increased FAK 

activation at 1 and 24 h post-surgery and total FAK expression 6 and 24 h post-surgery. 
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FAK overexpression increased expression of the costamere-related proteins β1 integrin and 

vinculin following reloading and this response was ablated in the presence of a FAK 

inhibitor, FAK-related non-kinase (FRNK), providing support that FAK expression is 

necessary for load-induced costamere organization (Klossner et al. 2013). We have found 

that total and phosphorylated FAK are lower following 90 min of muscle damage-inducing 

downhill treadmill exercise in the rat soleus compared to non-exercised controls. This 

decrease was seen at 2 h post-exercise but not 48 h post-exercise (Graham et al. 2015). In 

C2C12 cells, 30 min of static stretch decreases phosphorylated FAK by roughly 50 % while 

FAK phosphorylation was not altered in isolated primary muscle fibers from control or γ-

sarcoglycan knockout mice over the course of 4 h of static stretching (Moorwood et al. 

2014). In proliferating C2C12 cells, cyclic strain activates FAK 15 min post-strain, followed 

by a return to baseline at 30 min post-strain (Kumar et al. 2004).

Human models

Muscular unloading can lead to skeletal muscle protein catabolism as soon as 3 days after 

unloading in the vastus lateralis (Tesch et al. 2008). This duration of unloading does not 

alter FAK mRNA levels or total FAK in the vastus lateralis or soleus (Fluck et al. 2014a) 

but does decrease phosphorylation of tyrosine 397 in the vastus lateralis (Fluck et al. 2014a). 

During a 21 day unloading period of the vastus lateralis, FAK phosphorylation was reduced 

at day 10, with no further change seen during the final 11 days of the study. This pattern 

matched well with the overall reduced myofibrillar synthesis rates of the subjects (de Boer et 

al. 2007). In a similar study, 14 days of knee brace unloading resulted in decreases in FAK 

phosphorylation. Furthermore, amino acid supplementation had no effect on FAK 

phosphorylation, although phosphorylation of proteins in the PI3K cascade were increased 

(Glover et al. 2008b). Unloading from extended bedrest led to decreased total FAK 

expression after 8 and 34 days of bedrest with no changes in FAK phosphorylation (Li et al. 

2013). Muscle type may influence the response of FAK during unloading. In a 58 days 

bedrest study using resistance training or resistance training plus vibration training, there 

was no effect on FAK expression in the soleus of the control group or either exercise group. 

However, FAK expression did increase in the vastus lateralis of the control and resistance-

training plus vibration group (Salanova et al. 2014).

Externally applied pressure to muscle is another mechanism for FAK activation. Manual 

massage treatment conducted at the conclusion of a bout of aerobic exercise to exhaustion 

increased FAK phosphorylation in the vastus lateralis immediately post-exercise with a 

return to baseline 3 h later (Crane et al. 2012). We saw no changes in total or phosphorylated 

FAK levels 24, 48, or 72 h after instrument-assisted massage of the gastrocnemius (Graham, 

in review), suggesting that FAK activation in response to massage is most likely transient 

and occurs within the 3 h window.

Traditional exercise, both aerobic and resistance training, are widely used interventions to 

increase muscle health and performance but generally provide for less force production than 

experimental overloading conditions. However, both can transmit forces across the 

sarcolemma and have the potential to activate FAK. Four sets of 10 repetitions of leg press 

and leg extensions maneuvers did not result in changes in FAK phosphorylation in actively 
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resistance-trained men (Glover et al. 2008a). Another study in sedentary males saw that 

FAK phosphorylation was increased for both acute aerobic and anaerobic exercise 

immediately post-exercise with anaerobic exercise remaining elevated at 4 h post-exercise. 

Additionally, 10 weeks of training increased basal levels of FAK phosphorylation 

(Wilkinson et al. 2008). Nine weeks of resistance training (three times a week) on a flywheel 

ergometer that loads the muscle during the concentric and eccentric phases increased 

phosphorylated FAK at both the mid and end of the protocol (Li et al. 2013). Downhill 

skiing training has been shown to increase FAK expression by approximately twofold in 

elderly men while having no effect on elderly women (Flueck et al. 2011).

FAK and clinical conditions

Pathologies such as muscular dystrophies result in satellite activation and increased 

myoblast differentiation in an attempt at muscle regeneration. Dystrophic mice that have 

mutations of the α2 chain of laminins have similar levels of total FAK compared to wild-

type mice 2 weeks after birth. At 12 weeks post-birth, dystrophic mice have a non-

significant 25 % decrease in total FAK in the gastrocnemius and a significant 60 % decrease 

in the rectus femoris (Sakuma et al. 2004). The rectus femoris is not a major weight bearing 

muscle as compared to the gastrocnemius. Furthermore, these dystrophic mice drag their 

hindlimbs by a few weeks after birth and this abnormality progresses to complete hindlimb 

extension after 1–2 months (Sakuma et al. 2004). Thus, the decreases in FAK expression in 

these muscle dystrophy models may be a result of decreased physical activity and muscle 

recruitment.

SCI leads to immobilization and disruption of motor, sensory and autonomic nervous system 

function below the anatomical level of the lesion, creating a state of muscle atrophy that is 

distinct from that of hindlimb suspension in rodents or braces, bedrest and casts in humans. 

The alterations in signaling by FAK after SCI has only recently been investigated. These 

data suggest that individuals who are on average 22 years post-SCI have an approximately 

threefold elevation in phosphorylated FAK compared to able bodied subjects but no further 

increases in FAK activation following external electrical stimulation (Yarar-Fisher et al. 

2014). Conversely, in rat gastrocnemius muscle at 56 days after spinal cord transection we 

have observed that total and phosphorylated FAK are reduced (Graham, manuscript in 

review).

Ischemic protection through FAK

In rats exposed to 4 h of complete femoral artery occlusion, total FAK was increased in the 

gastrocnemius, but not the soleus, 24 h post-reperfusion (Fluck et al. 2014b). FAK 

overexpression prevented ischemic rhabdomyolysis and reduced expression of the 

mitochondrial pore opening protein Bax and inflammatory marker CD68 in the 

predominantly fast-twitch tibialis anterior. In these studies, overexpression of FAK was less 

effective in the soleus but, even so, TUNEL-staining for apoptosis was decreased (Fluck et 

al. 2014b).
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Muscle fiber type and FAK expression

There are differences in FAK expression in muscles with different fiber type characteristics, 

with the slow-twitch and fast-twitch oxidative muscle having higher basal levels (Gordon et 

al. 2001). Type I and IIa muscle fibers show the highest sarcolemmal expression of FAK as 

measured by immunohistochemistry (Flück et al. 2002). Additionally, soleus muscle that 

was cross-reinnervated with the extensor digitorum longus (EDL) nerve gradually lost FAK 

expression while EDL muscle cross-reinnervated with the soleus nerve and placed in the 

soleus cavity demonstrated increased FAK expression (Flück et al. 2002). Thus, the changes 

in localization and expression of FAK seem to be indicative of the properties of the 

innervating nerve, with early and minimal recruitment firing patterns of slow-twitch motor 

neurons driving FAK expression.

This neural drive of FAK is interesting in that FAK may be involved in regulating the 

oxidative capacity of the muscle fiber. Electrotransfer of the FAK gene into the soleus 

increased the expression of multiple proteins of the electron transfer chain as well as myosin 

heavy chain 1. Additionally, FAK overexpression was associated with a decrease in myosin 

heavy chain 2A mRNA and protein expression (Durieux et al. 2009). FAK overexpression 

decreased hybrid fiber percentage whereas FRNK, a competitive inhibitor of FAK, increased 

fast twitch fiber percentage (Klossner et al. 2013). However, these FAK-induced changes 

are not seen when the muscle is unloaded (24), indicating that FAK regulates the oxidative 

phenotype only when under load.

Conclusion

The role of FAK in skeletal muscle provides important insight into how myogenesis and 

muscle homeostasis is regulated by integrated responses of multiple signaling pathways. The 

role of FAK is plieotropic, with roles in regulating myogenesis, muscle phenotype, 

costamere formation, muscle hypertrophy and glucose uptake. Developing therapies or 

interventions that take advantage of these many functions of FAK in muscle homeostasis 

may prove to be beneficial for increasing muscle health. The role of FAK in promoting cell 

survival has readily been established in multiple cell types and conditions and information 

gained may provide insights regarding how to design exercise or pharmaceutical 

interventions that help protect against muscle atrophy following SCI or in cachectic and 

sarcopenic conditions.
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ERK1/2 Extracellular signal-related kinase 1/2
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Fig. 1. 
Simplified structure, domain roles and important phosphorylation sites of FAK. 

Autoinhibition is a result of interactions between the FERM and kinase domains, which 

prevents autophosphorylation of Y397, the major phosphorylation site of FAK. 

Phosphorylation of Y397 creates strong binding affinities for proteins containing SH2-

domains, mainly cSrc and PI3K. Binding of cSrc induces phosphorylation of Y576/577, 

resulting in FAK’s full activation. In skeletal muscle, the role of major tyrosine and serines 

in the FAT and preceding linker domain remain unknown. Figure based on (Franchini 2012; 

Hanks et al. 2003; Lietha et al. 2007)
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Fig. 2. 
Prominent signaling through the FAK nexus. Either mechanical activation from integrins or 

upstream regulation from growth factor signaling can activate multiple pathways that result 

in protein synthesis and anti-apoptosis. Other factors not shown that may similarly regulate 

FAK are RhoA, neoginin and protein kinase C
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