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Abstract

Billions of dollars are lost every year to successful cyber attacks that

are fundamentally enabled by software vulnerabilities. Modern cyber at-

tacks increasingly threaten individuals, organizations, and governments,

causing service disruption, inconvenience, and costly incident response.

Given that such attacks are primarily enabled by software vulnerabilities,

this work examines the efficacy of using change metrics, along with archi-

tectural burst and maintainability metrics, to predict modules and files

that might be analyzed or tested further to excise vulnerabilities prior to

release.

The problem addressed by this research is the residual vulnerability

problem, or vulnerabilities that evade detection and persist in released

software. Many modern software projects are over a million lines of code,

and composed of reused components of varying maturity. The sheer

size of modern software, along with the reuse of existing open source

modules, complicates the questions of where to look, and in what order

to look, for residual vulnerabilities.

Traditional code complexity metrics, along with newer frequency based

churn metrics (mined from software repository change history), are se-

lected specifically for their relevance to the residual vulnerability prob-

lem. We compare the performance of these complexity and churn metrics
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to architectural level change burst metrics, automatically mined from the

git repositories of the Mozilla Firefox Web Browser, Apache HTTP Web

Server, and the MySQL Database Server, for the purpose of predicting

attack prone files and modules.

We offer new empirical data quantifying the relationship between

our selected metrics and the severity of vulnerable files and modules,

assessed using severity data compiled from the NIST National Vulnera-

bility Database, and cross-referenced to our study subjects using unique

identifiers defined by the Common Vulnerabilities and Exposures (CVE)

vulnerability catalog. Specifically, we evaluate our metrics against the

severity scores from CVE entries associated with known-vulnerable files

and modules. We use the severity scores according to the Base Score Met-

ric from the Common Vulnerability Scoring System (CVSS), corresponding

to applicable CVE entries extracted from the NIST National Vulnerability

Database, which we associate with vulnerable files and modules via au-

tomated and semi-automated techniques. Our results show that archi-

tectural level change burst metrics can perform well in situations where

more traditional complexity metrics fail as reliable estimators of vulner-

ability severity. In particular, results from our experiments on Apache

HTTP Web Server indicate that architectural level change burst metrics

show high correlation with the severity of known vulnerable modules,

and do so with information directly available from the version control

repository change-set (i.e., commit) history.
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Chapter 1

Security Vulnerabilities and Software

The economic externalities stemming from exploited security vulnerabilities in soft-

ware are a multi-billion dollar problem [79]. Each year, world-wide economies, cor-

porations, and individuals shoulder financial damage stemming from successful at-

tacks on computers and networks–attacks ultimately enabled by software vulnerabil-

ities. Such attacks lead to lost productivity, data disclosure, and identity theft. In re-

sponse, several organizations have adopted secure software development practices,

including practices such as code review, use of static analysis tools, and penetration

testing to remove these attack enabling vulnerabilities.

The goal of secure software development practices is to eliminate vulnerabilities

before they enter the field. However, exhaustive application of secure development

practices for all code is often not feasible or cost effective. While it may seem rea-

sonable for an organization to apply secure development practices to all newly writ-

ten code, one must simultaneously acknowledge that not all code is new. Modern

software systems are composed of multiple components, each possibly of varying

maturity. Some of these components may have been developed before adopting se-

cure development practices. Moreover, it is often prohibitively expensive to require

1



that all pre-existing modules be re-written or that secure development practices be

retroactively applied.

The cost associated with re-engineering and re-testing pre-existing modules is

often not considered worthwhile when pitted against newer development efforts

competing for the same limited development resources. Development teams must

therefore decide where to focus energies for extended security reviews, penetration

testing, and emphasis to place on fixing defects identified by static analysis tools.

The defect search space in modern software systems is enormous–often several

million lines of code. As such, the level of effort to unearth vulnerabilities and re-

move them under time-to-market pressure is at odds with the level of effort required

by attackers to find and exploit vulnerabilities. The effort required by an attacker

to violate software security defenses is linear, requiring an attacker to find a single

weakness to exploit. As Bellovin [19] states, “whatever the defense, a single well-

placed blow can shatter it.” On the other hand, the effort required to assure that

software is secure is exponential, requiring exhaustive and comprehensive knowl-

edge of the software and all its possible interactions with its environment; this sim-

ply isn’t tractable [19].

Identification of attack-prone components is an important step in preventing

vulnerabilities from entering the field. With knowledge about which components

are most vulnerable, managers can allocate more resources for extended security

reviews, automated static analysis, and penetration testing. The added scrutiny and

focused effort can help to identify and eliminate vulnerabilities prior to software

release.
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1.1 The Residual Vulnerability Problem

The problem addressed by this research is the residual vulnerability problem – the

presence of attack enabling security vulnerabilities in released software. Residual

vulnerabilities in modern software systems such as mobile phones, personal com-

puters, Web servers, and various embedded devices (e.g. SCADA) allow attackers to

compromise both the host systems and the networks to which these systems are

connected. Secure software engineering practices seek to identify and remove these

vulnerabilities prior to release, but the application and management of these prac-

tices may be nontrivial in practice. Project size, maturity, and development team

culture all play a part in effectively applying secure engineering practices. As an

example, consider the practice of using a static analysis tool to search a product’s

source for frequently abused function calls, memory (mis)management, and other

problematic patterns.

A development team can typically keep pace with warnings generated by a static

analysis tool for newly developed code. In contrast, running a static analysis tool

on a large, pre-existing code base may produce such a high warning count that the

task of addressing the tool warnings becomes its own development activity, with

the term backlog often used to differentiate tool warnings on pre-existing code from

warnings on newly authored code. A dedicated team, or a managed effort span-

ning several teams, may be required to “triage” (inspect and evaluate) the warnings

in order to determine whether further action is needed. Time spent triaging false

positives, or warnings that do not actually translate into actual runtime faults, is es-

sentially wasted time. The development team, overwhelmed with the large number

of warnings, may be unsure how to proceed with triaging warnings and subsequently

prioritizing fixes for legitimate defects. Consequently, the development team may

3



be at a loss as to how use their time effectively.

This research addresses the residual vulnerability problem by identifying and

prioritizing attack-prone code units to better guide review and penetration testing

efforts. First, we seek to reduce the vulnerability search space in a given software

product by correctly predicting modules and files containing exploitable vulnerabil-

ities. Second, we further consider the practical question of how to rank prediction

results. Toward this end, we evaluate the feasibility of using architectural graphs

to prioritize further development activity induced by the predictions (e.g. triage,

patching, and verification).

Code units vary in granularity, with modules or packages at the coarse end of the

spectrum, files and classes in the mid range, down to methods and lines at the fine

end. To facilitate brevity and generalize discussion across the code units, this work

coins the term “vulnerability suspects” or simply “suspects” to refer to prediction

results at these various levels of granularity. This becomes relevant when presenting

ideas related to prioritization. Since the prioritization and ranking scheme is derived

from architectural structure (i.e. graphs of modules), it follows that the ranking,

R(m) for a modulem can be extended downward to the classes, files, methods, and

lines contained within m.

1.2 Vulnerability Research Questions and Hypotheses

Many existing works in defect and vulnerability prediction attempt to model the in-

fluence of size and complexity on residual defects. Often, the size and complexity

metrics are extracted directly from the source code. The premise underlying exist-

ing prediction works is that increased size and complexity increase the difficulty

of comprehension and coverage. Difficulty in comprehension impacts the ability of
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developers and reviewers to understand the more detailed workings of the code as

well as how unintended side effects could be unknowingly introduced when code

is added, deleted, or modified. Difficulty in coverage impacts the ability of testers

to adequately test a program. The common theme explored in existing prediction

works is that increased size and complexity lead to an increased number of resid-

ual defects in released software. By comparison, fewer studies examine higher level

factors that could similarly increase defect introduction and reduce defect detection.

Higher level factors likely to influence residual defects include developer char-

acteristics (such as experience and familiarity with changed code), the rate of code

changes, and whether or not those changes are made to a system or component

amenable to change. For example, unintended side effects are likely to result when

modifying code of poor maintainability that uses several shared global variables (i.e.

exhibits poor modularity and encapsulation). This work intends to extend existing

change-based predictors, augmenting them with architectural metrics indicative of

maintainability and modularity. Below, ϕ is a predicted vulnerability. A predicted

vulnerability can come from various prediction models and may include defect warn-

ings from a static analysis tool.

Research Question 1. Can change metrics reflecting frequent, high volume, or re-
cent changes be used to predict vulnerable code units ϕ?

Research Question 2. Can architectural metrics reflecting poor modularity or main-
tainability be used to predict vulnerable modules?

Research Question 3. Can architectural metrics reflecting modularity or maintain-
ability be used to prioritize change-based predictions,ϕ, relative to one another?

Recent work has shown promising performance for change-based fault and vul-

nerability prediction metrics. This work seeks to expand on existing churn and

developer based predictors by evaluating whether or not additional architectural
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metrics can be used to prioritize change-based vulnerability predictions. We hypoth-

esize that changes, already indicative of a vulnerable file, made to a module of poor

maintainability or modularity will be more likely than its peers to positively correlate

with the severity of associated residual vulnerabilities.

Using the additional architectural context, one can also ask what components

are more likely to process attacker crafted data. That is, one can investigate how

data might funnel through a system given its front line functions [25], attack surface

[51], and a component’s relation to the same. The component relationship may be

expressed as a call path distance or coupling. Figure 1.1 shows a labeled graph for

a program with m = 100 functions, a FLF density of 2%, and a path length of p =

mk = 100(0.02) = 2, after the reverse breadth first search algorithm detailed in [25].

The read() function in this case is the front line function. Components sitting at

the outer edges of the system interfacing with network connections, databases, and

input fields are more prone to attacker manipulation. We hypothesize that methods

closer to so called front line functions are more attack prone than other methods in

the system.

1.3 Significance

The significance of this research is in optimizing resource utilization. One of the

most expensive and limited resources in modern software development is developer

time. Additional review and testing of various software artifacts (e.g. architectural

designs, drivers, libraries, modules, and application code) is only warranted if there

is reason to believe those artifacts may be attack prone. Moreover, the supply of

time and expertise from security-competent developers and testers is arguably more

restricted due to the specialized knowledge required to unearth security vulnerabil-
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Figure 1.1: Front line function read(), with path length p = 2
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ities. This research aims to intelligently focus these energies on those artifacts most

likely to exhibit vulnerabilities. The analogy to resource utilization is much the same

as the surgical laser analogy used justifying lightweight formal methods: “A surgical

laser has less power and coverage than a traditional light bulb, but makes the most

efficient use of the energy it uses, with often more impressive results.” [42]

This research complements existing tools and predictive approaches which have

already examined the use of code-based metrics as predictors. However, this work

more closely examines evolutionary and architectural aspects of the software by:

1. Investigating how change metrics correlate with residual vulnerability severity,
and

2. Examining how the software module structure either exposes or masks residual
vulnerabilities.

This work approaches attack-prone prediction from a contextual and practical

perspective. As such, when compared with other work in vulnerability prediction,

the predictors in this work have the potential to reveal relationships between a prod-

uct’s security (measured by residual vulnerabilities) and how the product’s code was

developed. For example, the following questions characterize the types of questions

we might reason about:

• Do rapid and scattered code changes possibly indicate increased development
activity under time-to-market or competitive pressure?

• Do atypically frequent and repeated changes to a module or file possibly in-
dicate a poor understanding of requirements, or a challenging technical issue,
such that the module or file requires ongoing rework?

• Do the environmental conditions implied by the above factors also correspond
to a large number of security failures?
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• Do security failures seem either more severe or more prevalent for components
of poor modularity?

• Do security failures seem either more severe or more prevalent for components
of poor maintainability?

Additionally, we relate prediction models to the attack surface of a system along

its boundaries with the surrounding environment after [51]. Attacker-formed data

will enter the system at these boundaries. This is the practical aspect missing from

the bulk of defect and vulnerability prediction research, save that as more recently

acknowledged by Younis, Malaiya, and Ray [92] [94]. Consider a legitimate vulnera-

bility identified in the system. With the exception of the aforementioned researchers,

vulnerability prediction literature is largely devoid of any discussion of the likelihood

of its execution, or the anticipated severity of such a vulnerability. This work investi-

gates if architectural information can fill the void with respect to severity. Likelihood

is examined, albeit indirectly in that we draw on similar past research and concepts

as described in the following paragraphs.

Likelihood of execution is assessed using graph metrics characterizing a com-

ponent’s connection to system entry points [51], such as front line functions [25],

exit points, channels, and untrusted data. The intuition is that components exhibit-

ing shorter distance or higher coupling (inter-component cohesion) to elements at

the boundary between the system and its environment, after [51], are more likely to

process attacker-crafted data.

Severity may be further assessed using relative component entropy, calculated

utilizing a data flow connection graph after [12]. The greater the relative entropy is

for a component, so also goes the potential for damage when executing a contained

vulnerability, and conversely, potential benefit resulting from vulnerability removal.

The addition of architectural considerations, and metrics reflecting the same,
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better enable the results from vulnerability prediction models to be used as another

touch point within secure software engineering life cycle models, as another static

analysis tool for security improvement. The addition of architectural considerations

provide practical benefits as they mirror ideas from operational security such as risk

analysis, and so called value-of-protection calculations, that require likelihood and

severity as input [70].

The majority of developers and testers are trained to verify conformance to func-

tional requirements, statements about specific tasks or functions the software is to

provide. Security assurance, on the other hand, probes for and tests the negative

– that the software will not have unintended side affects when pushed outside its

specifications. To remain secure, the software must not perform unintended actions

even when used in unanticipated ways by an intelligent attacker. As a consequence,

developers and testers specializing in security are trained to think like attackers and

to look for specific classes of defects across a wide range of technologies. These spe-

cialized resource constraints are at odds with the amount of code requiring coverage.

The goal of this research is to help focus these limited resources on those artifacts

most likely to contain security vulnerabilities.

1.4 Contributions

The key contributions of this research are as follows:

• Aid security improvement by reducing the search space for residual vulnera-
bilities,

• Evaluate the feasibility of using information theoretic architectural metrics to
further prune and prioritize predictions (i.e. vulnerability indicators),
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• Contribute new knowledge to the field related to the relationship among secu-
rity, complexity, and architectural quality attributes (modularity and maintain-
ability),

• Provide open source tools for measuring information theoretic architectural
metrics describing modularity and maintainability, and

• Add change burst empirics to the growing body of literature on defect and
vulnerability prediction in open source projects.

The overall goal of this research is to improve security of consumer software

products by enabling organizations to more effectively find and remove vulnerabili-

ties prior to release. The goal of this research is to make vulnerability identification

and removal more tractable and cost effective by reducing the number of compo-

nents suggested for extended security review and penetration testing. This work

speculates that organizations developing consumer software will be more motivated

to expend additional effort on a more feasible and narrowly focused objective. This

is in contrast to taking no action because either (1) the probability of finding real

vulnerabilities is near infinitesimal (i.e. wasting time searching for the proverbial

needle in a haystack), or (2) because tool-predicted vulnerabilities are so numerous

that the development team is simply overwhelmed. On the latter point, the sheer

number of defects is an issue because false positive rates of modern tools necessi-

tate that development teams manually inspect, or “triage", each identified issue. On

both points, triage efforts typically lose out to other development activities such as

fixing observed bugs or developing new features.

The new and novel part of this work is the addition of suspect prioritization en-

abled by architectural metrics. The re-application of architectural metrics (charac-

terizing modularization and maintainability) provide the foundation needed for pri-

oritizing predicted components. Such relative prioritization is largely absent from

existing defect and vulnerability prediction literature. Nevertheless, establishing
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priority is important because it recognizes that not all vulnerabilities are created

equal. Paraphrasing a common saying, “Nothing is top priority when everything is

top priority".

Priority enables an organization to set customized goals, such as “fix all se-

vere, high-impact vulnerabilities”, that better align with near and long term business

strategies. In effect, the addition of priority better recognizes the socioeconomic

realities and human factors characterizing the environment in which software is de-

veloped. For example, consider how a start-up may cease to exist if they cannot

release a working product before their seed money expires. In general, competitive

time-to-market pressures, along with modern companies’ need to rapidly innovate,

imply that companies will not release perfect software. It is common practice to re-

lease a software product with known issues, as long as those issues are minor. This

research’s addition of priority would enable such priority-based go/no-go decisions.

An additional benefit realized by developing a relative ranking among modules on

the basis of their potential vulnerability severity, is that this ranking is complemen-

tary for use with other defect identification and removal techniques. As mentioned

in Section 1.1, a relative ranking at the module level could be extended downward

to contained functions and lines. By extension, the ranking could also be extended

to tools that find defects at the line level, such as existing static analysis tools. A

relative module ranking might be used to prioritize line level alerts output from a

commercial static analysis tool (e.g., identifying the top n “actionable alerts”).

Although techniques have been published for calculating various information

theoretic metrics from the structural and development views of a software architec-

ture [77], there is currently no publicly available tool support for doing the same.

Tool support is important for practical technique application as well as comparing

results via repeatable and verifiable experiments [29]. Availability of a publicly ob-
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tainable tool reduces the barrier to entry for researchers interested in evaluating the

sensitivity and discriminatory power of architectural metrics. Since this work must

have access to such a tool, we intend on building this tool and subsequently making

it available to others.

1.5 Research Scope

The scope and context of this work is important in understanding intended contribu-

tion. This work assumes a commercial development context characterized by time-

to-market pressure, code reuse, and limited development resources (e.g. man-days).

The release of many software products occurs inside this type of environment–a

competitive landscape where vendors must hit target dates as part of a larger busi-

ness or marketing strategy. Time pressures and limited mandays for developing

new sale-generating features leave little time for performing extended security re-

views of reused code, especially when the search space for possible vulnerabilities

is impossibly large. The development context outlined above is important because

it drives the need for prioritization and effective resource utilization.

As residual vulnerability detection is a pre-requisite for removal, this work fo-

cuses on detection. Detection methods can be broadly classified into static and

dynamic (e.g., test based) techniques. Prediction can be of various forms as well, but

this work focuses on static prediction techniques which do not require system exe-

cution. Static approaches are particularly attractive for vulnerability removal since

future attacks are not known a priori by those developing the software. Static ap-

proaches can also be applied earlier in the SDL, since it is not necessary to have a

running system.

Given the activity of the research community on defect and vulnerability pre-
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diction derived from change (AKA process) metrics, we focus less on re-applying

those techniques to our study subjects. Instead, our focus is on evaluating the util-

ity of architectural modularity and maintainability metrics for vulnerability predic-

tion. Therefore, we utilize the most promising change based metrics (e.g. churn

and change bursts) from related research and additionally investigate architectural

metrics.

Vulnerability prediction is fundamentally a classification exercise. Software ob-

jects are classified as vulnerable or neutral. Such classification takes place on soft-

ware objects of varying granularity with results at the module, file, function, or line

level. Although some classifiers work at the level of individual lines, the present

study considers that existing commercial static analysis tools already work at the

line level to generate alerts for known vulnerability patterns. Additionally, exist-

ing works [81] have already explored structural dependency graphs from a function

level. Therefore, the focus of the present study is on source code at the file level and

above. While tools we use, such as architectural recovery tools, may output function

level invocation relations, we carry out additional processing to group such relations

at the file and module level.

1.6 Organization

The rest of this work is organized as follows:

Chapter 2. A Survey of Secure and Empirical Software Engineering discusses the
background in from both Secure Software Engineering and Empirical Software
Engineering in which this work is couched. The chapter covers relevant terms
and concepts, as well as related work in vulnerability detection.

Chapter 3. Vulnerability Prediction Modeling and Evaluation provides a more
detailed view of the prediction model building process. We also provide ad-
ditional detail on metrics extracted, and formulas used for data evaluation.
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Chapter 4. Detailed Repository Mining Approach outlines our research approach
and data mining methodology. We describe software studied (i.e., our case-
study subjects) and rationale used to select specific version ranges for the same.

Chapter 5. Experimental Results, and Analysis of Vulnerability Predictions
describes experimental results and analysis for each software case study.

Chapter 6. Contributions and Future Work concludes the work with parting thoughts
and ideas for future work that may build upon this work.
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Chapter 2

A Survey of Secure and Empirical
Software Engineering

This work bridges the fields of secure software engineering (SSE) and empirical soft-

ware engineering (ESE). Secure software engineering is primarily concerned with

methods and techniques to both prevent the introduction of, as well as detect and

remove, vulnerabilities prior to release [38]. Empirical software engineering seeks

to understand software quality through experimentation, data collection, and anal-

ysis [87], [43].

Within ESE, mining software repositories (MSR) has emerged as its own area of

research within the last decade [36]. MSR uses artifacts from a software project

for knowledge discovery (e.g. frequent item set and association rule mining) [90]

as well as to support or refute investigative questions (e.g. do last minute changes

introduce vulnerabilities?). Commonly mined artifacts include the software version

control system, bug reports, and mailing lists of software projects [89].

The following sections highlight various concepts and terms from SSE, ESE, and

MSR relevant to this research. After a brief summary of the secure software land-

scape and component based systems, related terminology is discussed. Various

terms such as defect and vulnerability are discussed in the context of this work.
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Finally, a review of related ESE and MSR based prediction work is presented.

2.1 Secure Software Landscape

Implementation level defects (e.g. defects in code) account for approximately half

of all exploited security vulnerabilities [55] and therefore represent an important

class of defects to address for security improvement. Moreover, implementation

level security defects are amenable to static analysis since many of these defects

have surfaced repeatedly over the years, implying the existence of detectable bug

patterns. Such implementation level defects include the notorious buffer overflow

and it’s more general class of input-validation-related defects [84]. In fact, many

such defects are presently detectable by static analysis tools.

Common techniques for determining if one software product is “more secure”

than another involve comparing the number of security advisories logged against

each version in a post-release fashion, with vulnerabilities identified after release.

For example, although looking at completely different things, both Sachitano et

al. [75] and Alhazmi et al. [7] use this post-release approach for source data and

comparison. Furthermore, this post-release advisory counting technique only works

on products from the same product line or that perform identical functions. In the

case of Sachitano et al. [75], noted previously, the security attributes of two mail

programs were being compared. In the case of Alhazmi et al. [7], a model for vulner-

ability discovery rate in subsequent operating system versions was being validated.

2.1.1 Component Based Systems

Large software systems such as Web servers and mobile phones are component

based systems. The reuse of existing components is common in industry. Mod-
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ern software systems are synthesized from pre-existing components, often being

built on an application platform.

By application platforms, we mean a system of software components working

together in order to provide (often tailored and domain specific) capabilities that

form the foundation of modern systems. As such, application platforms are more

than the operating system itself. Linux proper is actually the Linux kernel, but the

term “Linux” is often meant as the application platform including libc, execution

shells, and command line utilities. Colloquially, various application platforms are

informally referred to by their names such as Linux, Windows, Android, and iOS.

These platforms make extensive reuse of pre-existing software modules. Android,

for example, makes use of several large components, including libraries to render

web pages (WebKit), coordinate media playback (Media Framework), render fonts

(FreeType), as well as provide the basic services needed to load and execute programs

(Android Runtime). Figure 2.1, a high level overview provided by Google, shows the

various layers, libraries, and frameworks within the Android application platform.

The use of pre-existing components in modern application platforms is anal-

ogous to viewing icebergs–the integrator cannot see 90% of what lurks below the

surface. The many possible variations and configurations of such modules make

exhaustive dynamic testing nearly unfeasible. Additionally, products aggregating

platform components cannot re-inspect the source every time a new version of a

new module or library is released; as stated previously, developer time is often fo-

cused on implementing new features in new code. Hence, static prediction models

seem well suited to the task of narrowing the vulnerability search space of such

systems.

Predictors that operate on source code and repository information are relevant

to any arrangement where the source code and its repository are openly accessible.
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Figure 2.1: Android architecture
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This arrangement manifests in vertically integrated technology companies as well

as open source projects. Moreover, predictors driven by architectural relations may

be used even when source code is not available.

Architectural relationships, such as function call invocations and variable refer-

ences, can be recovered from linked objects and libraries. Metrics based on link

level relationships can therefore be used when integrating closed source commer-

cial off the shelf (COTS) components. Although link level relationships do require

the software to build and link, many static techniques also impose a similar build

requirement. The build requirement is needed so that static tools can obtain the cor-

rect environmental options and compiler configuration switches used for building

the target executable [20].

2.1.2 Role of Static Analysis Tools

Automated static analysis tools are capable of scanning millions of lines of code,

searching for patterns indicative of programmer mistakes, inefficient code, and error-

prone language features (e.g. such as C’s ‘str’ functions). Such tool capabilities

have proven effective at controlling costs while improving software quality in general

and security in particular [17].

Reviewing code from a security perspective requires a level of expertise in vulner-

ability assessment and attacker-minded thinking that few developers possess [85].

Such expert knowledge, at least with respect to recurring vulnerability patterns, can

be programmed into static analysis tools to help fill the void in software security

expertise. Studies such as [40], [17], and [95] demonstrate the promise of static

analysis tools for detecting many common and high frequency security-related im-

plementation level defects. In [88], Jeannette Wing states that “We have the technical
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solutions in hand to detect or prevent these attacks; so it is a matter of deploying

them in an effective, scalable, and practical way.’ Practical deployment of auto-

mated tools entails understanding (1) how they complement more traditional defect

detection and removal techniques, and (2) how to effectively identify and prioritize

actionable alerts.

Regarding the first point (1), static analysis tools complement other more tra-

ditional techniques such as structured code reviews and manual code inspections.

Wagner et al. [86] showed that manual code reviews catch different types of vulner-

abilities than those caught by automated tools. In addition, Gegick’s work [28] pro-

vides evidence that non-security related defect warnings from static analysis tools

can be used to identify attack-prone components.

Static analysis tools further complement manual review efforts by overcoming

human time and stamina limitations. A human can only visually inspect a fraction

of a project’s code in the time it takes an automated tool to check a project’s en-

tire code-base. Additionally, since multiple code paths are checked simultaneously,

corner cases harboring vulnerabilities are more likely to be uncovered by static anal-

ysis tools than conventional (dynamic) testing techniques [27]. A tool forges ahead,

automatically executing each of its checks against every file; a human performing

similar tedious actions is more likely to tire, increasing the chances for error.

Regarding the second point (2), the question around how to address tool gen-

erated warnings is not always so straightforward, especially for component based

systems. Adding static analysis to an existing software project can unearth several

thousand defects. Administrative questions about code and defect ownership, team

loading, and fix assignment instantly surface. A natural extension of these issues

are questions over which defects developers should fix first.

Although many tools bin detected defects into broad categories such as high,
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medium, and low, these default categories may not be adequate in practice. Heck-

man [37] notes the inadequacy of default prioritization schemes offered by analysis

tools “out of the box”. A fundamental limitation of the default defect prioritization

schemes offered by shrink-wrapped tools is lack of higher level insight into system

structure and context. The default impact classifications may not align with the

domain or operating environment of the software.

The author knows of at least one static analysis tool that classifies program

hangs and data race conditions as a medium priority defects. The classification

as a medium priority defect might be fine for a desktop application that can be reset

or restarted with relative ease. However, resetting or restarting an application is not

feasible (or is at the very least a last resort) for embedded systems. In the context of

medical devices or other critical embedded systems, defects such as program hangs

and data race conditions manifest as serious operational field failures. For example,

the author knows of an automotive system where the driver must turn off the vehicle

and exit the vehicle for two minutes before the system would shut down completely.

Such a sequence is commonly referred to as a key cycle. In such a context, a program

hang would render the automotive system unusable until the driver performed a key

cycle.

2.1.3 Metric Based Prediction Models

Prediction models within ESE typically look at various attributes or properties of a

software file (or its history) as opposed to scanning files line by line for a specific

problematic pattern; in contrast, commercial static analysis tools scan files line by

line for problematic functions, data flow sequences, and control flow sequences. The

various attributes examined by prediction models are often colloquially referred to
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as predictors or indicators, but these attributes, or their derivatives, either form

the explanatory variables in statistical regression models, or form the inputs for

(typically supervised) machine learners. Such attributes are also called features (or

feature vectors in multivariate schemes). The said features typically utilize one or

more code or change measures directly, or are themselves metrics derived from the

same.

In contrast with commercial static analysis tools, which tend to focus on partic-

ular coding practices, or use of problematic functions, ESE defect prediction models

typically approach model building from the standpoint of evaluating metrics with a

bearing on (or that otherwise describe) human factors. For example, as stated in Sec-

tion 1.2, MCC and KLOC can be viewed as representations of cognitive work factor,

quantifying the degree to which code complexity and size exceeds the psycholog-

ical capacity (e.g., short term memory) of the average developer. In other words,

the MCC and KLOC code metrics measure attributes of code that have a bearing on

human information processing and retention capabilities.

Code, Architecture, and Change Metrics In related ESE literature, code metrics typ-

ically refer to file or line level complexity metrics such as McCabe’s Cyclomatic Com-

plexity (MCC), or thousand lines of code (KLOC). Our work, and a few others, make

reference to architectural metrics that characterize various properties of software

dependency, invocation, and data flow graphs. Such architectural metrics might in-

clude, fan-in, fan-out, and various modularity and maintainability metrics noted in

Section 2.2.4. In contrast, change metrics typically refer to historical attributes of

file modifications mined from projects’ VCSs. Promising historical metrics in recent

ESE literature include relative code churn and change bursts.
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Descriptive Capabilities of Change Metrics In addition to also describing com-

plexity in the code change process, change metrics may also be representative of un-

derlying technical or environmental factors impacting developers or the code change

process [35]. For example, several observations of an abnormally high number of

changes to a file or module prior to release might be indicative of one or more of the

following:

• The file (or module) was revised several times because the requirements were
not complete, were ambiguous, or had technical errors. Nagappan et. al [66]
note that requirements may only stabilize after multiple implementation at-
tempts due to the involvement of conflicting organizations.

• The developers working on the file (or module) were not familiar with the file
(or module) and therefore changed it frequently to make corrections as they
gained additional knowledge or discovered faults through additional testing.

• The file (or module) was not adequately tested–repeated changes were therefore
made to the file (or module) as new edge cases were discovered [66].

• The module had so called hairy bugs, only partially fixed with a band aid so-
lution, without understanding true root cause. Therefore, failures resulting
from these defects reappear and result in repeated changes in attempts to fix
the issues [66].

The characteristics and pattern of the changes to the project over defined time

periods (e.g., a week), could also be indicative of various project level issues. Has-

san [35] proposes capturing such patterns by describing the complexity of the code

changes with entropy based measures. He notes that entropy based historical change

metrics may be indicative of various development scenarios:

…a spike in entropy may be due to an influx of developers working on
too many aspects of the system concurrently, or to the complexity of the
code, or to a refactoring or redesign of many parts of the system [35].
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We also reason that change patterns may also be able to reflect time-to-market

pressure. That is, pressure to deliver certain (possibly a highly anticipated) feature

by an agreed delivery date. We characterize time-to-market pressure according to

the size or ambitiousness of the feature, compounded with the urgency and impor-

tance of the feature (i.e., as a distinguishing product feature) to the organization

developing the software. As the ambitiousness or scope of the feature increases,

we might expect more widespread changes to result. As the urgency or importance

increases, we might expect the changes to be more ad hoc, being made under duress,

as opposed to more thoughtfully architected and coordinated changes. Considering

such factors, we might expect time to market pressure to be indicated by frequent,

possibly last minute changes, scattered across multiple files.

Promising Change Metrics: Churn and Change Bursts Using projects’ version con-

trol systems (AKA software repositories), recent ESE studies have been able to ana-

lyze code churn and change bursts with promising results. Code churn refers to the

number of code lines added, deleted, or changed over a specified time interval; a con-

venient time interval specification is often the time between product releases [66].

Change bursts refer to consecutive changes over a period of time [65]. Change

bursts are described by gap and burst size. The gap is the maximum distance (e.g., in

days) between successive changes, such that those changes are considered within the

same burst. The burst size is the minimum number of successive changes required

to be considered a burst. Different change bursts are shown in Figure 2.2, taken

from Nagappan et al. [65].

Recent studies [60,66] consistently find relative code churn outperforming other

more traditional metrics such as MCC and KLOC. The study on change bursts in

Windows Vista by Nagappan et al. [65] was particularly impressive as they found that
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Figure 2.2: Example change bursts with varying gap and burst size parameters [65]

change burst metrics outperformed all previous predictors, such as code complexity,

code churn, and organizational structure as predictors for Windows Vista.

In said studies, performance is evaluated in terms of higher precision and re-

call for statistical logistic regression models and machine learning based classifiers.

Performance for statistical linear regression models is often evaluated in terms of

statistically significant error reduction. Additional details on regression models and

their evaluation can be found in Section 3.2.

2.2 Terminology and Relationships

This section disambiguates and more clearly defines terminology used throughout

the remainder of the work. While clearly defining the use of various terms, relation-

ships among terms is also explained.

2.2.1 Terms in Software Measurement

The terms module and component are often used interchangeably and depending on

context, can represent various levels of granularity; although this work uses com-

ponent in a less rigid sense to denote larger subsystems, such as runtime libraries,
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rendering engines, etc. In contrast, module is formally defined, but the definition is

such that it can be adapted to varying levels of granularity. Note that the varying lev-

els of granularity echo the various levels of entity abstraction observed in software

designs. For example, we submit that such entities could be any of the following:

• binaries,

• libraries,

• requirements,

• commits (i.e., VCS transactions)

• architectural abstractions such as layers,

• packages,

• modules,

• aspects,

• files,

• classes,

• program slices,

• functions,

• blocks, or

• lines

This work examines various graph and information theoretic measures relating

to modularity and maintainability. Architectural dependency graphs can be of vari-

ous granularity with nodes depicting individual methods or files, such as call graphs,

with file A invoking methods in file B, to higher level block diagrams, where nodes

represent libraries of functions, services, or even separate binaries. All such exam-

ples fit the formal definition of module outlined by Briand et. al. [22].
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This work follows the basic concepts definitions established by Briand et al. [22]

for systems and modules, modular systems, size, and complexity. In their framework,

cohesion and coupling are measures that only apply to systems that can be decom-

posed into modules. Modules are defined as subsystems within a system S. The sys-

tem S is composed of elements, E, and relations R, where R is a binary relation on E,

(R ⊆ E×E); S =< E,R >. A module, or subsystem of S is defined asm =< Em, Rm >

if and only if Em ⊆ E,Rm ⊆ Em × Em and Rm ⊆ R [22]. This generic and intuitive

framework affords architects and metric designers freedom in choosing both the

particular structure and granularity of partitions defining modules within a system.

As an example, Sarkar et al. [77] use the directory structure of open source projects

such as Apache, Mozilla, and the Linux kernel as the definition of modularity for

their experiments while staying within the framework outlined by Briand et al.

2.2.2 Defects, Faults, and Failures

We make frequent use of the terms defect and vulnerability. Faults and failures

are also frequently mentioned as this research compares and contrasts with other

work. There are various subtleties across the use of these terms in both academic

literature and software development practice. Another fact that has bearing on this

work is that not all defects result in runtime errors, with non-conformance to a

project’s coding standard being a prime example. Below, these terms are outlined

starting with defect, describing some error in software design or code, extending to

the eventual manifestation of a failure.

Defect is one of the most overloaded and loosely used terms in related literature.

For this work, the use of the term defect is synonymous with error or anomaly

as defined by IEEE [41]. The goal of review and testing efforts is to identify and fix
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defects prior to release. Depending on the use of term defect, it can describe a coding

or documentation anomaly found prior to release, or a known defect discovered

after release. This work consistently applies residual defect to denote undetected

anomalies which persist in the software after release.

A defect warning or alert is the notification of the probable likelihood of a defect;

a pre-release time frame is assumed. The term alert is often used when discussing

warnings from a static analysis tool. By contrast, a residual defect refers to an undis-

covered defect that remains in the software after release. A fault occurs when a

residual defect is executed at runtime. If the fault, or the execution of a residual de-

fect, prevents the software from providing its specified service, then such deviation

is termed a failure (or bug) [15].

As previously alluded, there is not necessarily a direct correspondence between

residual defects and failures (also often called field failures). Developers and re-

searchers are often interested those residual defects, and by extension, defect warn-

ings (or predictions) that eventually manifest as runtime failures (or predictions

often indicating runtime failures). In contrast, some tools issue defect warnings

that never manifest as run time failures. For example, tool warnings over stylistic

issues such as or brace placement within the code rarely cause operational failures.

In the context of externally perceived product quality, such stylistic defect warnings

are considered benign. The semantics of program execution are unchanged; the

compiled code is blind to the style of the source code. No runtime failure occurs.

Although such stylistic concerns may help identify non-compliance with a cod-

ing standard, they are unlikely to cause an observable field failure [74]. In terms

of quality metrics, the residual defect density of a software product is an item of

interest since it is these defects that may be executed during system operation and

result in unexpected behavior [47]. The execution of a residual defect commonly
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referred to as a fault. Whether or not such a fault prevents the software from deliv-

ering specified service determines whether or not the fault can be called a failure [15].

Generally, the likelihood of encountering a failure during system operation increases

as residual defect density increases.

2.2.3 Vulnerabilities

This research uses the term vulnerability to indicate an instance of a security related

defect present in the software’s code or architecture. In this work, a security related

defect is contrasted with a more general class of defects impacting product func-

tionality and conformance to requirements. We briefly elaborate on this context and

the use of terms in the larger body of current literature.

Krsul [49] concisely and comprehensively defines vulnerability as “an instance

of a [fault] in the specification, development, or configuration of software such that

its execution can violate the [implicit or explicit] security policy.” The use of fault

follows directly from it’s standard use in dependability literature such as [15]. The

term defect, identical to fault, is used more extensively in risk analysis literature such

as [7] and [13]. Popular SSE literature (e.g [53,54,56]) also favors the use of defect.

This work attempts to consistently use the word vulnerability to label a security

related defect. In this work, defect can be either a functional fault or a security

related fault.

Security assurance is ultimately a subset of software quality assurance [26]. Soft-

ware quality assurance is concerned with assuring that the software conforms to it’s

requirements. Fault-induced failures, ultimately caused by the execution of defects,

prevent the software from meeting specified requirements. In the more general field

of standard-issue software engineering, approaches to improving software quality
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focus on preventing and/or removing defects throughout SLC stages. SSE is con-

cerned with eliminating (or at least reducing) software defects/faults threatening

security; such defects are commonly called vulnerabilities. In this regard, SSE seeks

to improve the quality of security attributes by preventing and/or removing vulner-

abilities throughout the SLC [38].

2.2.4 Entropy and Uncertainty

Entropy characterizes the average degree of uncertainty in a discrete random vari-

able, X. In information theory, entropy, or the Shannon Uncertainty as it is also

called, is often used to determine the average number of bits required to represent,

or encode the range of expected values of X. Shannon Uncertainty is also frequently

referred to in the literature as Shannon Entropy.

Equation 2.1 shows the general Shannon Entropy formula, while Equation 2.2

shows the formula applied to a uniform random distribution. In the case of uniform

random distributions, P(xi) = 1
n , because each event is equiprobable, and the 1

n

term can be factored out of the sum. Uniform random distributions model scenarios

where code modification is the same across all entities:

H(X) = −
n∑
i=1

P(xi) lg P(xi) (2.1)

= − 1
n

n∑
i=1

lg
1
n

(2.2)

Entropy characterizes patterns and redundancy, and as such, is frequently used

to evaluate data compression techniques. The more pattern and structure, the lower

the entropy. As the distribution of the expected values of X approach equiprobabil-
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ity, its entropy likewise increases, reaching maximum entropy for a uniform random

distribution.

Entropy is applicable to various aspects of software and software development.

Entropy calculations performed on various software artifacts can reflect organiza-

tion or discord with respect to software development and maintenance activities,

can characterize architectural structure of the software, or can characterize the po-

tential for data flow at runtime. Moreover, these relationships are relevant to the

context of vulnerability prediction. Section 2.3.2 gives an expanded discussion of

entropy as a software metric and describes its application to this research.

Rao et al. [73] extend the notion of Shannon Entropy to continuous distributions

defining a new measure termed cumulative residual entropy (CRE). The CRE mea-

sure has some attractive properties that we note for reference purposes and that

may find application in this work. In particular, they note that Shannon Entropy is

not sensitive to extreme differences in value and that this fact can be detrimental

in situations where the actual values of a discrete random variable has bearing on

realizing a payoff, such as in a game of chance (or in our case, perhaps line by line

inspection effort). They give the example of two finite sample sets of two discrete

random variables, X and Y , where X = {1,2,3,4,5,6} and Y = {1,2,3,4,5,106},

noting that Y contains a sample value (106) much greater than any item found in X:

106 � 6. The Shannon Entropy (here using log10 for the log function) is oblivious to

this extreme difference, but CRE is not. CRE has the additional attractive property

that it can be computed from sample data and the computations asymptotically con-

verge to the true values of the underlying distribution. We may consider utilizing

CRE in metrics involving lines of code, where we might add a cost component for an

expected inspection effort.
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2.3 Related Work

Our study is informed by similar empirical vulnerability and fault prediction studies

by Shin [81], Ayanam [16], Gimothy et. al. [30], and Bozorgi et. al. [21]. Our work

is most closely related to that of Shin and Ayanam, as both researchers investigated

coupling metrics as vulnerability predictors. Shin’s and Ayanam’s respective works

build on a long tradition of complexity metrics used to predict faults. Vulnerability

ranking approaches are informed by the work of Bozorgi et. al.

2.3.1 Metrics Based Fault Prediction

Code Metrics. Several studies [23, 64, 66, 83] have examined the relationship be-

tween residual defects and static metrics extracted from source code. For example,

sheer size of a file in lines of code (LOC), or more commonly in thousands of lines

of code (KLOC), has been studied as having a bearing on residual defects based on

the premise that larger more complex code is more difficult to understand and com-

prehend. By extension, reviews of difficult to understand and comprehend code

are less likely to unearth defects. Another popular metric is McCabe’s Cyclomatic

complexity (MCC) which measures the number of paths through a program. The

premise behind McCabe’s cyclomatic complexity relates to the difficulty in achieving

adequate branch and path coverage during testing.

In the area of fault prediction, Gimothy et al. [30] set several precedents for fault

prediction studies: use of large, real-world open source software, applying linear and

logistic analysis, independent evaluation of univariate predictors, as well as applying

machine learning techniques, and 10-fold cross validation for training and testing.

These staple analysis patterns appear regularly across fault prediction studies, and

by extension, recent vulnerability investigation works as well. Gimothy et al. applied
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the CK [23] metrics suite for objected oriented (OO) software to seven versions of

Mozilla Firefox, covering 3,192 extracted classes. They found high correlation be-

tween the CK CBO metric, coupling between objects, and fault proneness of modules,

with precision and recall values over 0.69 of on predictive models based on CBO.

A related work by Janzen and Saiedian [44–46] considered a large number of soft-

ware architecture metrics to examine the impact of test-driven development (TDD)

on software architecture. Their objective was to provide a comprehensive and em-

pirically sound evidence and evaluation of the TDD impact on software architecture

and internal design quality. They conducted formal controlled experiments in un-

dergraduate and graduate academic courses, in a professional training course, and

with in-house professional development projects in a Fortune 500 company. The

experiments involved over 230 student and professional programmers working on

almost five hundred software projects ranging in size from one hundred to over

30,000 lines of code. The research also included a case study of fifteen software

projects developed over five years in a Fortune 500 corporation. Their research re-

sult demonstrated that software developers applying a TDD approach are likely to

improve some software quality aspects at minimal cost over a comparable test-last

approach. In particular, their research shows statistically significant differences in

the areas of code complexity, size, and testing. These differences can substantially

improve external software quality (defects), software maintainability, software un-

derstandability, and software reusability.

Even though the objective of Janzen and Saiedian’s research was different from

ours, we can benefit from their comprehensive treatment and examination of soft-

ware architecture metrics (e.g., for complexity, coupling, cohesion, size, productivity,

test coverage, class-level interface-level, etc.). For example, for the class-level alone,

they considered some 40 different metrics (e.g., depth of inheritance tree, number

34



of instance variables, number of static variables, number of instance methods, num-

ber of static methods, number of primitive methods, etc.). Many of the metrics

studied by Janzen and Saiedian were also studied by Shin [81], noted earlier. The

sheer volume of metrics along with a comprehensive statistical analysis and empiri-

cal methods will be beneficial to our work and will suggest not only various metrics

to consider but also how to combine various statistical indicators to arrive at useful

conclusions.

Change Metrics: Churn and Change Bursts. In the last decade, a large number of

studies have gone past direct code-based attributes to examine how these attributes

change over time as the code is developed. The difference in these more recent stud-

ies is that they are one level removed, extracting metrics from the version control

system rather than from individual files. We refer to such metrics as change metrics

or historical metrics to distinguish them from more traditional static code metrics,

that do not require a VCS for calculation, being directly obtainable from a version

archive of the source code. Two such change metrics are churn, introduced by Mun-

son and Elbaum [63], and change bursts. Note that churn and change burst metrics

each can be decomposed into various metric suites; that is the terms churn and

change burst do not themselves define concrete measures, but apply as a moniker

to the historical traits common to such measures. Below, we summarize related

work in fault prediction and defect estimation inspires our efforts in the context of

vulnerability prediction.

Khoshgoftaar et al. [48] use churn relative to bug changes, as the number of lines

added or changed to fix the bug. Khoshgoftaar used the amount of code changed

along with 16 other static code metrics to build a module fault-proness predictor.

Their case study on two successive releases of a telecommunications system con-
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taining 171 modules with over 38,000 functions yielded precision and recall values

over 78%.

Nagappan and Ball [66] demonstrated how to use relative code churn as an esti-

mator for system defect density. Their case study on Windows Server 2003 showed

that various churn related metrics were able to discriminate between fault-prone and

not fault-prone binaries with an accuracy of 89%.

Moser et al. [60] compared 18 change metrics (called process metrics in their

work) to 31 traditional code complexity metrics in Java source for the Eclipse project.

They used a cost-sensitive prediction model to allow for different costs in prediction

errors. They found that change metrics outperformed the traditional complexity

metrics by a margin of about 10 percentage points for both true positive rate and

recall when using their cost based model. In addition, the models based on change

metrics had nearly half the rate of false positives when compared to the models

based on static code metrics.

Bell, Ostrand, and Weyuker [69] studied change metrics related to individual pro-

grammers. They analyzed change reports filed by 107 programmers for 16 releases

of a system with 1,400,000 LOC and 3100 files. A “bug ratio" was defined for pro-

grammers, measuring the proportion of faulty files in release R out of all files modi-

fied by the programmer in release R-1. The study compares the bug ratios of individ-

ual programmers to the average bug ratio, and assessed the consistency of the bug

ratio across releases for individual programmers. Their results that counts of the

cumulative number of different developers changing a file over its lifetime can help

to improve fault predictions, while other developer counts were not helpful. They

concluded that information related to particular developers were not good predic-

tors.

In another study, Bell, Ostrand, and Weyuker [18] examine several churn metrics,
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such as lines added, deleted, and modified, where churn = added + deleted + changed.

They evaluate the independent predictive capability of several different types of

both relative and absolute churn, using 18 successive releases of a large software

system. They also study the extent to which faults an be predicted by the degree

of churn alone, and in combination with other code characteristics. Their findings

indicate that various churn measures have roughly the same predictive capability.

Bell, Ostrand, and Weyuker conclude that including some change measure from a

prior release, Ri−1, is a critical factor in fault prediction models for release Ri.

Nagappan et al. more recently studied change bursts as predictors of residual

defects in Windows Vista. For their study on Windows Vista, they found that change

burst metrics outperformed all previous predictors, such as code complexity, code

churn, and organizational structure, yielding precision and recall values over 90%

[65].

2.3.2 Entropy Based Software Metrics

As described in Section 2.2.4, entropy characterizes the average degree of uncer-

tainty in a discrete random variable, X, and this also translates in different ways to

a software project. In this section, we review entropy metrics from other works that

we intend to utilize as explanatory variables in our prediction models.

Hassan [35] presents several complexity metrics based on historical changes, cal-

culating entropy for the file modifications within a change period. A change period

(or interval) is a period of time over which files change as a result of development

progress. A fixed calendar time period (e.g., a week) offers the most straightforward

method to establish the change period; however, Hassan presents several different

methods for defining the period. The different period derivation methods result in
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the concept of differing period types. That is, the period types differ with respect to

the method or technique used to define the period. Hassan presents the following

methods for change period derivation:

1. Fixed time: establishing the change period based on a fixed calendar time (e.g.,
a week),

2. Number of modifications: establishing the change period over a fixed number
of file modifications, across all modified files, or

3. Burst pattern: establishing the change period based on the continuity of suc-
cessive changes or lack thereof

Hassan’s entropy based, historically derived measures were shown to out perform

both prior faults and prior modifications as a predictor of future faults for the open

source systems he studied. As mentioned, in addition to his results on entropy based

historical change metrics, Hassan also directly compared the prediction capability

of prior faults and prior modifications.

In addition to his entropy based historical metrics, Hassan found differences

in the prediction capability of prior faults versus the prediction capability of prior

modifications; again, the goal being prediction of future faults. In particular, for his

studied software subjects (NetBSD, FreeBSD, OpenBSD, Postgres, KDE, and KOffice),

Hassan found that prior faults (as opposed to prior modifications) were a better

predictor of future faults.

These findings are notable since Chowdhury and Zulkernine [24] specifically

found that prior vulnerabilities did not perform well in estimating residual vulner-

abilities; that is, although Hassan found that prior faults were a good predictor of

future faults, Chowdhury and Zulkernine found that prior vulnerabilities were not a

good predictor of future vulnerabilities. Said another way, accurate and precise fault
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prediction models do not always translate to accurate and precise vulnerability pre-

diction models. However, to our knowledge, Hassan’s historical complexity metrics

have not specifically been evaluated for vulnerability prediction.

We will evaluate Hassan’s entropy based historical complexity metrics, HCM , for

vulnerability prediction. We are inspired by existing efforts to re-evaluate fault pre-

diction metrics for vulnerability prediction. In particular, Shin [82], as well as Chowd-

hury and Zulkernine [24], adapt various fault prediction metrics for the purpose of

vulnerability prediction. We feel that entropy based metrics may be especially well

suited for vulnerability prediction since:

• Entropy based historical change metrics outperformed prior faults as a predic-
tor of future faults–in experiments to date, the notion of prior faults predict-
ing future faults hasn’t been empirically supported for vulnerabilities (i.e., past
vulnerabilities have not been shown to be predictors of future vulnerabilities),

• The level of entropy will increase as changes become more scattered across
files and modules,

• The change period can be determined automatically using change bursts, and

• the presence of said change bursts may themselves be indicative of a large
development push or refactoring effort where vulnerabilities may likely be in-
troduced.

Sarkar et al. [77] describe a number of information theoretic metrics that repre-

sent module interactions in a system, or modularity. We submit that the modularity

principles outlined by Sarkar et al. such as similarity of purpose, acyclic dependen-

cies, and encapsulation also characterize the classic security design principles of

Saltzer and Schroeder [76]. The associations between security design principles and

detailed modularity principles enumerated by Sarkar et al. [77] are shown in Table

2.1. For example, Saltzer and Schroeder’s design principle of complete mediation,

where every object access must be checked for proper authority, is enabled by a
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Security Design Principle Modularity Principle

Economy of Mechanism Size
Economy of Mechanism Acyclic Dependencies
Economy of Mechanism Unidirectionality in Layered Architecture
Complete Mediation API-based Inter-Module Call Traffic
Complete Mediation Purpose Dispersion
Complete Mediation Similarity of Purpose

Table 2.1: Related security and modularity principles

design that routes all inter-module call traffic through a well defined API. Sarkar et

al.’s Module Interaction Index, (MII), is a modularity metric characterizing the mod-

ularity principle of maximization of API-based inter-module call traffic–an underlying

principle of encapsulation. MII is the ratio of external calls made to a module’s API

functions relative to the total number of external calls made to the module. LowMII

could indicate direct usage of shared memory or direct global memory references.

We might expect MII to inversely correlate with security vulnerabilities manifest-

ing from unmediated changes to global variables, ultimately characteristic of poor

encapsulation.

Anan et al. [12] discuss how entropy calculations on software data flow relation-

ships can be used to derive a maintainability profile for a given software architec-

ture. In their work, the maintainability profile quantifies the effort needed to modify

a module given a particular architecture. Code modification is modeled uniformly

and randomly across modules, with the probability of modification for any given

module as 1
n , where n is the number of modules in the system; however, unintended

side effects of that modification are estimated using the probability of information

flow by using the number of incident edges linking the given module to other mod-

ules in the system. This research investigates if the maintainability of a module can

be used to rank predictions powered by change based metrics. The intuition is that
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change based metrics might generate a number of predictions, based on frequently

changed files. It seems reasonable that changes to files inside of a module, where

said module already high maintainability score (relative to its peers), would be more

likely to cause unintended side affects, simply because there are larger data flows

directed from it to other modules.

Entropy surfaces again in Abdelmoez et al. [6] during analytical derivation mea-

sures for quantifying error propagation probability in a given architecture. Assum-

ing an error injected into a given module, their measure characterizes the likelihood

of it reaching other modules. This is similar in spirit to the maintainability metric,

but seems to hold promise for mirroring propagation of attacker crafted data.

2.3.3 Metrics Based Vulnerability Prediction

Ayanam studied coupling metrics derived descended from the lineage of metrics

inspired by Chidamber and Kemerer [23]. The notion of coupling is embodied in the

some of the metrics from Sarkar et. al. [77] and Anan et. al. [12] that we also investi-

gate. As mentioned in Section 2.2.4, we seek to investigate architectural modularity

metrics that characterize economy of mechanism and Complete Mediation. We are

also interested in information flow metrics, based on the idea that attacks are often

executed by manipulating input data.

As mentioned previously, a closely related study for vulnerability prediction was

provided by Yonghee Shin. The results from Shin’s study indicate that certain change

and developer oriented metrics are able to discriminate between vulnerabilities and

the larger class of standard issue defects. Shin [81,82] examined churn in addition

to several other change metrics mined from software projects’ version control sys-

tems. Shin’s study was likewise focused on security and vulnerability prediction.
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Shin sought to answer whether or not these metrics could also be used to iden-

tify vulnerable files. Shin also examined developer oriented graph metrics. Shin’s

results showed developer oriented metrics and change metrics yielding the best per-

formance on the projects she studied.

2.3.4 Vulnerability Scoring and Ranking

Scoring and ranking vulnerabilities requires expert knowledge about both the sever-

ity and likelihood of exploitation. Various vulnerability rating systems exist to distill

expert knowledge concerning accessibility, ease of exploitation, and severity into a

numeric score or a qualitative classification such as high, medium, or low. Security

advisory organizations such as US-CERT and Secunia provide mailing lists to update

systems administrators on newly discovered vulnerabilities. Systems administrators

use these scoring systems and advisory services to prioritize patches to operational

systems. Although various criticisms exist with respect to using these rating sys-

tems for prioritizing the application of operational patches to running systems, we

consider that the Common Vulnerability Scoring System (CVSS) [57], despite said crit-

icisms, offers a metric usable for the purposes of evaluating our ranking approaches.

The past ten years have seen widespread adoption of the common vulnerability

scoring system (CVSS) as a common and standardized assessment system. CVSS

scores are often included on security advisories from organizations such as US-

CERT, Microsoft, Cisco, and Secunia. These scores are also listed in the on-line

National Vulnerability Database (NVD) [68]. Such scores encapsulate expert vulner-

ability knowledge and provide a basis for ranking vulnerabilities. In particular, the

base metric from CVSS represents intrinsic characteristics of a vulnerability as six

components: access vector, access complexity, authentication, and impact to con-
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fidentiality, integrity, and availability. We expand on these notions briefly, more

completely explained in [57] below:

Access vector. Defined by three binary values, < L,A,N > , the access vector re-

flects how a vulnerability is exploited:

• L = local access; attacker must have physical access to the vulnerable system
or a local account

• A = adjacent network access; attacker must be on the same broadcast or col-
lision domain; examples include local IP subnet, Bluetooth, IEEE 802.11, and
local Ethernet segment

• N = network access; often termed “remotely exploitable", the attacker does not
have to have local or adjacent access

Access complexity. Defined as a qualitative measure of difficulty, the access com-

plexity reflects how difficult it is for the attacker to trigger the vulnerability. Access

complexity can take one of three values: high, medium, or low:

• High (H) = most difficult to trigger; attacker must have elevated privilege, is
easily detectable, or is rarely an issue given the configuration of production
systems

• Medium (M) = somewhat difficult to trigger; scope of attack is limited or con-
fined to untrusted users, requires additional data gathering and surveillance
to launch, or is only present for a limited number of systems given typical
configurations of the same

• Low (L) = easiest to trigger; applicable to a wide range of systems and users,
and is accessible in common or default configurations

Authentication. A qualitative measure indicating the number of times an attacker

must authenticate during and attack. The possible values are:
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• Multiple (M) = requires authentication two or more times

• Single (S) = requires attacker to authenticate once

• None (N) = no authentication required

CIA impact metrics. Three additional metrics quantifying impact on security prop-

erties confidentiality, integrity, and availability (i.e., CIA) are specified with one of

three values. The possible value for impact on each of these properties is specified

as N,P, or C , for none, partial, or complete impact respectively:

• None (N) = there is no impact to the property

• Partial (P)= there is some impact to the property, but it is contained or isolated

• Complete (C) = there property is completely compromised

The above components are rolled up into a single CVSS score. We intend to

evaluate our vulnerability ranking techniques based on architectural metrics against

the order imposed by CVSS base scores. We are aware of the criticisms of CVSS

base scores by Bozorgi et. al. [21] as a standard against which to evaluate ranking,

but we submit that our usage is different in the context of ranking the predictions

of residual vulnerabilities. The following paragraphs recapitulate Bozorgi et al.’s

critique and then compares the differences in the context of our application and

intent.

Bozorgi et. al.’s work also provides a critique of CVSS scores, noting that CVSS is

subject to “categorical magic numbers” and that the score aliases too many details

of the security advisory (from the perspective of prioritizing patch application based

on exploitation likelihood). Further, Bozorgi e.t al. note that derivation of factors

in the CVSS base score is not clear and that there are no empirical investigations of

whether or not CVSS base scores are truly representative of exploitation likelihood.
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The following are important differences between our work and that of Bozorgi

et. al. [21], considering that their work is concerned with prioritizing patch selection

and application to operational systems:

Prediction error: Our prediction models will have some prediction error, such as a
given false positive rate. This factor doesn’t impact Bozorgi et. al. since their
false positive rate with respect to this dimension is 0; that is, they already know
the vulnerability exists, as well as the fix.

Time independence: Bozorgi et. al. notes a significant difference on exploitation
likelihood based on time.

Bozorgi et. al. [21] focus on the classification of a vulnerability as exploited or

not exploited in order to train a support vector machine (SVM) learner to predict

likelihood of exploitation. Their work is different than ours as their focus is not

on the software itself, but the vulnerability reports, such as listed in the NVD [68].

Their work recognizes that although a vulnerability may be found, there may be

little interest from attackers in developing its exploit. The interest of their work

is in prioritizing the application of patches by software vendors. Our interest, in

contrast, is in prioritizing the creation of those patches, from the perspective of a

software vendor. Rather than advisory reports, our inputs consist of architectural

features.

A key difference between our context and that of Bozorgi et al. discussed above

is that of time. In their work, the age of a vulnerability was a significant factor

in determining exploitation likelihood–attackers may be less likely to exploit a vul-

nerability the older it gets, since, it is reasonable that system administrators may

have already patched older vulnerabilities. In contrast, our context is one where

any vulnerability could potentially be a zero day exploit. A residual vulnerability is

by definition a vulnerability that evades detection and persists in released software.
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Despite the criticisms of CVSS, we submit that our context is different and use CVSS

as an evaluation of rankings created from modularity and maintainability metrics.

In addition to Bozorgi, a number of works [8–11, 61, 62, 91–94] either further

dissect the suitability and adequacy of CVSS scores, or discuss the relationship be-

tween CVSS scores and the concept of severity related to exploited vulnerabilities.

We elaborate on these more recent and notable works since many of the ideas share

common themes with our research (i.e., discuss CVSS scores) and draw upon similar

background concepts such as likelihood of exploitation that naturally follow from

examination of DaCosta et al.’s [25] Front Line Functions and Manadhata’s Attack

Surface Metric [51].

Allodi, Luca, Massacci, and Fabio [9, 10] study the accuracy of CVSS scores in

capturing risk/severity when compared against additional exploit databases con-

structed from compiling exploits in the wild into (1) their EKITS database, as well

as (2) those available from Symantec’s Threat Database and the Exploit-db. They

conclude that CVSS is not an appropriate representation of risks stemming from

exploits in the wild because it unfairly favors exploits and proof-of-concept code

found in exploit kits.

Allodi, Shim, and Massacci [8] additionally explore black market trading activity

as it relates to vulnerability exploits, as an indicator of risk (aka severity) to Internet

users. That is, the existence of an exploit on the black market represents security

risk to users of the targeted software. In [11] they find that largest risk reductions

result from fixing security vulnerabilities based on their presence and availability on

the black market.

Let it be noted that we decided to utilize CVSS v2 [57] at the earliest stages of

our research despite known criticisms as discussed in previous paragraphs. We fur-

ther note that we moved forward with CVSS v2 because it is a tangible embodiment
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of expert security knowledge lending itself directly to automation, which was a key

practical consideration for our work. In fact, despite their criticism of CVSS, You-

nis et al. acknowledge that “CVSS metrics are the de facto standard for measuring

the severity of vulnerabilities” [93]. The characteristic of CVSS scores being directly

amenable to automation will further be shown in later chapters where we detail our

approach to training set construction which leverages CVSS scores to automatically

ascribe vulnerability severity. Moreover, we note development of improved stan-

dards such as CVSS v3 that compensate for shortcomings [34] in CVSS v2. Therefore,

despite criticisms leveled against CVSS v2, we have confidence that better scoring

schemes (such as CVSS v3) could be directly substituted for CVSS v2 scores used in

our approach. Finally, it may be possible to better combine our traditional complex-

ity metrics, VCS-centered change metrics, and architectural metrics in our approach

with techniques and methods elaborated in the aforementioned recent works that

share similar background ideas, albeit different research goals.

A common theme within the aforementioned works is the relationship with avail-

able (or potentially available) malicious exploits targeting vulnerabilities and the no-

tion of whether or not patching is required. As noted previously, exploit consider-

ation and patch timing were considerations for the research conducted by Bozorgi.

We feel it is important to differentiate our work by pointing out that (1) we do not

consider existence of exploits in our quantification of severity, and (2) our research

relies on call graph metrics (and Front Line Functions) only to the extent required

to compute architectural modularity metrics; that is, we do not directly attempt to

further quantify reachability. Again, we reiterate that our research questions are

more closely aligned with earlier design and implementation phases of the SDLC

than with the later operational and maintenance phases. That is, our research ques-

tions seek to better understand human factors possibly responsible for vulnerability
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introduction prior to release as opposed to assessing likelihood of attacker exploita-

tion after release. The metrics we’ve selected embody some elements of reachability

which is a theme most prominently appearing in the work of Younis, Malaiya, and

Ray [93,94]. Any reachability thus captured is implied only, resulting as a byprod-

uct of architectural metric calculation (i.e., since such calculations depend on call

graph information). However, outside our selected architectural metrics, we do not

attempt to directly refine or quantify reachability.

We conclude this section by reiterating that CVSS scores are already widely used

and are available directly on, or directly cross-referenced from, various vulnerabil-

ity advisory systems. These advisory systems, along with vulnerability databases

(i.e., NVD) constitute the source of our training and evaluation data. Therefore, a

natural extension of classification (e.g., file (module) is vulnerable) for vulnerability

prediction is to utilize these available scores, encapsulating expert knowledge, for

the purpose of ranking vulnerability predictions generated by our prediction models.

2.4 Background Summary

This chapter has presented an overview of related terms and concepts relevant to

the intersection of empirical software engineering and secure software engineering.

We’ve also noted work by others in the area of empirical software engineering re-

search and have discussed the difference between code metrics and change metrics.

As noted in Section 1.3, to our knowledge, entropy based architectural maintain-

ability and modularity metrics have not yet been studied from the context of vul-

nerability prediction. These metrics seem promising not only for their potential to

help us in vulnerability prediction, but in terms of understanding other factors in

the software development environment, process, or working conditions that such
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metrics might indicate.
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Chapter 3

Vulnerability Prediction Modeling and
Evaluation

This chapter describes the detailed steps involved in building and evaluating predic-

tion models. We discuss particular approaches to ranking and classification, as well

as evaluation of the same. The following sections provide detail on regression mod-

els, metric correlation Analysis, and evaluation. Evaluation is relative to expected

reduction in inspection effort, as well as rank correlation with advisory CVSS [57].

3.1 Building ESE Prediction Models

Shröter, Zimmerman, and Zeller [80], along with Nagappan, Ball, and Zeller [67],

as well as Chowdhury and Zulkernine [24], clearly describe the process of building

predictive classification and ranking models based on post-release defects. They

differentiate between classification, a primarily binary relation, and ranking which

provides a partial or total order among predictions based on a scoring function.

Shröter, Zimmerman, and Zeller largely adhere to ESE model building process out-

lined by Nagappan, Ball, and Zeller [67]. Nagappan, Ball, and Zeller outline prescrip-

tive steps for model building and specifically explain how to carry out the process

using post-release defects, which is relevant to our approach. Their model build-

50



Figure 3.1: Prediction system data and processing

ing process is relevant because we are using security advisory reports to identify

residual vulnerabilities. Residual vulnerabilities are a subset of the more general

post-release defects (i.e., used in the predictive model building process). We list the

following prescriptive steps,from Naggappan, Ball, and Zeller, along with our own

embellishments (also depicted in Figure 3.1), to describe the process of building

prediction models for a project:

1. Collect input data from bug databases (i.e., ITS), VCS, and project source code.
These data sources and processing steps are graphically depicted in Figure 3.1.
Note that the version archives can be obtained by obtaining source snapshots
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from the project VCS, typically by checkout operation specifying a “tag” corre-
sponding to each release.

2. Map post-release advisories to vulnerabilities in entities, where entities can
represent any number of software artifacts or components (e.g., requirements,
modules, files, lines, etc.). Our entities consist of files, modules, and layers.
Note that in order to carry out the mapping, we will have to provide additional
input describing higher level architectural groupings. The most straightfor-
ward example of such additional input would be a list of module and layer
associations: the additional input encodes a list of layers, L = {L1, . . . Ln}, and
module assignment to each layer; ML(i) = {m|m ∈ Li}.

3. Compute metrics and extract facts using the source code, VCS, and fact extrac-
tion tool (e.g., UnderstandC++). Fact extraction occurs on the file level using
UnderstandC++. Module and layer relations are used to sum extracted facts at
the module level. Fact extraction results are fed into the architectural modu-
larity and maintainability calculations detailed in Section 3.8. The end results
of said calculations are stored in the TEDB.

4. Determine relevant attributes (metrics) using techniques such as analysis of
variance (ANOVA) [59], information gain [31], or principal component analysis
(PCA) [32]. PCA is used to remove attributes that are inter-correlated (exhibit
multicollinearity). Multicollinear attributes must be removed when applying
linear regression, otherwise large standard errors and incorrectly apportioned
coefficients may result. Section 3.2 discusses linear regression in more detail.

5. Generate predictions using relevant attributes. At this final step, we utilize
the TEDB to train and evaluate various machine learners. In this step, we also
examine performance of the prediction model, using various performance eval-
uation metrics discussed in Section 3.4.

The above steps, 1–4, are repeated for several versions (releases) of a product.

The end result, over several versions of a product, is a completed training and eval-

uation database (TEDB). Each record in the TEDB contains several metrics computed

per release. This database is then used to build prediction models by using statisti-

cal techniques (e.g. least squares regression) and machine learning classifiers on a

portion of the collected data (e.g, the training data). After the prediction models are

built, a different portion of the collected data (e.g. the evaluation or test data) is used

to test the predictions generated by the models. Since the test data is already labeled
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as “vulnerable” (Vuln+) or “not vulnerable” (Vuln−), a confusion matrix relating the

accuracy of the predictions to the actual values can be generated.

Actual
Positive, + Negative, – Total

Predicted
Positive, + TP FP TP + FP
Negative, – FN TN FN + TN

Total TP + FN FP + TN N

Table 3.1: Detailed confusion matrix

In Table 3.1, note that N represents the total number of samples (e.g., files or

modules). The following show various counts and ratios used in the evaluation of

the prediction (or classification as vulnerable):

N = Countsamples = Count+actual + Count−actual (3.1)

Count+actual = TP + FN (3.2)

Count−actual = FP + TN (3.3)

Equation 3.1 shows the total number of samples, N, expressed from the perspec-

tive of the labeled oracle.

N = Countsamples = Count+predicted + Count−predicted (3.4)

Count+predicted = TP + FP (3.5)

Count−predicted = FN + TN (3.6)

Equation 3.4 shows the total number of samples, N, expressed from the perspec-

tive of the generated predictions.
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3.2 Linear and Logistic Regression

This section provides a brief review of linear and logistic regression as these statis-

tical regression techniques are used extensively in both evaluating individual pre-

dictors and serving as a prediction model. In our context, linear regression can be

used to estimate the number of residual vulnerabilities in a file or a module from

either a single explanatory variable (known as simple linear regression) or multi-

ple explanatory variables (known as multiple linear regression). Logistic regression,

on the other hand, serves as a binary classifier, mapping the the response of the

dependent variable into one of two classes:

Vuln+ – a file or module contains one or more vulnerabilities

Vuln− – a file or module is assumed to be neutral with respect to vulnerabilities

Simple Linear Regression Simple linear regression (SLR), also known as least squares

regression, shown in Equation 3.7, is used extensively in fault prediction literature to

perform univariate evaluation of individual metrics, calculating β1 so as to minimize

the sum of squared residuals (
∑n
i=1(yi − xi)2), where residuals are the difference

between sampled observations of the dependent variable y and the explanatory

variable x.

y = β0 + β1x (3.7)

Multiple Linear Regression Multiple linear regression is an extension of SLR for

more than one variable. Rather than attempting to fit a single line to minimize
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error, multiple coefficients inside β are used to fit X to Y .

Y = β0 + βX (3.8)

Shin [81], as well as Chowdhury and Zulkernine [24] note the danger of imbalances

in the training data and resulting impact on regression based models. Essentially,

since there are far fewer instances of training entries labeled as vulnerable, Vuln+,

than those labeled as not vulnerableVuln−, there is a danger of overfitting the model

to the non-vulnerable classification. That is, the regression line comes to favor the

training class of higher cardinality.

Shin refers to this phenomenon as the “needle effect”, referencing the analogy

that finding a vulnerability is like finding a needle in a haystack, and thus conveys the

notion that far fewer“needles”, or training samples labeled as Vuln+ are available for

training. Shin presents a graph depicting the distribution of vulnerabilities, faults,

and neutral files in Firefox. Shin’s data show that, at least for Firefox, files labeled as

vulnerable account for less than 6% of the total dataset–363 files out of 11,051 [81].

The danger of failing to account for the “needle effect" in vulnerability predic-

tion is that the learned models will generally suffer more false negatives and lower

precision if the training data is not somehow balanced. In both cases above, the

researchers provide balance by randomly sampling a subset of training data labeled

not vulnerable, Vuln−. The number of Vuln− items randomly sampled is set equal

to the number of available vulnerable, Vuln+, items.
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3.3 Correlation Analysis

With our data sets sanitized and labeled, we will compute the Pearson correlation co-

efficient [59], r , for each of our architectural modularity and maintainability metrics,

for each version, with respect to the number of advisories logged against affected

files and modules. The equation for the Pearson sample correlation is shown in

Equation 3.9.

r =
∑n
i=1 (Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ )2
(3.9)

The Pearson correlation coefficient enables us to test for any relationships be-

tween the independent variable, our architectural metrics, and the dependent vari-

able, number of vulnerabilities per module. We will be looking for values above

0.5.

We also examine the Spearman rank order correlation [59], ρ (Equation 3.10),

between a module’s various architectural metrics (xi) and the sum of CVSS scores

(yi) for any advisories logged against the module for each release.

ρ =
∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
∑
i(yi − ȳ)2

(3.10)

Notice we use the form of Spearman correlation, ρ that accounts for tied ranks.

Given the limited range of CVSS values, we reason that we could have several results

“bin" to identical ranks.
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3.4 Evaluating Classification Performance: P , R, and FPrate

Precision, recall, false positive rate, and F-measure are often used in the evaluation

ESE prediction models (as well as machine learning and information retrieval) [52].

This section provides the equations for these evaluation metrics and reasons about

their application.

These metrics characterize the quality of the prediction models relative to the

confusion matrix (Refer to Table 3.1). As such, they yield results on the quality of

the prediction, characterizing how often a prediction model was correct, with how

often it was wrong.

Precision, P , shown in Equation 3.11, is a measure of the correctly predicted

results relative to the total predictions.

P = TP
Count+predicted

= TP
TP + FP (3.11)

Precision on its own can be misleading, because it ignores false negatives, or

samples actually containing a vulnerability that go undetected by the prediction

model. The model fails to classify the sample as Vuln+. This phenomenon is also

frequently called a type II error. As an extreme case, consider a model that predicts

only one real vulnerability and misses all the others out of 100 vulnerable samples.

In this case, there is no misclassification; FP = 0. Therefore, the precision in this

extreme example is 1, implying that the model correctly classified 100% of samples it

detected as being vulnerable. This example, although extreme, provides motivation

for defining Recall.

Recall, R:, or true positive rate is shown in Equation 3.12

R = TP
TP + FN (3.12)
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Recall, R, (also called sensitivity) provides intuition as to how likely it is that a pre-

diction model will detect a Vulnerability prone file, assuming the real data actually

does contain a a vulnerability. Recall is used in conjunction with precision, P , and a

false positive rate, FPrate, to characterize the performance of a classifier.

False positive rate, FPrate:

FPrate =
FP
N
= FP
FP + TN (3.13)

The false positive rate indicates how likely it is that a prediction model will flag

a file or other entity as vulnerable, when it really is not. Note that cost and penalty

functions can be derived from the false positive rate, since we would not know a

priori which modules our prediction model would have us inspect further.

F-measure, is show in in Equation 3.14.

F = (β2 + 1)PR
β2P + R (3.14)

β2 = 1− a
a

(3.15)

The F-measure, yields a value between 0 and 1, indicating the balance of precision

to recall for the prediction model. The beta parameter, when set to 1, equally favors

precision and recall; so common is this configuration that the F-measure is often

just denoted as F1. Increasing beta above 1 favors recall. Conversely, decreasing

beta below 1 favors precision [52].
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3.5 Evaluating Ranking Performance: ρ and ROC

Ranking prediction results for inspection is a further optimization in inspection

effort reduction. Firstly, we require that the prediction model has identified a set

of entities (e.g., files in our case) as vulnerability prone; that is, it is believed that

the entity contains at least one residual vulnerability. However, rather than simply

provide a large list of files to the development team to triage and inspect, we can

attempt to rank the predictions. However, in order to rank items relative to one

another, we need a measure of severity which is to our context and application,

what relevance is to Information Retrieval.

In Information Retrieval (IR), there is some distance measure that approximates

the relevance of documents resulting from a user query. Precision, P and recall R in

an IR system are binary evaluations of relevance, respectfully indicating the fraction

of retrieved documents that are relevant, and the fraction of relevant documents that

are retrieved (i.e. retrieved from the entire corpora). However, given the enormity

of the document space, it is common for millions of documents to be returned. The

user, issuing a query, typically does not desire to inspect each document retrieved.

Therefore, IR systems have adopted various measures of relevance in order to put

those items of greatest relevance at the top of the list returned to the user. We

submit that the commercial development context could make use of an analogous

relevance measure for vulnerabilities.

To our knowledge, no other work has proposed a ranked inspection for vulner-

ability predictions. Our conjecture as to why ranked inspection has not been dis-

cussed in the context of security is that the forces of time and delivery schedule in a

commercial development environment have not been completely considered. That

is, the few researchers who have explored vulnerability prediction emphasize the
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importance of recall to ensure that type II errors are minimized. While we appre-

ciate the importance of correctly detecting all vulnerability prone modules, it must

also be recognized that the vulnerabilities themselves may be of varying severity and

that management may not desire to expend development resources on such tasks

considering that prediction models have some false positive rate. In a commercial

context, developers are likely to be tasked with more deterministic tasks that more

directly impact the bottom line. That is, chasing possible security vulnerabilities will

likely lose out to more well defined tasks developing differentiating features.

In a commercial context, project managers often have to make so called go/no-

go decisions to ship software or hold it back because of known defects. However,

because residual vulnerabilities are by definition undetected, it is not likely, even

with prediction models such as ours, that a product would be held back because

the predictive model indicated vulnerability-prone files. Reasoning based on our

experience working professionally in a commercial context for over fifteen years, a

manager would not push back a ship date simply because there was a possibility that

a vulnerability exists. A parallel for this line of thinking and justification can also be

drawn from practices surrounding static analysis tools, as described in Section 2.1.2,

which also often highlight security defects. Because of the aforementioned indeter-

minate nature of static methods, and the potential to waste valuable development

resources on false positives, the field of static analysis tools has come up with alert

prioritization schemes around a backlog of defects; See sec:role-static-analysis-tools.

In summary, we assert that industrial application of vulnerability prediction mod-

els would likely benefit from a quality prioritization scheme. What exactly fits our

IR relevance analogy in the context of vulnerability prediction is likely a rich topic

for future research. For now, we satisfy ourselves with proposing a module based

ranking approach, evaluated based on strength of correlation (ρ) with CVSS base
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metrics.

As an aside, we also considered calculating a more complex rank-order metric

such as Mean Average Precision, or MAP [52] from IR. However, Given that MAP is an

IR rank order metric, some re-interpretation of its parameters such as information

need q provides an interesting thought exercise. Essentially, in our context, we have

one query, “find vulnerable files”. The effect of a single information need effectively

reduces MAP to a Precision@K metric [52] because |Q| = 1 for a single query.

However, this exercise sparks new ideas for how one might go about searching a

code base for specific types of security vulnerabilities or security violations; in other

words, we could leverage more of IR to satisfy queries like “show me potential secu-

rity violations related to cross site scripting (XSS)", or “show me potential security

violations with respect to use of cryptography".

Figure 3.2 shows an ROC curve. ROC stands for relative operator characteristic,

and is a way to visualize Recall (sensitivity) as FPrate is allowed to vary. Good pre-

diction models, returning ranked results will be indicated by ROC curves that rise

sharply on the left, keeping type II errors low as well as the false positive rate. Cal-

culating the area under the ROC curve provides a way to compare different ranking

approaches and quantifies recall over a spectrum of parameter settings for ranked

results. For example, one could derive an ROC plot by evaluating different recall and

FPrate values as the K, in Precision@K is varied.

3.6 Metrics Extracted and Calculated

This section details the various metrics we intend to collect, discussing the impli-

cations of using the various metrics for residual vulnerability prediction. Although

we are primarily interested in evaluating architectural and change based metrics, we
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Figure 3.2: Example ROC curve
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also include some traditional code metrics such as McCabe’s and KLOC for baseline

evaluation and comparison to past studies.

3.7 Notation

The following sections elaborate on the various metric categories, providing metric

calculation formulas. The formulas are dependent on a notation for a software sys-

tem, S. Note that we combine various notation schemes from Sarkar et. al. [77] and

Hassan [35]:

• S consists of a set of modules, M = {m1,m2, . . .mM}, where |M| = M , the
number of modules.

• Functions in S are F = {f1, f2, . . . fF}, where |F| = F , and it is assumed that
the functions are distributed over the set ofM modules.

• f a denotes a function that belongs to a module’s API.

• L denotes a set of layers {L1, . . . Lp}.

• K(f) denotes calls made to function f . Kext(f ) denotes the number of calls to
a file from other modules. Kint(f ) denotes calls made from within the same
module, and where K(f) = Kext(f )+Kint(f ).

• Kext(m) is the number of external function calls made to modulem. A module
with f1 . . . fn functions will have Kext(m) =

∑
f∈{f1...fn}Kext(f )

• K̂(f ) is the total number of calls made by function f .

3.8 Architectural Modularity Metrics

The architectural modularity metrics presented in this section quantify modularity

principles enumerated by Sarkar et al [77]. The modularity metrics quantify mod-

ularity principles that may likewise impact security properties. The module inter-

action index, MII, for example, quantifies the extent to which external calls to a
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module, honor the API provided by the module, as opposed to calling directly into

private functions and methods. The MII measures the portion of all calls made to

a module that are also routed through that module’s API. We submit that such a

property is also useful for security. The following paragraphs frame this concept

more concretely using a hypothetical authorization module as an example.

Consider a module that is responsible for handling authorization. It is possible

for the MII values to range between 0 and 1: 0 ≤ MII(authorization) ≤ 1. An

authorization module withMII of 0 implies that the module is either not being used,

or that any users of the module are bypassing the authorization module’s API. In the

ideal case,MII = 1, indicating that all calls to the authorization module in fact utilize

that module’s API.

In general, we theorize that MII values closer to 0, and perhaps below some

project specific threshold, are inversely correlated with security advisories and patches

involving a module or its called functions, even if the module is not directly related

to a security feature or function. Unintended side effects resulting from system

maintenance or modification would be more likely since encapsulation is violated.

Such side effects have the potential to violate security.

An example would be a module maintaining a processing state, perhaps repre-

senting progress through an online game, where the progress state is updated by

non-API (private) module functions; in other words, the module utilizes internal

function calls to update the internal state. It is possible that although the module

is not specifically labeled as security related, an attacker could carry out attacks on

the methods or functions directly calling the private state update functions to gain

unfair advantage in the game. In online games, such cheating may impact other

gamers financially, since they are often purchasing (with real money) such advan-

tage via virtual goods like special weapons or shielding; in other words, cheating
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would devalue in-game currency. In this case, although the module is not specifi-

cally related to a security feature or function of the software, it nevertheless has the

potential to impact the integrity of the game currency; by extension, any exchange

rate between real world currency and game currency is similarly impacted.

The following equations utilize the notation from Section 3.7 to describe relevant

metrics:

Module interaction index, (MII):

MII(m) =
∑
fa∈{fa1 ...fan }Kext(f

a)
Kext(m)

(3.16)

Rationale: The MII was discussed extensively in at the introduction to Section

3.8.

API function usage index, (APIU ):

APIU(m) =
∑k
j=1nj
n∗ k ; 0ifn = 0 (3.17)

Rationale: APIU gives an indication regarding the maturity and degree to which

the module has been vetted. Modules providing a large collections of unused

cryptography routines would likely have low APIU . We expect this metric to

inversely correlate with vulnerabilities, especially those related to use of cryp-

tography. A change in a project that introduces a call into such a module to use

a previously unused cryptography routine would be treading new territory; the

newly called routine is assumed to not have the operational time represented

by other public functions in the module.
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3.9 Change and Churn Metrics

Unless otherwise stated, when referring generically to churn, we mean the sum total

of additions, deletions, and modifications. That is:

Churn(E) = NumItemadditions +NumItemdeletions +NumItemmodifications .

As an example:

Churn(FILE) = NumLinesAdded +NumLinesdeleted +NumLinesModified.

NumberOfChanges – Number of releases, or commits in which the entity E, (e.g.,

the file or module), has changed.

Rationale: There is support from fault prediction studies showing that the

more a component changes, the more likely it is to have defects; we evaluate

this notion in the context of vulnerability prediction. Access to a VCS provides

a fine granularity since each check-in (i.e., “commit") can be counted. When

only version archives are available, the count is limited to detected changes

across snapshots.

ChurnTotal – Total churn over the lifetime of an entity E, i.e., churn(E). Rationale:

We assume that the more has changed, the higher the likelihood defects will

be introduced.

3.10 Change Burst Metrics

Change Bursts represent a family of metrics, characterized by change bursts, CB(G,B),

with gap, G, and burst B parameters (See Section 2.1.3). We may refer to the change

burst as simply CB, without the parameters (G, B, in cases where we are discussing

concepts and the particular parameter settings are unimportant. The notationbursts(E)

corresponds to the bursts for element E. That is, element E has a change history
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E = 〈e1, e2, . . .〉 and its bursts are bursts(E) = 〈B1, B2, . . .〉. The following are burst

metrics presented by Nagappan et al. [65], adapted slightly for our context:

NumberOfConsecutiveChanges – Number of consecutive builds, versions, or re-

leases for a given gap size, G. This is |bursts(E)|, with B = 0. Rationale:

Accounts for all consecutive changes for a given gap size.

NumberOfChangeBursts – Number of change bursts corresponding to a particular

gap, G, and burst size, B. The cardinality of CB, or |bursts(E)|. Rationale:

Burst patterns are indicative of risky behavior.

TotalBurstSize – Number of changed builds/versions/releases in all change bursts,

i.e.
∑
B∈bursts(E) |B|. Rationale: Assuming that change bursts indicate risky

activities, a high number of changes during these bursts could be particularly

risky.

Churn-Burst Metrics In the following definitions, let churn(ei) be the number of

lines that were added, deleted, or modified during the changes to the entity ei. By

extension, let us also apply churn to sets, as in churn(E) =
∑
ei ∈ Echurn(ei) [65].

TotalChurnInBurst – Total churn in all change bursts, i.e., churn(bursts(C)). Ratio-

nale: The amount of change involved may be particularly predictive.

MaxChurnInBurst – Across all bursts, this is the maximum churn,max{|churn(B)||B ∈

bursts(E)}. Rationale: Looking for extremes across change bursts.

3.11 Entropy Based, Historical complexity metrics

A Family of metrics, presented by Hassan [35], denoted as HCM , that utilize the

entropy of files changed over a change period. Note that the change period can be
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established as a burst with a gap and burst size. Higher values in these metrics

reflect more scattered and widespread changes. Lower values of HCM correspond

to smaller, more isolated changes to a few files. We expect that more widespread

and scattered changes, characterized by larger HCM values, will be more likely to

introduce vulnerabilities.

3.12 Code Metrics

The code metrics included here are less extensive than other studies. We include

some of the better performing coupling and complexity metrics for comparison

with other studies. Metrics are also selected based on our conjectures regarding

how these metrics might be compared with our architectural modularity and main-

tainability metrics. For example, we include the Henry Kafura (HK) metric because

it mirrors the information flow concept also embodied in Anan et al.’s [12] module

maintainability index, MMI.

In general, we are interested in metrics that have the potential to characterize

information flow through entities such as functions, files, and modules, as well as

complexity metrics that might provide barriers to human comprehension. We rea-

son that security vulnerabilities may manifest as the combination of information

flow and difficulties in comprehension, such as defects introduced unknowingly by

developers because parameter passing or variable accesses from one function (or

module) to another is dubious or suspect. An example of a suspect variable access

would be indirect access to global variables. Below are a list of code metrics we are

interested in:

SLOC: Lines of source code is a size based complexity metric related to human

68



comprehension–the larger the code, the more difficult it is to modify with-
out introducing an error; included because of all various metrics it is one of
the oldest and most studied complexity metrics. Moreover, SLOC is one of the
easiest metrics to compute.

McCabe: McCabe’s complexity metric for comparison with similar studies.

FanIn: An information flow metric indicative of the number of inputs into a function.
Any global variables read by the function are included in the count. This metric
is of interest since many attacks are carried out by specially crafted attacker
input. The more paths existing for such input therefore increases likelihood
of exploitation.

FanOut: An information flow metric indicative of the output from a function. Any
global variables written by the function are included in the count. This metric is
of interest since it hints at the potential for errors in one function to propagate
outward to other functions, causing unintended side effects, especially with
respect to global variables.

Nesting: A complexity metric indicating the depth of control statements handling
conditional evaluation and looping if, else, do, while, switch. Deeply
nested control structures may lead to developer error. We posit that such
errors may likely include omissions of authorization checks, or cases that in-
advertently “fall through” to logic that may ultimately enable security compro-
mise.

HK: Henry Kafura metric, HK, is an structural complexity metric indicative of the
information flow through functions or modules. HK = SLOC × (FanIn ×
FanOut)2 [24]. The HK metric is interesting because it characterizes informa-
tion flow through a function. As mentioned previously, many attacks attempt
to manipulate input.

3.13 Model and Metrics Summary

In this chapter, we have provided an overview of model building and have described

the metrics collected by our study. In so doing, we have have outlined the theoretical

basis and rationale for our study. Along the way, we have attempted to provide

the rationale for studying the metrics selected, and have provided the measures we

utilize for evaluation.
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Chapter 4

Detailed Repository Mining Approach

In this chapter, we examine the problem more deeply, providing details relevant to

our approach. After a brief overview is provided, we detail the steps used to carry

out our investigation and specify the output or goal of each step. As the steps are

enumerated, key constructs, equations, tools, and resources are identified.

4.1 Investigation Overview

This work is an exercises in basic research that builds upon empirical benchmarking

and established empirical software engineering (ESE) precedents from mining soft-

ware repositories (MSR) and sensitivity analysis. A rich history of fault and vulner-

ability prediction literature utilize a post-release analysis approach on open source

software (OSS) projects. Researchers mine project repositories such as issue tracking

systems (ITS) and software version control systems (VCS) using information about

known and fixed vulnerabilities as an oracle.

Using data from the project ITS (e.g., Bugzilla) and VCS (e.g., git), researchers

trace bug reports back to particular file revisions and software releases. The bug
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reports, along with affected files, enable researchers to build a training and evalua-

tion database (TEDB) where each record consists of a file (or other entity of interest),

various metrics, and a classification label of “defective” (or“vulnerable"). Generally

speaking, a classification of defective (Defective+) is applied to a file (or other en-

tity) if its code underwent modification when resolving a field failure logged in the

ITS. A classification of vulnerable(Vuln+) is applied to a file if its code underwent

modification as the result of patching a vulnerability noted in a published advisory.

The training and evaluation database (TEDB) is, in data mining terms, a data

mart [33], although it is not typically referred to as such in current ESE literature.

However, we note that the TEDB fits the definition of a data mart as it is used to

aggregate data from various external data sources to support overall knowledge

discovery in the field of ESE and MSR.

The TEDB is used to produce a confusion matrix for evaluation of generated pre-

diction models. The confusion matrix is used to evaluate the precision, recall (sensi-

tivity), and false positive rate of the predictive model against the file corpora relative

to a given classification, e.g. “file f is vulnerable”. A confusion matrix is shown in

Table 4.1. The confusion matrix summarizes the number of correct and incorrect

classifications generated by the prediction model relative to the real classifications

of the actual samples. These numbers (e.g. true positives and false negatives) are

used to derive various performance measures (e.g., precision and recall) that together

describe the performance of the prediction model. Disciplines outside of computer

science refer to this type of statistical evaluation as sensitivity analysis.

A k-fold cross validation technique is often used for model evaluation as re-

searchers often use the same (limited) data set for both training and predictive

evaluation. Note that since there are often significantly fewer vulnerabilities than

standard-issue defects, the k-fold cross validation technique is more often used for
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Actual
Positive, + Negative, –

Predicted
Positive, + TP FP
Negative, – FN TN

Table 4.1: Example confusion matrix

evaluation in studies focused on vulnerability prediction. In general, largely ow-

ing to the diversity among software domains and projects, such learned models are

not transferable, but are instead relevant only to the project from which they were

trained.

At this time, several well established repositories [78] supporting empirical eval-

uation exist, as well as tools facilitating analysis and mining activities. These estab-

lished tools and repositories support existing, published studies against which this

research may also be compared. This research evaluates security in a post-release

fashion, evaluating specific software repositories against vulnerabilities reported in

corresponding issue tracking systems.

4.2 Research Steps

The following sections document the detailed steps performed in our investigation.

In order to extract items of interest, we perform several preprocessing steps to con-

struct the TEDB, shown in Figure 4.1. After constructing the TEDB, we analyze and

evaluate the gathered data using a variety of statistical and machine learning tech-

niques. Where possible, we leverage existing software to carry out preprocessing

and analysis calculations.
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4.2.1 Acquire Study Subjects

Our study subjects are selected due to their significance and relevance, source code

accessibility, and popularity among ESE researchers. Our study subjects are large,

widely used, real world software projects. Moreover, many of these projects are

widely deployed across the Internet and are used by non profit, government, and

commercial organizations. Finally, several other researchers in ESE have also used

the following open source projects:

Mozilla Firefox: a free and open source Web browser with over a hundred million
users world wide [2].

Apache HTTP Server: a free and open source Web server powering over 50% of the
active Web sites on the Internet, with a developer base over 103 million [1].
Specifically, we study httpd2 at version 2.2.x.

MySQL: a popular open source relational database management system (RDBMS).

Building on these attributes, we gain confidence that the results of our empirical

investigation will be generalizable to other software of similar size and function.

The fact that many of these projects are widely used across the Internet add to

the significance and noteworthiness of our results. We can also compare our study

to that of similar empirical vulnerability and fault prediction studies by Shin [81],

Ayanam [16], and Gimothy et. al. [30].

4.2.2 Acquire Extraction and Modeling Tools

Several extraction tools exist for examining software repositories as well as analyzing

the code to automatically compute traditional metrics. Architectural recovery of

dependency graphs and calculation of various metrics is known as fact extraction.
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Related studies, as well as our own research have guided our selection of SciTools

Understand and Anaconda Python.

SciTools Understand is a commercial tool that provides architectural recovery of

call graph information and several complexity metrics [3]. In addition to being used

widely in the ESE literature, Understand provides Python APIs to access the fact

database it generates for a project [4, 5]. Listing 4.1 shows Python code to read

information about entities within the Understand database.

1

2 import understand

3

4 db = understand.open("test.udb")

5

6 #Generate an image fore each function showing its callers

7 #Each image named as ’callby_ <func >.png’

8 for func in db.ents("function ,method ,procedure"):

9 file = "callby_" + func.name() + ".png" print

(func.longname (),"->",file)

10 func.draw("Called By",file)

11

12 #Print print all files in the project for file in

db.ents("file"):

13 print(file.longname ())

Listing 4.1: Example Python interface to Understand

Anaconda Python is a collection of Python packages used by data scientists for so

called “data munging” or “data wrangling”, handling statistical computations needed

for sensitivity analysis, as well as machine learning algorithms. Using the interactive
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IPython shell [72] from within JuPyter Notebook, we leverage several of Anaconda’s

bundled packages as follows:

Pandas is used to calculate traditional statistics such as mean, various percentiles,
and standard deviation.

SciPy is used for more advanced statistics calculation such determining coefficients
of correlation.

SciKitLearn is used for normalization and standardization preprocessing, as well
as to experiment with machine learning models for prediction.

Matplotlib is used for data visualization.

4.2.3 Develop Custom Tools and Mine Repositories

We leverage existing tools where possible to focus our analysis efforts on the re-

search itself, evaluating the discriminatory power of architectural metrics for vul-

nerability prediction, but as in many data mining activities, there is still much work

needed to extract, normalize, and pre-process data from various sources.

The following items represent large portions of Python software developed to

conduct this research:

• Repository Diff Extractor: Software to abstract the interface to version con-

trol systems for the purpose of extracting patches, diffs, or commits between

project version ranges. Although the interface may be extended to support ad-

ditional version control systems, we currently implement only Git. We use Git

because the source code of all our case study subjects make their development

history available using Git.

We utilize Git distributed version control system (DVCS) differencing tools (e.g.

git diff) in order to calculate coarse change metrics such as files changed
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between versions, number of versions, etc. Additional custom software (diff-

parser) provides more precise change metrics, but at increased computation

time. By more precise, we mean relative to the information provided by git

diff. For each file changed in particular changeset, our diffparser provides

lines added, modified, and deleted. Git, on the other hand, provides only total

lines added and deleted and therefore does not provide information on when

an addition and subsequent deletion is actually a modification.

• Custom Fact Extractor (CFE): Scripts to calculate Sarkar et al’s modularity met-

rics [77] and Hassan’sHCM metrics [35]. The scripts in this tool category are of

central importance and required to calculate many of the metrics under study,

since there is no other publicly available tool support. Scripts within the CFE

interface with the fact database created by architectural recovery tools. Utili-

ties and scripts in this tool category are also be used to sum function and file

level relations at the module level. Note that we use the directory structure of

the project as a guide to modularity.

We more completely describe our custom tools and data mining activities in Sec-

tion 4.3.

4.2.4 Perform Modeling and Analysis of Subject Programs

For each subject program in Section 4.2.1, carry out prediction modeling and eval-

uation according to the details discussed in Chapter 3. Details for each case study

are enumerated in Chapter 5, where we also consolidate our empirical findings.
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4.3 Data Mining Activities

This section provides a more detailed examination of our data mining activities.

Aside from representing an important (and non-trivial) part of this work, we pro-

vide this discussion for two reasons. First, we wish to inform other ESE and MSR

researchers seeking additional information and insight into our methods. Secondly,

these activities are important because our analysis and results depend on the data

available for each software project studied.

Below, we refer to each software as a project to convey the notion that mining

activities transcend the resulting software product. That is, the project encompasses

multiple data sources used by the development team (and other actors) in the de-

velopment and use of the resulting software product. For example, the develop-

ment team tracks issues on the software product in an ITS (e.g., Bugzilla). Security

actors (both offensive and defensive) utilize information from public vulnerability

databases (e.g., NVD). The following steps highlight the mining activities carried out

for this research:

1. Mine NIST NVD [68] for security advisories applicable to the project

2. Analyze mined advisory data to determine versions of study (i.e., the version

range)

3. Mine the project VCS to extract facts related to each version

4. Determine affected files (i.e., our vulnerable files)

The following paragraphs provide additional detail as needed to understand the

case studies presented in Chapter 5. Specifically, we describe the criteria we use

to arrive at the studied version range as well as the different techniques employed
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to determine the set of files that were modified in order to fix a publicly disclosed

vulnerability.

Advisory data in this work consists primarily of CVE [58] entries extracted from

the NVD for each project. CVSS [57] scores related to specific advisories are extracted

from NVD records. We note here that other researchers engaged in similar empirical

studies [24] built advisory extraction tools specific to each subject studied. For ex-

ample, for Mozilla Firefox, both Shin [81], as well as Chowdhury and Zulkernine [24]

utilized parsing scripts specific to Mozilla Foundation Security Advisories (MFSA).

We employed similar parsing/scraping techniques for determining the set of files

patched to fix a given vulnerability. We provide additional detail on our approach

below.

For each project, we limit our study to a viable version range. We define viability

with respect to the following factors:

Frequency: Versions occurring more frequently in CVE summaries are are more

likely to offer data relevant to a vulnerability study.

Popularity: Popular versions of the project are likely to garner more widespread

interest from industry and the research community.

Recency: Recent versions often, but not always, coincide with popularity. Recency is

used as a tie-breaker in cases where frequency and popularity result in multiple

or overlapping version ranges.

As mentioned, we use different methods to determine the set of files modified to

fix a vulnerability. This set of files modified is used for marking our training data

with the vulnerable classification (Vuln+). For convenience, we refer to this set as

the vulnerable file set. A common pre-requisite for each method is Web scraping
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(and/or crawling) of the project’s release notes and security advisories. We devel-

oped spiders using the ScraPy Web crawling package. The method used to arrive at

the vulnerable file set depends on the information available in the release notes (or

security advisory Web-page) of each project and information available in the project’s

ITS and VCS. For example, both Firefox security advisories and MySQL release notes

include specific bug identifiers (IDs), but Apache HTTP Server does not. The inclu-

sion of specific bug IDs in Firefox and MySQL facilitate automated patch retrieval

(i.e., direct lookup by bug ID), while the absence of specific bug IDs in Apache HTTP

Server require additional manual effort to be used with semi-automated search tech-

niques. Additionally, Firefox’s ITS entries, directly referenced by the aforementioned

bug ID, contain patches associated with the fix. MySQL, in contrast, does not provide

patches associated with a fix for its specific bug ID. This leads to two primary meth-

ods for determining the vulnerable file set: download from ITS and extract from

VCS.

Download from ITS: This method is used when a bug ID is provided in the release

notes and patches are available from the project’s ITS. The ITS is indexed with

the bug id (and further scraped) to determine the vulnerable file set.

Extract from VCS: This method is used when patches are not accessible from the

project’s ITS and/or when a specific bug id is not provided in the release notes.

For projects where the vulnerable file set can be downloaded from the ITS, our

spiders obtain resolution and status terms, as well as perform automated text clas-

sification to determine which of the attached patches contain the vulnerable file set.

For example, a particular bug entry may contain several attached patches, some of

which may be a proof of concept or test code for the actual vulnerability fix. An

example snippet from one such Bugzilla entry is shown in Listing 4.2. The spider
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1 <tr id="a2" class =" bz_contenttype_text_plain bz_patch">
2 <td class =" bz_attach_desc" valign ="top">
3 <a href=" attachment.cgi?id =762008" title="View the content of

the attachment">
4 <b>Patch </b></a>
5 <span class=" bz_attach_extra_info">
6 (8.59 KB,patch)
7 <a href ="# attach_762008"
8 title ="Go to the comment associated with the

attachment">
9 2013 -06 -13 06:39 PDT

10 </a>
11 </span >
12 </td>
13 <td class =" bz_attach_flags" valign ="top">
14 <span title=" Reviewer Fullname

(: reviewer_user)">reviewer_user </span >:
15 review+
16 <br>
17 <span title=" Approver Fullname

[: approver_user ]">approver_user </span >:
18 approval+
19 <br>
20 </td>

Listing 4.2: Example HTML from Bugzilla page parsed by Firefox spider

looks for keywords in the status fields associated with each attachment to determine

the patch with the vulnerability fix. Listing 4.3 shows Python source from the spider

that is used to search specific page element contents for the keywords review and

approval. Additional details are highlighted in the comments within the listings.

Additionally, although not filtered by the spider directly, resolution terms such as

FIXED, WONTFIX, and DUPLICATE are used when further filtering the scraped data.

Following Chowdhury [24], we are interested only in FIXED bugs that have a life cycle

status of VERIFIED or CLOSED.

For projects where the vulnerable file set cannot be determined from the ITS, we

use one of the following techniques to determine the vulnerable file set by searching

the VCS:
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1 # Locate the table
2 table = response.xpath(’// table[@id=" attachment_table "]’)
3

4 # Prerequisites for parsing attachments for affected files
5 # Ensure the bz_attach_flags column contains both review and

approval
6 # Ensure bz_attach_extra_info ’ is a patch (e.g., contains

"patch")
7

8 attach_xpath = ’./tr/td[@class =" bz_attach_flags" and\
9 contains (.,"review") and contains (.,"approval")]\

10 //preceding -sibling ::td[@class =" bz_attach_desc "]\
11 /span[@class =" bz_attach_extra_info" and

contains (.,"patch")]\
12

//preceding -sibling ::a[contains(@href ," attachment.cgi")]/@href’
13

14 links = table.xpath(attach_xpath).extract ()

Listing 4.3: Patch determination

• When a bug ID can be obtained, automatically search the VCS change logs (com-

mit history) for references to the bug (i.e., in the commit message), or

• When a bug id cannot be obtained, query associated CVE summary for keyword

stems that are subsequently used to search the VCS change logs in a semi-

automated fashion.

The semi-automated keyword approach was used primarily for the Apache HTTP

Server. Most of the CVE summaries for Apache HTTP highlight filenames or contain

keywords that can be used to search the VCS repository. For example, to search the

VCS for a change between two dates for path mod_status where the CVE summary

mentions XSS (cross-site scripting), one could use the following command:

$ git log --after="2006 -12 -31" --before="2008 -01 -01" \

--grep ’XSS ’ -- *mod_status*

Apache HTTP Server was the unique case study subject in this regard since we

used the above semi-automated keyword approach to manually determine the vul-
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nerable file set from information in the CVE alone. This was only possible due to

the detail included in the CVE entries for Apache HTTP Server. In the case of both

Firefox and MySQL, we were able to use the specific ITS entry identifiers (i.e., bug

identifiers) to use the aforementioned automated methods: Download from ITS, and

Extract from VCS.

4.4 Discussion Regarding Training Set Construction

Note that the construction of a suitable training set from the mined information

sources is non-trivial. Real world data sources contain information of varying ma-

turity, completeness, and accuracy. The variance and inconsistency in vulnerability

data presents multiple challenges to building a viable data set for training super-

vised machine learning algorithms. Figure 4.2 shows a Venn diagram to visualize

the required vulnerability information. For each software application, we require

information about individual, publicly disclosed, security vulnerabilities. Such infor-

mation includes the vulnerable file set, affected versions, and a severity score (from

CVE entry).

The mapping of the required vulnerability information is needed to build out the

TEDB tables and associations showing in Figure 4.3. The primary source for rows

in the Vulnerabilities table are CVE entries from the NIST NVD. Figure 4.4 shows an

example CVE entry. The Files table is populated for each Version of a Project based

on information in the VCS. The association between exactly what Version in a Project

contains a VulnerableFile is determined based on information from both CVE and

ITS entries, and is described at length in subsequent sections.

The previous sections discussed various challenges and approaches for obtaining

the vulnerable file set (VulnerableFile in Figure 4.3). However, such challenges first
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Figure 4.2: Required vulnerability information
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Figure 4.3: Training and evaluation database tables
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Figure 4.4: Example CVE entry with fix version and CVSS score highlighted

assume that vulnerability information is indeed publicly disclosed. Because our study

examines security vulnerabilities that are of a potentially sensitive nature, informa-

tion on the most recent and severe vulnerabilities are often not publicly accessible.

We encountered this situation for approximately 5%, or 138 ITS entries out of a total

of 2,747 ITS entries, that we scraped from the security advisory pages for Mozilla

Firefox (i.e., MFSA pages). Additional challenges include accurate association of a

particular vulnerability with a particular software revision, as well as consistently

determining a severity score.

Because we train our models to differentiate vulnerable from non-vulnerable files

and modules within each version of a software, it is necessary to accurately asso-

ciate a publicly disclosed vulnerability with the vulnerable file set in each version. As

shown by Figure 4.4, the summary text in the CVE entry typically contains mention

of versions prior to a given fix version that are affected by a vulnerability. CVE en-
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tries from NVD contain a list versions of the software that are affected by the specific

vulnerability disclosed in each CVE. However, in the case of the Apache HTTP Server,

we found that in more than one instance, the release notes (aka security report) for

version 2.2 [14] described a set of affected versions that were not otherwise found in

the corresponding CVE entry. For example, CVE-2010-1623 is specifically mentioned

by the security advisory pages for Apache HTTP Server version 2.2, but CVE-2010-

1623 itself does not list any affected version after 1.3.9. In the case of Apache HTTP

Server, we chose to use the affected version information from the Apache-specific

security advisory pages for version 2.2. In the cases of Mozilla Firefox and MySQL,

the security advisories and release notes only listed the fix version, as opposed to

a detailed list enumerating each individual version. Given the absence of a detailed

list of affected versions from the security advisories and release notes for Firefox

and MySQL, we turned to the CVE data for additional insight. We performed a study

of the affected versions listed in CVE entries corresponding to Firefox and MySQL

and found that in our version ranges of interest (i.e., the inspection interval I) for

each application, all versions prior to the listed fix version were affected. When

building our training data for MySQL and Firefox, we therefore assumed that a vul-

nerable file was also vulnerable in previous versions, of course requiring that the file

actually existed in the earlier version. We will refer to this key assumption as the

Previously Vulnerable Assumption. Below, we describe additional detail around our

investigation of the affected versions listed in CVE data to validate this assumption.

In the course of undertaking the aforementioned investigation related to affected

versions listed in the CVE data from the NIST NVD, we also noticed a change in the

completeness of the affected version list in said CVE entries. For example, Firefox

CVE entries corresponding to version 36 and earlier (from years 2011 to 2015) often

enumerate all affected versions, listing each one with its own <vuln:product> tag.
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However, CVE entries after and including CVE-2015-2706 (for years 2015 and 2016)

only list one affected version, (not counting so called ESR, or extended service release

versions). An example of the affected version list is shown for CVE-2016-1935 in its

raw form in Listing 4.4. Since we only look at the CPE entries denoted as an applica-

tion (i.e., cpe:/a:) and exclude ESR entries, the extraction processing for this entry

results in only Firefox version 43.0.4. Although the <vuln:vulnerable-software-list>

(i.e., affected software list) contains only 43.0.4, the summary text for CVE-2016-1935

indicates that prior versions are also affected. We found this was also the case for

all other entries (over our inspection interval I).

As mentioned previously, our additional validation effort led us to the Previously

Vulnerable Assumption, and a new view of training set construction which is dis-

cussed at length in later sections.

Previously Vulnerable Assumption: In the absence of trustworthy data related to
specific versions of a software that are impacted by a vulnerability fixed in ver-
sion N, we assume that all prior versions, over the inspection interval I , up to
and including version N − 1 are also impacted.

Impacted versions are thus expressed as Vi, where:

• Vi denotes a vulnerable version number i = {i1, i2, . . . ,N − 1}
• I denotes the inspection interval, I = {RMin, . . . , RMax},
• RMin andRMax correspond to the minimum and maximum release versions

studied respectively.

• Note that i ∈ I , therefore ∀i, i ≥ RMin and i < N ≤ RMax

Note that the Previously Vulnerable Assumption is contingent on validation over

interval I . Using Firefox as an example, interval I corresponds to the inclusive range

6. .49.
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1 <entry id="CVE -2016 -1935" >
2 <!- ** NOTE: other blocks omitted for brevity ** ->
3 <vuln:vulnerable -software -list >
4

<vuln:product >cpe:/a:mozilla:firefox_esr :38.1.0 </ vuln:product >
5

<vuln:product >cpe:/a:mozilla:firefox_esr :38.2.0 </ vuln:product >
6 <vuln:product >cpe:/o:novell:leap :42.1 </ vuln:product >
7 <vuln:product >cpe:/a:mozilla:firefox:43.0.4</vuln:product >
8 <vuln:product >cpe:/o:oracle:linux :5.0 </ vuln:product >
9 <vuln:product >cpe:/o:novell:opensuse :13.1 </ vuln:product >

10 <vuln:product >cpe:/o:novell:opensuse :13.2 </ vuln:product >
11

<vuln:product >cpe:/a:mozilla:firefox_esr :38.5.0 </ vuln:product >
12 <vuln:product >cpe:/o:oracle:linux :6.0 </ vuln:product >
13 <vuln:product >cpe:/o:oracle:linux :7.0 </ vuln:product >
14 <vuln:product >cpe:/a:mozilla:firefox_esr :38.0 </ vuln:product >
15

<vuln:product >cpe:/a:mozilla:firefox_esr :38.3.0 </ vuln:product >
16

<vuln:product >cpe:/a:mozilla:firefox_esr :38.4.0 </ vuln:product >
17 </vuln:vulnerable -software -list >
18 <vuln:summary >Buffer overflow in the BufferSubData function in
19 Mozilla Firefox before 44.0 and Firefox ESR 38.x before 38.6
20 allows remote attackers to execute arbitrary code via crafted

WebGL
21 content.
22 </vuln:summary >
23 <vuln:cve -id >CVE -2016 -1935 </ vuln:cve -id >
24 </entry >

Listing 4.4: CVE version snippet for CVE-2016-1935
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Our additional goal of relating the severity of vulnerabilities to various features of

our training data requires the use of a standardized measure of severity. At the out-

set of this work, we decided to use the CVSS score for each vulnerability (i.e., a CVE

entry in the NIST NVD) as an indicator of the severity. Two different cross-reference

consistency complications related to the use of the CVSS score from the CVE pre-

sented itself in practice: unknown CVE identifiers and missing CVE identifiers. We

describe each in additional detail below.

Unknown CVE Identifiers result from inconsistent mapping among security ad-

visories, release notes, and ITS entries. This mapping inconsistency presents an

issue when attempting to cross-reference a CVE identifier from a mined ITS entry.

For example, the security advisory pages and ITS entry for one vulnerability in Fire-

fox mapped to CVE-2011-1187, which is actually cataloged in the NIST NVD under

Chrome. Because this entry shows up under a different browser software, this par-

ticular CVE was not found in our local database built by filtering the Firefox CVE

data from the NIST NVD.

Missing CVE Identifiers occur when a security vulnerability is noted on a security

advisory page (or in release notes), but does not list an associated CVE. That is, the

advisory page may list only the ITS entry, but fail to list any associated CVE identifier.

While one might try to determine a comparable score from the ITS entry, we found

that some entries were inaccessible (read sensitive). In addition, our experience

with scraping the data informed us that, in several instances, a single CVE may

be associated with multiple ITS entries, and in turn, various combinations of files.

These relationships among the data sources mined for information are depicted by

the diagram in Figure 4.5. Rather than fabricate an overall score, we decide to omit
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such entries from correlation analysis.

Figure 4.5: Relationship between vulnerability entities

The above complications limit our ability to reliably use CVSS scores in all cases.

Because we are able to resolve the ITS entry to the individual affected files, we can

classify them as vulnerable, but we are unable to perform correlation analysis related

to severity.
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Version →
1 2 3 4 5

Time
1 foo.c not in Vuln FixedIn,0 0 0
2 0 0 0

3 1 1 0 0 0
4 1 1 0 0 0
5 2 2 1 1 FixedIn,0
6 2 2 1 1 0
7 2 2 1 1 0

Table 4.2: Marking technique for vulnerable files

4.5 Vulnerable File Marking Approach

The combination of the Previously Vulnerable Assumption and the notion of CVE

identifiers attributing a scored severity, leads to a vulnerable entity marking tech-

nique. We present a view of this marking pattern in Table 4.2.

Table 4.2 depicts a marking for a single vulnerable file in the TEDB. The mark-

ing shown above is for an associated CVE. File-to-CVE relationships are stored in

the TEDB outside this table. The table is interpreted as follows, for some single

file foo.c, in iterating through mined vulnerability fix data for over the inspection

interval I .

1. At version 1, foo.c is not in the vulnerability table; no record or marking; same

at version 2

2. At version 3, the table building logic observes mined data indicating a security

fix for version 3

• The table building logic adds entries for foo.c in versions 1 and 2

• The table building logic increments CveCount to 1 in records correspond-

ing to versions 1 and 2, and adds any corresponding CVE relationship the
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File-to-CVE table

3. At version 4, no mined security fix information is available for foo.c

4. At version 5, the steps at version 3 are repeated for the new fix information by

applying the Previous Vulnerability Assumption

• Table building logic back-propagates the relationship for any newly asso-

ciated CVE fixed in 5

• The CveCount for prior entries of foo.c are incremented, resulting in the

pattern depicted in Table 4.2

Note that the FixVersion is not included in the marking depicted by Table 4.2.

Inclusion of the fix version artificially inflates a rank order assessment by causing

metrics assessed with Spearman correlation to artificially “lock on” to these “se-

curity fix oracles”. Our approach seeks to better understand factors occurring in

development of a software product that leads to severe vulnerabilities, as opposed

to measuring the development effort applied to the development of the security

fixes themselves. Direct measurement of the development activity related to the se-

curity issue fixes is less relevant for better understanding the origins surrounding

the original introduction of the vulnerabilities (e.g., lack of developer focus, poor

understanding of requirements, time to market pressure leading to shortcuts).

4.5.1 Vulnerability Distributions and Related Signals

One must ensure that the vulnerability table reflects an accurate vulnerability dis-

tribution at any point in time and not the fix distribution (e.g., over time when char-

acterized as successive version slices). This is a phenomenon we experienced in our
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model building process where a sanity check of correlation values revealed an echo of

the fix distribution, rather than accurately characterizing desired relationships with

the vulnerability distribution, i.e., within a vulnerability slice. As we discovered, this

issue is especially acute for repository mined change metrics counting number of

files changed or LOC, as they will directly measure the development activity coincid-

ing with the creation of security fixes for known vulnerabilities, thereby artificially

inflating correlation results when evaluating change based metrics for vulnerability

prediction. Thinking of change based metrics across version slices leads to inter-

pretation of the overall patterns as vulnerability and fix signals respectively. We can

think of this phenomenon as failure to remove the “security fix signal”, which forms

a vulnerability oracle and has the effect akin to including a label as a feature during

training. In other words, including labeled observations (or oracle entries) as fea-

tures when feeding data to a learning model. A model trained on oracle data for its

test set would show 100% precision, but would be completely useless in accurately

predicting vulnerabilities in practical real world scenarios.

Assuming a typical scenario where a security fix for version N + 1 is developed

in the prior version N, correlation evaluation of size based repository mined change

metrics will show inflated results. Because change metrics measure the intervalN−1

to N, an observer at version N, making predictions for version N + 1 from mined

data, will have a vulnerability oracle for the fix included with the associated change

based metric (measured over the interval N − 1 to N). A review of the literature

(see Section 2.3.1) will find hints of analogous phenomenon during discussion of

partial correlation correction for LOC compensation, although we have not seen the

rationale for needed compensation so clearly explained as removal of the security fix

signal. This also means that data from research on change based metrics are likely

inflated if the researcher failed to specifically mention accounting for the impact of
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this effect by removing the counts of known security fix data from the repository

mined change metric.

Aside from exercising caution to avoid the above pitfalls when building our train-

ing tables, we force additional delay into change based metrics by phase shifting the

change based signal to prior versions N−2 or N−3. The rationale for this particular

phase shift compensation technique for change based metrics is to remove the effect

of the fix oracle from the current observation intervalN−1 toN. In effect, relegating

the impact of the oracle to previous version slices in this manner “melts” the oracle

effect into the known vulnerability distribution, which is more consistent with our

approach to feature evaluation for vulnerability prediction, and helps to remove a

bias that otherwise blinds us from picking up on more useful “signal”.

4.6 Module and API Identification

Throughout this work, we make extensive use of the term module. In earlier sec-

tions, we noted that we had decided upon directory structure as a way of practically

carrying out our mining activities. We provide additional detail here, in order to

inform discussion in Section 4.7, covering our change burst detection methods, as

well Chapters 5 and 6, where we discuss experimental findings and conclusions.

Our method for module identification is based on identifying patterns in the di-

rectory path, relative to the project’s root repository. Path names that are less than

two parts deep use the corresponding directory structure path as the module iden-

tification string. Path names longer than two parts deep use a heuristic to provide

the most relevant module identifier by using the directory structure. We note that

“most relevant” is subjective, based on our experience as software professionals,

and on our observations of common approaches to code organization across soft-
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ware projects. The module identification logic first looks for the keyword ‘lib’ in the

path components, and then applies further heuristics, such as searching for com-

mon names (i.e., ‘src’, ‘test’, ‘include’) to consolidate the subtrees under the lowest

applicable level. As a clarifying example, we simply show a few the test cases in

Listing 4.5 that exercises our technique for module identification.

1 test_data = [
2 {’INPUT ’:

"security/nss/external_tests/google_test/gtest/src",
3 ’EXPECTED ’: "security/nss"
4 },
5 {’INPUT ’: "storage/test",
6 ’EXPECTED ’: "storage"
7 },
8 {’INPUT ’: "security/nss/lib/pki",
9 ’EXPECTED ’: "security/nss/lib/pki"

10 },
11 {’INPUT ’: "nsprpub/lib/libc/src",
12 ’EXPECTED ’: "nsprpub/lib/libc"
13 },
14 {’INPUT ’: "toolkit/components/build",
15 ’EXPECTED ’: "toolkit/components"
16 }

Listing 4.5: Python test snippet for module identification

Recall the module metrics MII and APIU are relative to a module and characterize

interaction with other modules. In both metrics, there is a concept of identifying

a public API for the module. We note that for a large projects, containing millions

of lines of code, it is necessary to devise an approximation for what constitutes the

public API, since it is unfeasible to search through the entire codebase. Our method

relies in part on information from the Understand tool, as well as heuristics of our

own design.

As we process functions (or methods) in the codebase using the understand tool,

we identify front line functions [25] from the standard C library, according to the

list given by Manadhata [51]. We consider such front line functions part of a STDLIB
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meta-module. All front line functions thus identified are considered part of the

STDLIB public API. Automated identification of the functions in the public API of

other modules (that is, modules that are not the STDLIB meta-module) are based

on the filename, its extension, or information reported by the Understand tool. We

briefly expand on these steps in the following paragraphs.

After determining a function’s possible inclusion in the STDLIB meta-module,

we subsequently examine the filename reported to contain the function, and take

different branches of additional processing, depending on whether the file is a header

file (i.e., .h), or a source file (i.e., .c).

Functions (methods) in header files are classified as API functions if the header
declaring them meets any of the following:

• ends with .IDL, as such define interfaces (i.e., API) calls

• contains the string ‘PUBLIC’ anywhere in the name, ‘PUB/’ in a path stem,
or ‘PUB.’ preceding the file extension

• contains the string ‘API/’ in a path stem, or ‘API.’ preceding the file exten-
sion

Functions (methods) in source files: are classified as API functions if the name of
the function starts with the name of its file stem. An example is would be
sqlite3_exec(), found in sqlite3.c. The function name sqlite3_exec()
starts with stem sqlite3

Finally, we look at the information reported by the Understand tool, related to the

function declaration. If the declaration is either ’VIRTUAL FUNCTION’, or ’STATIC

MEMBER FUNCTION’, we classify the function as an API function because, in our

experience, the majority of such functions define a class interface. Virtual functions

often form the base of inheritance, in order to provide a uniform interface that can

be subclassed. Likewise, static member functions are often used as builder or factory

objects, as interfaces to allocate resources or return handles to dynamically created

objects.
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Similar techniques are used prior to public determination, based on the above

heuristics, based on whether the string ’PRIVATE’ and its variants appear in the

filename, as well as similar techniques given to the ’STATIC’ and ’PRIVATE’ keywords,

depending on a variety of nuances best examined directly from the source code for

our mining software.

As noted above, calculation of the module metrics require that functions be clas-

sified as API functions.We elaborate the preceding detail regarding our techniques,

since as stated, they directly impact calculation of module the metrics. Because

our mining and training software performs no additional compilation (and we per-

form no additional preprocessor definition for the Understand tool, inbound calls

are overestimated for conditionally compiled code. In such cases, Understand can-

not tell what code would actually be compiled into the resulting build. This was a

compromise made in order to study several sequential versions of large open source

projects such as Firefox; again, it simply is not feasible to define all these by hand for

each version of our large study subjects. However, because inbound calls are overes-

timated, and API calls are likely underestimated, the overall approach is conservative

in terms of keeping with our theme of severity. As we will see, this is reflected by

our empirical data that show good discrimination performance based on the count

of public API functions (n_api). That is, N_API is a simple characterization of the

interconnected of a module.

4.7 Change Burst Detection

Change bursts and their related metrics are discussed in detail in Sections 2.1.3 and

3.10. This section provides additional detail around the mining and extraction of

change burst metrics. We provide additional insight on our change burst detection
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Figure 4.6: Burst detection state machine

approach and detail caveats and assumptions made when calculating change burst

metrics.

Recall that a change burst, CB(G,B) is parameterized with with gap size G and

burst size B. The gap size, G, is the maximum distance between successive changes,

such that those changes are considered within the same burst. The burst size is

the minimum number of successive changes required to be considered a burst. Fig-

ure 4.6 shows the state machine logic used to detect these burst sequences with

parameters G and B.

Adjusting the the gap size and burst size enables additional filtering on the re-

lated metrics. Increases in burst size decreases across the maximum absolute values

for related metrics as the shorter burst sequences are eliminated from consideration.

Increases in gap size result in longer burst sequences that in turn yield increasingly

larger maximum absolute values. These relationships are shown in Figure 4.7 rela-

tive to the number of files changed within a burst.
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Figure 4.7: Change burst parameter effect on files changed metric
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Nagappan et. al. [65] note that a controlled change process is required in order

for bursts to provide a meaningful signal against the noise of regular development

activity. This implies that changes go through some type of review before committed

to the central repository. A common practice in industry is to first review the change

with an online review tool before finally “submitting”, or uploading it into the central

VCS.

Our mining software uses the git “commit date" associated with each changeset

in order to perform comparisons against a gap size, G, which is specified in days. A

phenomenon complicating the construction of the training database is the fact that

dates associated with changesets in a VCS do not necessarily follow the sequence in

which those changesets are merged into the VCS. This often occurs when as different

branches are merged together, or may also result when a changeset is under review

for a long period. Additionally, at least under git, it is also possible to manipulate the

commit date. We encountered this phenomenon, which we refer to as “a reversal”,

for both Firefox and MySQL repositories. A reversal occurs when the date associated

with a subsequent change Changei+1, precedes the current change Changei. That

is, we expect the mapping between change sequence and its corresponding date

sequence to maintain relative ordering,Date(Changei) � Date(Changei+1), i ∈ I .

However, a reversal is the violation of this expected ordering.

In the case of Firefox, we attempted to use supplementary information available

to correct the date. Specifically, our mining software searches through the comments

in the associated ITS entry, in order to determine when staged changes were pushed

to the Mozilla Central development trunk. Briefly, our method is outlined as follows:

1. Parse the ITS entry (bug_id) from the git commit message

2. Fetch the ITS entry by bug_id
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3. Search comments for the Mozilla Central URL

RE_HG_MOZ_URL = re.compile( re.escape (\

"https ://hg.mozilla.org/mozilla -central/rev/") + "(\w+)" )

4. Search for the push date needed for the correction

RE_PUSH_DATEMATCH = re.compile (\

".*\s+at\s+(\d{4}\-\d{2}\-\d{2}\s+\

\d{2}\:\d{2}\s+[\ -|\+]\d{4})")

Because it is not possible to determine a correction in all cases, we also log this

phenomenon as two new burst measurements we call CountReversals and MaxSe-

qByDate. In cases where the mining software encounters no date reversals in the

VCS between versions N −1 and N, then MaxSeqByDate is equivalent to the number

of commits (i.e., CountTouches) over the interval defined by N − 1 to N. In cases

where a reversal occurs, MaxSeqByDate represents the largest contiguous sequence

before encountering a date reversal.

4.8 Approach Summary

This chapter provided a review of key aspects of our approach. We reviewed the

overall mining and model building approach and then highlighted specific details

relevant to both the experimental results and other researchers. In particular, we

reviewed our rational for deciding on specific version ranges of our study subjects,

reviewed challenges faced, and discussed our workarounds for the same. Overall, the

key points to take away from this section are experiences regarding burst collection,

and our definition of the Previous Vulnerability Assumption.
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With our approach to change burst collection, we look at each individual commit

or VCS change-set for the purposes of gathering the sequential changes on a module,

which we define as a directory. Because of challenges associated with a VCS, and

the manner in which code is committed to a central repository, we have additionally

introduced the concept of a reversal. A reversal occurs when the date associated with

a subsequent change precedes the current change. We add additional measurements

CountReversals and MaxSeqByDate to quantify the reversal phenomenon.

The Previous Vulnerability Assumption aids us in setting up our training data

for evaluating correlation between individual metrics and the severity of security

vulnerabilities. In the face of uncertainty as to which versions of a file a CVE might

apply, we assume all previous versions are vulnerable (assuming of course that asso-

ciated files exist in said previous version). Since the assumption applies retroactively

(i.e., looks backward in time, applying to previous versions), we believe it is a better

approximation of the true population of vulnerable files at that historical point in

time.

Although this historical viewpoint may be of limited utility for carrying out pre-

dictions at present, we posit that it offers a superior test and evaluation environment

for building and evaluating the performance of vulnerability prediction models; if

for no other reason than there is more information available on which to train and

evaluate prediction performance. Moreover, we don’t make these statements with-

out supporting empirical evidence. In Chapter 5, we provide data that empirically

supports this claim.
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Chapter 5

Experimental Results, and Analysis of
Metrics and Vulnerability Predictions

In this chapter, we enumerate the experimental results for our software case stud-

ies. Results within each section are prefaced by an overview of the the project and

important characteristics, such as versions studied, project size, and the approxima-

tion of the project’s true vulnerability density given by our historical training tables

(i.e., that define the vulnerable training set). A detailed discussion of observations

that affect prediction model building are discussed according to the top performing

metrics, evaluated by Welch’s two-tailed test and Spearman rank correlation.

As we lead into the subsequent sections, we note the impact on the view of the

vulnerability tables built for a project, by version “slices”, moving forward in time

across said slices. As the data presented in this section will show, we find new

insights with this view of training as we observe higher average precision in early

version slices and subsequently observe it “roll off” as we advance our example

learning framework through those slices.

Note that both Welch’s two-tailed test and the Spearman correlation do not make

any assumptions about the distribution of the true populations from which our ex-

perimental samples are evaluated. That is, both Welch’s test and the Spearman cor-
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relation are non-parametric. Non-parametric evaluation techniques are especially

relevant for vulnerability model building because:

1. The true (i.e., real) distribution of residual vulnerabilities is unknown

2. Vulnerable entities are the minority class

Regarding the second item, vulnerabilities are far fewer in number, if not or-

ders of magnitude so, when compared to standard issue defects. We also note that

the t-test is used to evaluate class discrimination, while Spearman is used to evalu-

ate relative ranks of values. As also noted by Shin [81], we note here that because

Spearman is a rank order correlation, it does not make any quantification related to

linear relationships or magnitudes of the same. We feel this last point is important

to stress in order to distinguish from the more commonly used Pearson correlation,

which does assess linear relationship and magnitude.

5.1 Test Harness and Evaluation Approach

For each case study, we use the same experimental framework for evaluation. Our

framework for evaluation consists of a training and test harness built with Scikit-

learn [71] that provides a ten-fold stratified random split of the data, withholding 33%

of the data for test evaluation. The framework is applied on select metrics, iterating

the ten-fold stratified split for 10 iterations (e.g. 10 x 10-fold cross-validation), as is

a widely accepted practice in vulnerability model evaluation.

We note here salient elements of our overall evaluation, adopted as a conven-

tion in our reporting. Because we are searching for residual vulnerabilities, their

true population distribution is unknown by definition. Therefore we are always as-

suming that any statement about the vulnerability population is an approximation.
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Moreover, from the samples we have (i.e., the files we’ve already labeled as vulnera-

ble and neutral) it is evident that the distributions are heavily skewed, with neutral

files outnumbering vulnerable files by a factor of roughly ten to one. Hence, we use

the random stratified sampling technique to preserve the skewed distribution in our

datasets, while training across the ten folds prevents our model from over-fitting on

neutral files (i.e., the majority class).

5.2 Training Labels and Metrics Definitions

This section provides a roadmap for the case studies presented in this chapter. We

describe the training scores and labels associated with vulnerable files and review

the definitions for the metrics analyzed.

Vulnerable and neutral entities (i.e., files and modules) are distinguished based

on a binomial column label Vuln. We set Vuln 1̄ for vulnerable entities that we

mined from security advisories and release notes as described in Section 4.3. Neutral

entities, or entities where no vulnerability has yet been found are labeled with Vuln

= 0. We remind the reader with the caveat that although neutral entities are not yet

known to be vulnerable, a label of Vuln = 0 is not an unequivocal assertion that the

entity is not yet vulnerable in reality. Rather, Vuln = 0 means we don’t know the

entity is vulnerable.

5.2.1 Counting Vulnerabilities and Quantifying Severity

In addition to the binomial Vuln label, we can also count how many security related

issues that the file was associated with from the ITS, VCS, or determined vulnera-

ble using some other reference source. Other reference sources in our context are

primarily release notes or CVE entries. The number of security related issues thus
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Metric Definition

Vuln
The binomial label indicating whether or not the entity is vul-
nerable or neutral. For modules, this is set to 1 if the module
contains at least one vulnerable file.

RawCount

The ordinal count of security issues (most commonly counted
as ITS entries) associated with a file in version N + 1. For mod-
ules, this is the sum of the RawCount across all files within the
module.

CveCount
The ordinal count of CVE entries associated with a file in version
N. For modules, this is the sum of the CveCount for all files in
the module.

AvgScore

TotalScore ÷ CveCount. Simply, the average score; refer to To-
talScore and CveCount defined in other rows. AvgScore is equal
to the CVSS Base score metric in cases where CveCount is 1, and
is 0 when CveCount is 0.

MaxScore
The maximum CVSS score, from among associated CVEs (float-
ing point). For modules, this is the maximum across all files
contained in the module.

TotalScore
The sum of CVSS scores from associated CVEs (floating point).
For modules, this is the sum of the TotalScore across all files
contained in the module.

Table 5.1: Definitions for classification labels and expected scores
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determined is stored as RawCount. The RawCount for an entity in version N, is the

number of security related issues fixed in the next version, N + 1, and represents

the likelihood that the entity is vulnerability prone.

The CveCount is an ordinal value indicating the number of unique CVE entries

with which an entity is associated, irrespective of version. For example, if a file

(foo.c) is associated with three different CVE entries in version N, then CveCount = 3.

Note that RawCount indicates the number of security issues with which the entity

was associated, without requiring the entity to be resolved (cross-referenced) to a

CVE. By resolved, we typically mean that the ITS entry (e.g., Bugzilla id 1226423)

referenced a corresponding CVE identifier (e.g., CVE-2015-7223), and that said CVE

identifier was also in the official list we mined from NIST NVD as described in Section

4.3. For those entities which we were able to cross-reference to a CVE entry, we

define additional CVE-based counts and scores. These additional CVE-based scores

are defined in Table 5.1, along with Vuln and RawCount.

We undertake to stress to the reader that “vulnerability”, and even “vulnerabil-

ity count” are nebulous terms. In this work, assume that “vulnerability count”, or

VulnCount as we call it in many of our figures, is the same as the CveCount. We

elaborate on these nuances and relationships here to clarify that it is important to

be specific about one’s definition of “vulnerability” and “count of vulnerabilities”.

The use of a vulnerability count measure without specific definition is inherently

ambiguous and has the potential to lead to inconsistent results and confusion.

RawCount and CveCount may differ for a vulnerable entity, especially when that

entity is involved in more than one vulnerability. We will use a file to explain the

point, but a module would also be similarly affected. Using a file as our example,

we assume that a vulnerable file must be associated with at least one ITS entry (i.e.,

RawCount = 1), to know that it is vulnerable. Following from the relationships dis-
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cussed in Section 4.3, and illustrated in Figure 4.5, the following relationships are

possible for our example file:

RawCount == CveCount when a single unique ITS entry maps to a single unique

CVE identifier.

RawCount < CveCount when a single unique ITS entry maps to multiple unique

CVE identifiers.

RawCount > CveCount when multiple unique ITS entries map to either

• a single unique CVE identifier, or

• no CVE identifiers

As stated above, the preceding relationships are presented, for example pur-

poses, assuming the entity (e.g., a file) is associated with an ITS entry (as was the case

for Firefox). However, as discussed in Section 4.3, vulnerable entities are not always

classified as vulnerable through association with an ITS entry. Recall that a vulnera-

ble classification may also be derived from the VCS, by mention of a CVE identifier (as

was the method used for MySQL Database), or named directly in a CVE entry (as was

the method used for Apache HTTP Web server). For our purposes, RawCount helps

to identify vulnerable entities we learned about through our mining activities, but

were not resolved to a particular CVE entry. Entities with a RawCount > CveCount,

and where CveCount = 0, represent entities that we have learned are vulnerable, but

for which severity cannot also be ascribed.

Throughout this work, we use CveCount interchangeably with “vulnerability count”.

By standardizing on CveCount, we build on the already well-formed definition for

CVE entries (and their use in industry) as synonymous with identified security vulner-

abilities in software. Finally, our decision to standardize on CveCount additionally
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facilitates our use of CVSS scores that are exclusively associated with CVE entries as

severity quantification metrics. Note that when CveCount = 1, the average, max, and

total are all equal. Table 5.1 summarizes the quantification metrics.

As stated, the CVSS-derived scores enable us to quantify severity. We note here

that although RawCount and CveCount can be used as estimators for vulnerability

proneness, they may fail to accurately characterize (i.e., estimate) severity. Although

it is true that RawCount can tell us whether or not a file is a likely “repeat offender”

(that is, a party to more than one reported security fix), there is no additional quan-

tification of severity. For purposes of discussion, we will refer to such current ap-

proaches as “RawCount estimators”.

The failure of RawCount based estimators to better characterize severity is a

shortcoming of contemporary approaches because they do not correspond well with

the real problem. Contemporary model building approaches built only on RawCount

estimators fail to account for the properties of one-off severe bugs in the cyber se-

curity domain. That is, a software entity may only be involved in one security fix

during its existence (i.e. RawCount = 1), but it is entirely plausible that the vul-

nerability corresponding to said fix, when exploited by a bad actor, results in full

information security compromise. That is, the affected victim suffers a complete

loss of confidentiality, integrity, and/or availability to their information and com-

putation resources. Because current approaches emphasize estimation of the fix

probability alone, they may miss the more important identification of vulnerable

files with severe impact. Moreover, this phenomenon is in fact exacerbated since,

as our data show, and as past case studies in the related literature repeatedly show,

repeat offenders are in the minority of vulnerable entities.

Because empirical evidence suggests that repeat offenders are in the minority

of vulnerable entities, coupled with the fact that current approaches (to building
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vulnerability prediction models) emphasize estimators against RawCount, it follows

that current approaches also likely fail to accurately reflect the true vulnerability

distribution of a software project. Counting security fixes, and not otherwise em-

phasizing severity density and severity, strongly suggest that current approaches

to model building fail to capture the reality that a single vulnerability, in some cen-

tral module or file, can have a severe security impact. Hence, we not only examine

the discriminative power of our selected metrics (for predicting neutral vs vulner-

able class membership), but we also evaluate their rank order correlation against

our severity quantification scores: AvgScore, MaxScore, and TotalScore. Our CVSS-

derived scores are shown in Table 5.1. For all the reasons outlined in preceding

paragraphs, we believe metrics specifically selected for their relevance to the resid-

ual vulnerability problem, and that also estimate our CVSS-derived scores, provide

better correspondence with the true vulnerability distribution, and imbue models

built from them with an additional severity estimation component.

5.2.2 Complexity Metrics

All file level complexity metrics are extracted relative to the git commit revision

corresponding to our collected version N. As such, all metrics thus mined form a

set of observations at N for predicting N + 1.

We used SciTools Understand tool to extract file level complexity metrics. The

understand tool exports several metrics, detailed descriptions of which can be found

at [3]. We list the top few metrics that were repeatedly selected by the ANOVA [59]

filter in our classification experiments (i.e., primarily using the logit classifier), in

addition to a few metrics that are widely recognized across defect and vulnerability

literature. Refer to Figure 5.1 for a visualization of the the relative frequency among
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the top six metrics automatically selected based on the classif ANOVA prefilter we

used in Scikitlearn based learner pipeline when set to select K best features based on

F-score (or F statistic). Note that we also experimented with K at additional values

K < 5.

The visual in Figure 5.1 shows consistent selection of the same metrics, despite

using stratified random selection and iterating across all versions of Firefox over

our inspection interval. An observant reader may question why we show six bars,

when the feature selection limit, K is set to 5. Although the the top five features

were selected (i.e., K = 5), the chart displays six bars. This is not an error; whatever

random combination of vulnerable and neutral files selected in each fold determine

the corresponding variance and the subsequent selection corresponding metrics as a

coefficient in determining fit. Our test harness simply increments a frequency count

corresponding to the feature selected at each individual iteration. The interesting

result is not that there are six features, but the remarkable consistency required

to select the same subset of these few features over so many randomly perturbed

iterations.

5.2.3 File Level Churn Metrics

A review of file level churn metric definitions is provided in Table 5.3 to facilitate

quick reference in the following sections. Note that all churn metrics begin collection

by walking the reverse topographically sorted revision history provided by the git

log command from the revision corresponding to the interval N − 1 to N. The

observation point for prediction is still at version N. As such, all metrics thus mined

form a set of observations at N for predicting N + 1.
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Metric Definition

CountDeclFunction Number of functions.
CountLineCode Number of lines containing source code. [LOC]

CountLineCodeDecl
Number of lines containing declarative source
code.

CountLinePreprocessor Number of preprocessor lines.
CountStmt Number of statements.
CountStmtDecl Number of declarative statements.
CountStmtExe Number of executable statements.

MaxCyclomaticModified
Maximum modified cyclomatic complexity of
nested functions or methods.

MaxCyclomaticStrict
Maximum strict cyclomatic complexity of
nested functions or methods.

MaxNesting Maximum nesting level of control constructs.
RatioCommentToCode Ratio of comment lines to code lines.

SumCyclomatic
Sum of cyclomatic complexity of all nested
functions or methods. [aka WMC]

SumEssential
Sum of essential complexity of all nested func-
tions or methods.

Table 5.2: Definitions for file complexity metrics at version N

Metric Definition

CountTouches
The number of changsets (e.g., VCS commits)
touching the file since N − 1 [aka. Num-
Changes]

CountTouchesP1 CountTouches for this file from N − 2
CountTouchesP2 CountTouches for this file from N − 3

HCPF

The historical complexity period factor, an en-
tropy based metric indicating the file’s degree
of contribution to entropy over the interval
N − 1 to N

LinesAdded The number of lines added since N − 1
LinesModified The number of lines modified since N − 1
LinesDeleted The number of lines deleted since N − 1

TotalTouches
The cumulative sum of CountTouches at N,
from all prior intervals

Table 5.3: Definitions for file churn metrics at version N
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Metric Definition

CountTouches
The number of changsets (e.g., VCS commits)
touching the module path since N − 1 [aka.
NumberOfConsecutiveChanges] 3.10].

CountReversals
The number of commit date reversals encoun-
tered when scanning the (e.g., VCS commits)
changes within the module since N − 1.

MaxSeqByDate
Largest sequence of consecutive changes by
date when CountReversals > 0, otherwise this
metric is equivalent to CountTouches.

CountBursts
The total count of bursts in the module since
N − 1 [aka. NumberOfChangeBursts].

CountFilesChanged
The total count of files changed in the module
since N − 1.

NetAddedInBurst

A churn metric characterizing the net positive
number of lines added since N − 1. This is
LinesAdded - LinesDeleted, when LinesDeleted
≤ LinesAdded, otherwise 0. This quantity is
LinesAdded when LinesDeleted = 0.

TotalChurnInBurst
The number of lines modified, as the sum of
lines added and lines deleted since N − 1 (as
reported by git diff).

Table 5.4: Definitions for module change burst metrics observed at version N

5.2.4 Module Level Burst and Architectural Metrics

Module level burst metrics are defined in Table 5.4 to facilitate quick reference in

the following sections. Note that all churn metrics begin collection by walking the

reverse topographically sorted revision history provided by the git log command

from the revision corresponding to the interval N − 1 to N. The observation point

for prediction is still at version N. As such, all metrics thus mined form a set of

observations at N for predicting N + 1.

In the course of our study we added additional metrics not found in the original

literature 3.10. In particular, we have added CountReversals and CountFilesChanged

as discussed in Section 4.7.
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Metric Definition

APIU
The API function usage index defined in Sec-
tion 3.8; appears in graphs in lowercase as
apiu.

k_ext_fa
Number of calls from external modules to the
public API exposed by a given module; Refer
to Section 3.8

k_ext_m
Number of external calls from external mod-
ules; Refer to Section 3.8.

MII
Module Interaction Index defined in Section
3.8; appears in generated graphs in lowercase
mii.

N_API
The number of public API functions or meth-
ods exported by a module, discussed in Sec-
tion 4.6

Table 5.5: Definitions for module metrics observed at version N

Version LOC CountFunctions CountMethods CountFiles

6 2,584,376 145,384 82,529 11,329
28 4,473,921 263,480 105,902 20,050
49 5,818,230 355,352 116,753 25,592

Table 5.6: Firefox project statistics

Table 5.5 provides an overview of our module metric definitions.

5.3 Case Study 1: Mozilla Firefox Web Browser

We studied Mozilla Firefox versions 6 to 49, representing a time span of approxi-

mately five years from August, 2011 to August, 2016. Table 5.6 provides an overview

of size measurements across the first, middle, and last versions studied. The mea-

surements shown here were collected from the SciTools Understand tool [3]. The

files processed include only source and header files (e.g, .c, .cpp, .h, etc.), and addi-

tionally exclude documentation and test folders in the project’s working tree.

As depicted in Table 5.6, there are significant differences in size across the ver-
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sions studied. Version 28, representing the middle version, is nearly double (1.7

times) the size of version 6 when measured in lines of code (LOC). The last version,

49, has more than double (2.25 times) the LOC than in version 6, and is 1.3 times

larger than version 28. Likewise, the number of files in the last version, 49, are more

than double (2.25 times) the number in version 6. Given such large differences, we

would expect that Firefox version 49 is a much different piece of software than it

was at version 6.

A concern with Firefox version 49 being much different from version 6 relate to

the validity of the Previously Vulnerable Assumption. Recall that the Previously Vul-

nerable Assumption presented in Section 4.4 states that if a vulnerability is fixed in

version N, then we assume all previous versions are also vulnerable. In this case, if

our data indicates that some file (e.g., foo.c) was fixed in version 49, then, contingent

on the existence of foo.c in each version, we would assume that foo.cwas vulnera-

ble in all previous versions 6 through 48. However, software which undergoes such

significant change can see the vulnerability either masked or exposed more promi-

nently as the topology of the call structure changes [92], as functionality migrates in

and out of other files, or the project is otherwise refactored. Conversely, the Previ-

ously Vulnerable Assumption may find limitation when a file is renamed throughout

its lifetime. In that case, using our example of foo.c fixed in version 49, our labeling

technique would fail to identify foo.c in version 48 if the file was renamed between

versions 48 and 49. Although we’ve noted this concern, we remind the reader that

our decision to apply it for metric evaluation in Firefox is derived from our careful

study of the CVE data associated with Firefox, as discussed in Section 4.4.

Figure 5.2 is a visualization the number of vulnerabilities, binned to the nearest

whole-numbered (i.e., major) version of Firefox, over our inspection interval I =

{6, . . . ,49}. In this figure, VulnCount represents the number of unique CVE entries
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plotted against the versions to which they apply. As shown, the figure represents

view of the historical vulnerability density in Firefox over I . The figure visually

depicts the pattern we noticed in CVE data for Firefox that supports the Previously

Vulnerable Assumption and forms the basis for feature evaluation when building

prediction models for Firefox.

Figure 5.2: Historical vulnerability density for Firefox versions 6..49

The list of applicable affected versions is derived directly from the CVE entries

themselves. Firefox related CVE entries in the NIST NVD, for versions 6 to 36, specif-

ically enumerate all prior versions as previously discussed in Section 4.3. A short

tabular summary of the top ten versions, sorted by VulnCount per version, is shown

in Table 5.7.

The pattern, as depicted by Figure 5.2 and Table 5.7, shows the effect of a retroac-

tive, linearly increasing offset that “swells” the VulnCount of earlier versions; col-
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VulnCount Version

298 6
288 7
281 8
274 9
253 11
243 12
235 10
231 13
212 14
180 15

Table 5.7: Vulnerabilities per Firefox version, 6..49

loquially speaking, we feel the catch phrase a “rising tide lifts all boats” fits well

here. Early visualization of this data for Firefox informed our vulnerability table

construction technique discussed in Section 4.5 and the also resulted in the Previ-

ously Vulnerable Assumption presented in Section 4.3.

Because the vulnerability table used for training is built from files known to be

vulnerable, it consists of samples from the residual vulnerability population and

thereby forms an approximation of the true vulnerability distribution for Firefox.

We refer the reader to the concept of the vulnerability signal and fix signal discussed

in Section 4.5.1. The green NumFixedVulns in Figure 5.3 represents the number of

Bugzilla security issues fixed, plotted against each Firefox version – the fix signal.

Note that the count of files fixed, CountFixedFiles, closely tracks NumFixedVulns (or

the fix signal) in Figure 5.3.

Our overall model building approach and corresponding view of fix and vulnera-

bility signals is reinforced when we plot the number of fixed issues from the ITS for

each RLS version (see Section 5.3.5) against counts of Firefox CVE entries per RLS ver-

sion. This plot is shown in Figure 5.4, and shows the impact of known security fixes

(the blue line) against the the count of unique CVE entries (the green line) affecting
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Figure 5.3: Fixed files and fixed security issues; Firefox 6..49

each version of Firefox. As shown, features A and B from fixes in the earlier version

slices more severely lag in their appearance in the CVE data due to the effects of the

Previously Vulnerable Assumption.

Note that Figure 5.4 simply plots two measured values present in our mined data.

We can see that the tip of feature A, between versions 16 to 18, leads its appearance in

the CVE data around slice 18. The image also shows what appears to be an increasing

phase shift where the fix signal is echoed more rapidly in the CVE vulnerability counts

of later slices. Because the overall density curve is standardized by the total sum

of all CVE counts for all slices, the density signal flattens out and shows the effects

of the spike near version 45 from the fix signal much less prominently. This view
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supports the Previously Vulnerable Assumption because the high counts from the

spike at 45 feed backward into prior slices, which works to reduce its impact on the

density curve at version 45.

10 15 20 25 30 35 40 45

FixVersion

� 3

� 2

� 1

0

1

2

3

4

NumFixedVulns

VulnCount

A

B

Figure 5.4: Similar trend observations A and B

We remind the reader that our statements and assumptions are based on our au-

tomatically mined data for Firefox (and our other subjects) and although we observed

similar patterns across all our study subjects, each project’s signature is relevant for

model evaluation against it alone. We also note that the results of metric evaluation

(such as when using Spearman correlation) are contingent on the accuracy of the

mined data; the accuracy and shape of the vulnerability density curve is subject to

the accuracy of the mined data.The shape of the vulnerability density curve used for
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CveCount AvgScore MaxScore TotalScore

AltAvgLineCode 0.127 0.034 0.018 0.064
AltCountLineCode 0.287 0.059 0.063 0.154
AvgCyclomatic 0.111 0.007 0.041 0.073
AvgCyclomaticModified 0.116 0.009 0.042 0.075
AvgCyclomaticStrict 0.114 0.012 0.037 0.072
AvgEssential 0.125 0.007 0.049 0.083
CountDeclFunction 0.260 0.076 0.041 0.118
CountLineCode 0.278 0.069 0.051 0.141
CountLineCodeDecl 0.286 0.049 0.076 0.162
CountLineCodeExe 0.254 0.064 0.048 0.127
CountLineComment 0.293 0.075 0.048 0.148
CountLinePreprocessor 0.260 0.111 0.004 0.093
CountStmt 0.278 0.064 0.054 0.144
CountStmtDecl 0.279 0.050 0.071 0.155
CountStmtExe 0.254 0.071 0.040 0.121
MaxCyclomatic 0.191 0.053 0.029 0.091
MaxCyclomaticModified 0.197 0.057 0.029 0.093
MaxCyclomaticStrict 0.193 0.058 0.027 0.090
MaxEssential 0.195 0.058 0.031 0.091
MaxNesting 0.190 0.054 0.029 0.089
RatioCommentToCode 0.001 0.017 0.020 0.004
SumCyclomatic 0.256 0.063 0.051 0.128
SumCyclomaticModified 0.260 0.067 0.049 0.128
SumCyclomaticStrict 0.255 0.065 0.049 0.126
SumEssential 0.268 0.066 0.055 0.134

Table 5.8: Average Spearman ρ for file complexity metrics; Firefox 7..26

evaluation of metrics results from the table marking approach discussed in Section

4.5.

5.3.1 File Level Complexity Metrics

Table 5.8 shows the average Spearman correlations of file complexity metrics with

severity quantification metrics for Firefox versions 7 to 26. All correlations have

p < 0.05.
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Version t_stat M_vuln M_neut Mean Ratio

CountDeclFunction 14.244 46.488 9.948 4.673
CountLineCodeDecl 13.451 275.398 73.338 3.755
MaxNesting 19.974 3.203 1.449 2.211
SumCyclomatic 13.572 204.188 38.911 5.248
SumEssential 13.550 122.037 21.888 5.576

Table 5.9: Welch t_stat measures for top performing complexity metrics; Firefox
7..26

Version CveCount AvgScore MaxScore TotalScore

CountTouches 0.317 0.006 0.139 0.219
CountTouchesP1 0.301 0.010 0.136 0.210
CountTouchesP2 0.284 0.016 0.134 0.202
HCPF 0.302 0.011 0.117 0.197
LinesAdded 0.305 0.007 0.118 0.202
LinesModified 0.299 0.022 0.106 0.186
LinesDeleted 0.307 0.001 0.125 0.208
TotalTouches 0.273 0.055 0.070 0.138

Table 5.10: Average Spearman ρ for file churn metrics; Firefox 7..26

Table 5.9 shows the average t_stat from Welch’s test, along with the average mean

for the vulnerable and neutral set. Also shown is the ratio of the vulnerable to neutral

mean for the top performing complexity metrics (per test harness described in 5.1).

5.3.2 File Level Churn Metrics

Table 5.10 shows the average Spearman correlations of file churn metrics with sever-

ity quantification metrics for Firefox versions 7 to 26.

Table 5.11 shows the average t_stat from Welch’s test, along with the average

mean for the vulnerable and neutral set. Also shown is the ratio of the vulnerable

to neutral mean for file churn metrics.

Table 5.12 shows an X where the p < 0.05 value from Welch’s t test for churn

metrics for the versions 7..26 of Firefox. We note that thep fails to indicate statistical
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Version t_stat M_vuln M_neut Mean Ratio

CountTouches 13.555 4.876 0.517 9.430
CountTouchesP1 13.156 10.023 1.223 8.199
CountTouchesP2 12.811 15.026 1.936 7.760
HCPF 6.988 0.006 0.000 18.811
LinesAdded 6.656 55.947 3.047 18.359
LinesDeleted 5.723 49.298 2.433 20.262
LinesModified 7.262 28.755 1.338 21.487
TotalTouches 12.354 124.238 13.870 8.957

Table 5.11: Welch t_stat measures for file churn metrics; Firefox 7..26

significance among the metrics, in some version slices and therefore may not be

suitable for use as a class discriminator.

5.3.3 Module Level Burst and Architectural Metrics

Table 5.13 shows the average Spearman correlations of change burst churn metrics

CB(2,2) with severity quantification metrics for Firefox versions 7 to 26. Table 5.14

shows the average Spearman correlations of module metrics with severity quantifi-

cation metrics for Firefox versions 7 to 26. Table 5.15 shows the average t_stat

from Welch’s test, along with the average mean for the vulnerable and neutral set.

Also shown is the ratio of the vulnerable to neutral mean for module metrics. Table

5.16 shows the results of p value testing from Welch’s t test for module metrics.

The results indicate applicability for discriminative power only over certain version

slices.

5.3.4 Firefox Prediction Experiments

In the limited number of experiments we were able to perform with churn and tra-

ditional complexity metrics, we noted a marked difference in prediction results, de-
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7 X X X 0 0 0 0 X
8 X X X 0 0 0 X X
9 X X X 0 0 0 0 X

10 X X X 0 0 0 0 X
11 X X X X X 0 X X
12 0 X X 0 0 X 0 X
13 X 0 X X X 0 X X
14 0 X 0 0 0 0 0 X
15 X 0 X X X 0 0 X
16 X X 0 X 0 X 0 X
17 X X X 0 0 X 0 X
18 X X X X 0 0 0 X
19 0 X X 0 0 0 X X
20 0 0 X 0 0 0 0 X
21 X 0 0 0 0 0 0 X
22 0 X 0 0 0 0 0 X
23 X 0 X 0 0 0 0 X
24 X X 0 0 0 0 0 X
25 0 X X 0 X X 0 X
26 0 0 X 0 0 0 0 X
27 0 0 0 0 0 0 0 X

Table 5.12: Results of file churn metric pval tests, 7..26; X: p < 0.05

CveCount AvgScore MaxScore TotalScore

CountTouches 0.387 0.071 0.197 0.368
CountReversals 0.361 0.059 0.192 0.344
MaxSeqByDate 0.335 0.082 0.175 0.324
CountBursts 0.373 0.07 0.194 0.356
CountFilesChanged 0.403 0.11 0.231 0.395
NetAddedInBurst 0.396 0.1 0.236 0.39
TotalChurnInBurst 0.397 0.099 0.233 0.389

Table 5.13: Average Spearman ρ for change burst metrics CB(2,2); Firefox 7..26
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CveCount AvgScore MaxScore TotalScore

APIU 0.272 0.298 0.036 0.16
k_ext_fa .096 0.32 0.172 0.173
k_ext_m 0.167 0.206 0.163 0.22
MII 0.105 0.18 0.025 0.061
N_API 0.38 0.256 0.331 0.427

Table 5.14: Average Spearman ρ for module metrics; Firefox 7..26

Version t_stat M_vuln M_neut Mean Ratio

APIU -0.467 0.036 0.047 0.762
k_ext_fa 1.222 53.989 13.352 4.044
k_ext_m 0.600 456.671 306.405 1.490
MII 2.352 0.233 0.085 2.749
N_API 2.148 507.838 112.633 4.509

Table 5.15: Welch t_stat measures for module metrics; Firefox 7..26

Version APIU k_ext_fa k_ext_m MII N_API

1 0 0 0 0 0
7 0 0 0 0 0
8 0 0 0 0 0
9 0 0 0 0 0
10 0 0 0 0 0
11 0 0 0 0 0
12 0 0 0 0 0
13 0 0 0 0 0
14 0 0 0 0 0
15 0 0 0 0 0
16 0 0 0 0 0
17 0 X 0 X 0
18 0 X 0 X 0
19 0 X 0 X 0
20 0 X 0 X 0
21 0 X 0 X 0
22 0 X 0 X 0
23 0 X 0 X 0
24 0 X 0 X 0
25 0 X 0 X 0
26 0 X 0 X 0
27 0 X 0 X 0

Table 5.16: Results of module metric pval tests, Firefox 7..26; X: p < 0.05
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spite the churn metrics p value from the Welch test exceeding 0.05.

5.3.4.1 Firefox experiment comparing complexity and churn, K = 3

Table 5.17 shows prediction performance of our prediction test harness selecting the

best three complexity features and performing vulnerability predictions for Firefox

versions 7 to 26. The three best selected features were, in order: SumCyclomatic-

Modified, SumEssential, and CountDeclFunction.

Table 5.18 shows prediction performance of our prediction test harness select-

ing the best three file churn features and performing vulnerability predictions for

Firefox versions 7 to 26. The features selected were, in order: CountTouches, Count-

TouchesP1, and TotalTouches.

Comparing predictions from Table 5.17 and Table 5.18, we note generally higher

precision values and tighter variance in prediction accuracy within 2σ , or the 95%

confidence interval.

5.3.4.2 Firefox experiment comparing complexity and churn, K = 5

We increased K from three to five and re-ran the experiment described in Section

5.3.4.1. The model using only complexity metrics selected, in order: SumCyclomat-

icModified, CountDeclFunction, SumCyclomatic, SumEssential, and CountStmtDecl.

Table 5.19 shows the mean precision and the accuracy of mean precision inside the

95% confidence interval.

The model using churn metrics selected, in order: TotalTouches, CountTouches,

CountTouchesP1, CountTouchesP2, and HCPF. Table 5.20 shows the mean precision

and the accuracy of the mean precision inside the 95% confidence interval. The

comparison of the two results shows a marked improvement using the churn based
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Version Mprec +/– 95%

7 0.60 0.17
8 0.48 0.51
9 0.47 0.41
10 0.57 0.41
11 0.62 0.10
12 0.61 0.15
13 0.62 0.11
14 0.68 0.11
15 0.58 0.25
16 0.62 0.16
17 0.51 0.24
18 0.55 0.28
19 0.54 0.13
20 0.61 0.16
21 0.59 0.12
22 0.58 0.23
23 0.44 0.39
24 0.53 0.21
25 0.50 0.25
26 0.48 0.19

Table 5.17: Mean precision (Mprec) performance using complexity metrics; K = 3;
Firefox versions 7..26
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Version Mprec +/– 95%

7 0.69 0.13
8 0.69 0.10
9 0.67 0.11
10 0.71 0.12
11 0.71 0.08
12 0.68 0.09
13 0.73 0.10
14 0.73 0.11
15 0.69 0.09
16 0.70 0.12
17 0.70 0.11
18 0.70 0.09
19 0.66 0.10
20 0.67 0.08
21 0.67 0.12
22 0.65 0.08
23 0.66 0.10
24 0.63 0.12
25 0.59 0.09
26 0.65 0.11

Table 5.18: Mean precision (Mprec) performance using file churn metrics; K = 3;
Firefox versions 7..26
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Version Mprec +/– 95%

7 0.60 0.25
8 0.64 0.11
9 0.64 0.17
10 0.66 0.14
11 0.63 0.12
12 0.63 0.14
13 0.68 0.13
14 0.71 0.12
15 0.66 0.11
16 0.64 0.10
17 0.55 0.33
18 0.56 0.19
19 0.56 0.15
20 0.60 0.18
21 0.59 0.10
22 0.60 0.15
23 0.43 0.48
24 0.42 0.29
25 0.36 0.42
26 0.47 0.26

Table 5.19: Mean precision (Mprec) performance using file complexity metrics; K = 5;
Firefox versions 7..26

learner. These results are particularly impressive, but require additional validation

to ensure that the learning model isn’t falling prey to the pitfalls related to measuring

vulnerability oracles as discussed in Section 4.5.1. In Section 5.3.5, we review Firefox

release numbering as it relates to our techniques to build our training data to ensure

we have not unwittingly introduced a vulnerability oracle.

5.3.5 Firefox Release Correspondence to Collected Data

Although the nightly labels are each about a month apart, the calendar duration

between the nightly label (NB) and the corresponding release label (RB) may vary

anywhere from three to six months. Note that the span between NB and RLS versions
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Version Mprec +/– 95%

7 0.69 0.13
8 0.69 0.10
9 0.67 0.10
10 0.69 0.11
11 0.69 0.08
12 0.69 0.08
13 0.75 0.09
14 0.73 0.10
15 0.70 0.10
16 0.69 0.12
17 0.69 0.10
18 0.70 0.10
19 0.67 0.10
20 0.67 0.07
21 0.67 0.12
22 0.68 0.07
23 0.65 0.08
24 0.62 0.12
25 0.59 0.08
26 0.64 0.13

Table 5.20: Mean precision (Mprec) performance using file churn metrics metrics;
K = 5; Firefox versions 7..26

Date Version Label Label Type

04/12/11 6.0a1 NB
05/24/11 7.0a1 NB
06/21/11 5.0 RLS
07/05/11 8.0a1 RLS
08/16/11 6.0 RLS
08/16/11 9.0a1 NB
09/27/11 7.0 RLS
09/27/11 10.0a1 NB
11/08/11 8.0 RLS
11/08/11 11.0a1 NB
12/20/11 12.0a1 NB
01/31/12 10.0 RLS

Table 5.21: Firefox release (RLS) versions vs. first tagged nightly build (NB) versions,
ordered by date
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is greater than the typical month and a half, or six week release interval following

Mozilla’s Rapid Release Calendar. Table 5.21 shows an example four month span

between April 12, 2001, when the 6.0a1 label was assigned, and August 16, 2011

when version 6.0 was released. We also show a simplified depiction of the relative

version sequencing in Figure 5.5; simplified, because we’ve omitted branch detail for

visual clarity.

Figure 5.5: Simplified visualization showing nightly version 6.0a1 to release version
6.0

5.3.6 Discussion

Our automated mining techniques result in prediction between the nightly build

version and the final release version as discussed in Section 5.3.5. In the construction

of our training data, we were careful compare the set of files existing in the first prior

nightly build (NB), or the X.0a1 version from the Mozilla Central development trunk,

to those files that were fixed for a vulnerability in a particular release X. That is, we

measure on NB X.0a1, and then compare predictions to know fixes on RB X.

Table 5.21 shows the sequencing of nightly build (NB) versions, (labeled as X.0a1),
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relative to the release (RLS) versions (labeled as X.0). For example, NB version 6.0a1

corresponds to RLS version 6.0. Note that the FixVersion, or the version mined from

associated ITS reports, corresponds to the RLS version and not the NB version. As

such, we believe the development occurring on the main line of development (i.e.

“master”, or “trunk”) provides the needed separation to avoid measuring security

fixes as vulnerability oracles as discussed in Section 4.5.

As stated, we mined our VCS based metrics from the git repository commit re-

vision corresponding to the NB, and not the RLS label. We also extracted the NB

versions as individual snapshots for the collection of conventional complexity met-

rics, such as shown in Table . In similar form, the changes that define our period

based frequency metrics (e.g. file level churn and module level change bursts) were

collected from the respective nightly label.

Given the differences in our collection and comparison approach, our numbers

may not be directly comparable to past research studying Firefox. First, the versions

in our study are years more recent. Second, with the exception of CveCount, we don’t

evaluate correlation relative to frequency based counts. Third, we have introduced

new measurements according to an entirely new characterization of severity. With

all the preceding caveats stated, we note relatively higher correlation values for our

file complexity results when compared to that reported by Shin [81]. Top Spear-

man correlation values in her study of Firefox are set next to the correlation values

reported for CveCount earlier in this section.

5.4 Case Study 2: Apache Web Server

We studied Apache HTTP Server versions 2.2.0 to 2.2.29, representing a time span

of over eight and a half years from December, 2005 to August, 2014. We studied the
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Metric CveCount Corr Shin Corr

CountDeclFunction 0.260 0.159
LOC 0.278 0.170
CountLinePreprocessor 0.260 0.183
MaxCyclomaticStrict 0.193 0.132
MaxNesting 0.190 0.106
SumCyclomaticStrict 0.255 0.151
SumEssential 0.268 0.154

Table 5.22: Firefox Spearman correlation comparison

Number of Websites Apache Version

22,970,250 2.2
8,098,197 2.4
328,257 2.0
307,879 1.3

Table 5.23: Apache adoption by version [50]

micro (patch) versions of Apache HTTP Server 2.2.x. Table 5.23 shows the adoption

of the 2.2 version as of this writing, thus reinforcing our decision to study 2.2.x.

Table 5.24 provides an overview of size measurements across the first, middle,

and last versions studied. The measurements shown here were collected from the

SciTools Understand tool and exclude documentation and test folders in the project’s

source code tree. Note that we’ve excluded the count of methods from this table

because Apache HTTP is implemented exclusively in the C programming language

(i.e., contains functions only).

As shown by Table 5.24, the various sizes are relatively stable across the versions

studied. There were 18 files added between version 2.0.0 and 2.2.29, or a 6% increase

overall. Likewise, there is an approximate 7% increase in the number of lines between

versions 2.2.0 and 2.2.9.
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Version LOC CountFunctions CountFiles

2.2.0 113,138 2,799 305
2.2.15 118,183 2,898 309
2.2.29 120,950 2,977 323

Table 5.24: Apache HTTP Server project statistics

Figure 5.6: Historical vulnerability density in Apache HTTP versions 2.2.x, 0..29
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CveCount AvgScore MaxScore TotalScore

AltAvgLineCode 0.036 0.041 0.135 0.079
AltCountLineCode 0.037 0.116 0.144 0.086
AvgCyclomatic 0.011 0.025 0.06 0.008
AvgCyclomaticModified 0.028 0.034 0.06 0.015
AvgCyclomaticStrict 0.01 0.005 0.075 0.003
AvgEssential 0.075 0.092 0.018 0.097
CountDeclFunction 0.043 0.13 0.173 0.097
CountLineCode 0.04 0.152 0.167 0.108
CountLineCodeDecl 0.007 0.05 0.099 0.026
CountLineCodeExe 0.034 0.157 0.158 0.107
CountLineComment 0.133 0.053 0.052 0.082
CountLinePreprocessor 0.017 0.143 0.072 0.082
CountStmt 0.016 0.14 0.156 0.082
CountStmtDecl 0.007 0.036 0.087 0
CountStmtExe 0.041 0.151 0.153 0.105
MaxCyclomatic 0.144 0.129 0.065 0.051
MaxCyclomaticModified 0.118 0.115 0.059 0.042
MaxCyclomaticStrict 0.085 0.141 0.113 0.012
MaxEssential 0.032 0.182 0.11 0.106
MaxNesting 0.028 0.197 0.173 0.147
RatioCommentToCode 0.113 0.067 0.084 0.119
SumCyclomatic 0.056 0.172 0.188 0.133
SumCyclomaticModified 0.05 0.162 0.18 0.127
SumCyclomaticStrict 0.05 0.158 0.173 0.118
SumEssential 0.039 0.171 0.159 0.11

Table 5.25: Average Spearman ρ for file complexity metrics; Apache HTTP 2.2.0..29

5.4.1 File Level Complexity Metrics

Table 5.25 shows the average Spearman correlations of file complexity metrics with

severity quantification metrics for Apache HTTP versions 2.2.0..29. All correlations

have p < 0.05.

Table 5.26 shows the average t_stat from Welch’s test, along with the average

mean for the vulnerable and neutral set. Also shown is the ratio of the vulnerable to

neutral mean for the top performing complexity metrics (per test harness described

in 5.1).
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Version t_stat M_vuln M_neut Mean Ratio

CountDeclFunction 3.616 28.027 7.679 3.650
CountLineCode 3.652 979.564 326.536 3.000
MaxNesting 4.119 4.082 2.197 1.858
SumCyclomatic 3.786 180.744 48.771 3.706
SumEssential 3.783 101.580 27.256 3.727

Table 5.26: Welch t_stat measures for top performing complexity metrics; Apache
versions 2.2.x..29

CveCount AvgScore MaxScore TotalScore

CountTouches 0.185 0.134 0.065 0.044
CountTouchesP1 0.168 0.109 0.061 0.050
CountTouchesP2 0.168 0.108 0.064 0.052
HCPF 0.175 0.083 0.007 0.069
LinesAdded 0.180 0.091 0.020 0.073
LinesModified 0.166 0.061 0.010 0.076
LinesDeleted 0.138 0.087 0.014 0.061
TotalTouches 0.040 0.156 0.134 0.083

Table 5.27: Average Spearman ρ for file churn metrics; Apache versions 2.2.x..29

5.4.2 File Level Churn Metrics

Table 5.27 shows the average Spearman correlations of file churn metrics with sever-

ity quantification metrics for Apache HTTP versions 2.2.x..29

Table 5.28 shows the average t_stat from Welch’s test, along with the average

mean for the vulnerable and neutral set. Also shown is the ratio of the vulnerable

to neutral mean for file churn metrics.

5.4.3 Module Level Burst and Architectural Metrics

Table 5.29 shows the average Spearman correlations of change burst churn metrics

CB(2,2) with severity quantification metrics for Apache HTTP versions 2.2.x..29. We

note that CountBursts shows relatively high correlation with AvgScore, which is one

of the more conservative estimates of overall severity, since it is averaged over the
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Version t_stat M_vuln M_neut

CountTouches 2.328 0.761 0.204
CountTouchesP1 2.109 4.713 1.510
CountTouchesP2 2.156 8.737 2.815
HCPF 0.869 0.033 0.005
LinesAdded 0.858 3.577 0.351
LinesDeleted 0.173 0.833 0.229
LinesModified 0.737 1.268 0.306
TotalTouches 5.097 136.313 43.138

Table 5.28: Welch t_stat measures for churn metrics; Apache versions 2.2.x..29.

CveCount AvgScore MaxScore TotalScore

CountTouches 0.378 0.352 0.189 0.315
MaxSeqByDate 0.364 0.332 0.189 0.315
CountBursts 0.277 0.252 0.143 0.249
CountFilesChanged 0.275 0.251 0.158 0.247
NetAddedInBurst 0.252 0.218 0.149 0.244
TotalChurnInBurst 0.259 0.224 0.152 0.25

Table 5.29: Average Spearman ρ correlations for burst metrics; Apache HTTP ver-
sions 2.2.x..29.

individuals within the module.

Module metrics for Apache are withheld. Apache HTTP uses many C prepro-

cessor macros and additional add on packages in order to build the software. Being

focused on automated techniques, we did not manually provide any of the additional

information to help the Understand tool better resolve symbols needed to compile

Apache HTTP. Since we did not manually resolve or provide additional resolution

for the Understand tool, only k_ext_m, total calls from other modules, appeared in

the data, and did so with a suspect correlation of 0.5. We posit that conditionally

compiled code regions were double-counted. We describe additional detail related

to the pitfalls when calculating module metrics that result from the lack of precision

in our automated methods in Section 4.6.
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5.4.4 Discussion

An outstanding result of our experiments with Apache HTTP is the high correlation

between the burst metrics and our severity quantification metrics (i.e., AvgScore,

MaxScore, and TotalScore). This result is especially interesting because the correla-

tion is assessed on a subset of modules already known to be vulnerable (i.e., Vuln =

1). In this context, we are not comparing the metrics’ discriminative power, but are

assessing their relationship to the severity of those known-vulnerable modules (i.e.,

labeled Vuln = 1). Said another way, the correlation values we are presenting in this

particular discussion do not reflect the respective metrics’ classification ability, but

are presented as a relative quantification of severity.

In particular, as shown in Figures 5.7 and 5.8, CountFilesChanged and TotalChurn-

InBurst show rank order correlation values as high as 0.90 with our aforementioned

severity quantification metrics. Figure 5.7 and Figure 5.8 depict a strong correlation

in one or more module metrics we can use to enhance our learner.

Initial prediction experiments with using complexity features for vulnerability

prediction in Apache HTTP showed terrible performance. Mean precision was con-

sistently below 0.40, with large accuracy values (> 0.30) required to achieve the 95%

confidence interval, suggesting a prediction model built with complexity features

alone would perform poorly for predicting vulnerabilities in Apache HTTP.

Noting the high correlation between the number of files changed within a burst,

and a known vulnerable module, we added an additional score feature used to train

our prediction model. When training the model, we cross-reference the file to the

module of which it is a member. We then query the TEDB for the burst features

associated with that module, extract CountFilesChanged, extending our feature set.

Over 100 iterations of a ten-by-ten cross validation, our data show that this change
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Version MP_A Accuracy A MP_B Accuracy B

3 0.57 0.35 0.59 0.25
4 0.55 0.46 0.60 0.37
5 0.58 0.26 0.61 0.21
6 0.54 0.46 0.59 0.37
7 0.46 0.31 0.53 0.26
8 0.55 0.25 0.49 0.28
9 0.55 0.23 0.49 0.35
10 0.38 0.18 0.58 0.25

Table 5.30: Comparison of mean precision and its accuracy over early Apache ver-
sions; 2.2.3..2.2.10.

results in improved mean precision, while also narrowing the standard deviation

across samples of predicted results in versions 3 through 7. Narrowing the standard

deviation improves our 95% confidence interval around the mean precision. Table

5.30 shows the comparison between mean precision evaluated with 10x10 cross fold

evaluation with an ANOVA selection filter set for the top five features. Group B (MP_B

and Accuracy B) reflects the module metric enhancement.

The result is compelling because the single addition of CountFilesChanged is a

simple change, yet results in noticeable prediction performance improvement. One

can envision much more elaborate and well designed scoring functions that make

better use of our severity quantification measures during training. Moreover, due to

the high correlation between CountFilesChanged and severity, as quantified by the

sum of CVSS scores from the respective module, it logically follows that correctly

predicted results will be of greater significance, as argued throughout this work.

Yet another strong trend exhibited for Apache was that of the churn metrics

CountTouchesP1 and CountTouchesP2. Figure 5.9 shows what appear to be strong

correlation values in the more vulnerable versions of Apache HTTP server. Spikes

in vulnerability fix activity at 12, 22, and 28 are preceded by observable spikes in

correlation between churn metrics and Average Score. This correlation with our
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quantification of severity is interesting because average score is the most conserva-

tive of our CVSS based quantification metrics.

Figure 5.9: Churn metric correlation in vulnerable versions of Apache 2.2.x

5.5 Case Study 3: MySQL Database Server

We studied Oracle MySQL Database Server versions 5.5.0 to 5.5.54, representing a

time span of approximately seven years from December, 2009 to November, 2016.

Table 5.31 provides an overview of size measurements across the first, middle, and

last versions studied. The measurements shown here were collected from the Sci-

Tools Understand tool and exclude documentation and test folders in the project’s

source code tree.

An interesting trend in MySQL that differs from our other case studies is the

decreasing size in LOC. There is approximately a 9% reduction in LOC between ver-

sions 5.5.0 and 5.5.54. This reduction stands in contrast to our other study subjects
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Version LOC CountFunctions CountMethods CountFiles
5.5.0 741,042 27,292 17,510 2,015
5.5.28 670,181 28,196 17,480 2,058
5.5.54 673,662 28,293 17,509 2,061

Table 5.31: MySQL Database project statistics

that both show increases in LOC between their first and last versions. We do note,

however, that despite decreases in LOC, MySQL shows marginal (approximately 4%)

increase in the number of its functions and files (only a 2% increase). Assuming

the software at version 5.5.54 represents identical or increased functionality, the

reduction in LOC and increase in files could represent refactoring activity to remove

duplicate code and/or increase the use of templatized or auto-generated code.

Figure 5.10: Historical vulnerability density in MySQL DB versions 5.5.x, 0..50

As shown from Figure 5.10, the vulnerability distribution is heavily oriented at

version 5.5.0. This caused us to restart our automated data mining approach for

MySQL, starting at 5.4.9.
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Due to differences in the way in which the vulnerability table was built from the

VCS mined entries for MySQL, we discovered the results produced to be inaccurate

upon analysis. Final results are withheld for a future addendum.

5.6 Discussion

A review of the literature, along with empirical data collected by our study, indicate

that the majority of files in a project are only involved in one vulnerability in their

lifetime. Note that this doesn’t contradict our Previously Vulnerable Assumption.

Although one can impart a greater penalty factor to files already known vulnerable,

such as when performing a scored ranking of predicted results, the Previously Vul-

nerable Assumption doesn’t make any assertion about future events. However, what

we can assert, and what our empirical data support, is that a software project’s true

vulnerability density (which can never really be known), is better approximated by

applying the Previously Vulnerable Assumption to mark files as vulnerable in earlier

versions.

We reason therefore, and provide evidence here, that metrics better reflecting a

software project’s inherent architectural properties, and that also correspond with

earlier lifecycle development activity, are better at approximating that project’s Vul-

nerability Signal. We define the Vulnerability Signal as a current pre-image of future

security fixes likely to be needed for a project, following from that project’s true

vulnerability density. Every time a security fix is made to a software project, we

learn new information that leads us closer to approximating the true vulnerability

density. We reason that metrics “locking on” to a projects vulnerability signal at ear-

lier stages will aid earlier detection. Because there is already substantial empirical

evidence suggesting that standard issue (i.e., not vulnerability specific) defect fixes
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are tightly correlated with development activity, it would stand to reason that some

subset of future fix activity will be needed for the correction of residual vulnerabili-

ties.

Metrics better corresponding to a time-based view of a projects’ development his-

tory are therefore likely to better approximate this its true vulnerability signal. Our

data and visualizations support the notion that applying the Previously Vulnerable

Assumption to retroactively mark the training set has the advantage of re-evaluating

interconnected components in situ, that is, in the context of their architecture and

interconnections with other components in earlier stages. In addition, the manner

in which a known-vulnerable entity is integrated with it’s surrounding architecture,

make the negative ramifications of that single vulnerability more significant. There-

fore, we view measurement and evaluation of vulnerability prediction metrics better

estimated with their relationship to overall severity, and have provided an example

of one approach using CVE scoring data to better quantify severity.

Conventional supervised machine learning model building approaches focus on

metric correlation with vulnerability frequency (i.e. RawCount). In these models,

metrics for files in version N are evaluated for their correlation against RawCount

in version N + 1. That is, the metrics used as features in such models are selected

because of their correlation against the probability of a future security fix. For some

version N, the probability of a future security fix in version N + 1 is estimated as

relative frequency with which files in N (for some known set, labeled with known

values from N + 1 for training) will undergo a vulnerability fix in version N + 1. In

these conventional models, repeat offenders, or files that are known to have been a

part of more than one security issue fix, will show greater probability because their

RawCount is higher relative to the other vulnerable files known in version N. This

is most similar to evaluation of RawCount in our labeled data. As shown in Figure
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5.11, between versions 6 and 49, there are well over a hundred files that are only

ever involved in a single security issue fix, while ten files are involved in two issues,

and three files involved in three security fixes.
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Figure 5.11: Repeat offenders; Firefox versions 6..49

Metrics selected based on linear correlation (i.e., Pearson) or rank order corre-

lation (i.e. Spearman) RawCount, suffer to capture the true residual vulnerability

density and corresponding severity of vulnerabilities latent in the released software

product. This shortcoming in conventional approaches may be heightened when

using automated techniques for model building as we have described in this work.

Recall that the vulnerability signal, as we define it, is a property of the overall true

vulnerability density of a software. While we can never really know the true vul-

nerability density, assuming we have the appropriate repositories available, we can
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better approximate a software’s true vulnerability density as security fixes are made

over time. That is, every time a released software product is fixed for a security

vulnerability, we learn new information about the source code entities involved.

Our experience shows this phenomenon exacerbated when used with automated

mining approaches that fail to appropriately pre-filter the source code included in

the labeled Vuln = 1 set. As we observed in our experience with Firefox, test files

(e.g., updated for regression tests) are often updated in tandem with the set of files

needed to fix the vulnerability in the released product. Test files, while part of the

development repository, are not included in the final binary released to a software

product’s end users. Such test files therefore have no bearing on residual vulnerabil-

ities (and their associated severity). Mining and supervised learning approaches that

fail to pre-filter such test files will therefore tend to include them in their predicted

results.

Using test files as an example, model building techniques that fail to filter test

files from their training sets would consequently include such files in their predicted

results. The precision and recall rates reported for such learners might appear im-

pressive, but would fail to accurately reflect the true distribution of residual vulnera-

bilities in the released software product. As discussed in the preceding paragraphs,

test files are not representative of the product’s true vulnerability density once it

reaches its user base. Worse yet, because empirical data show that the majority of

files that are fixed to correct a vulnerability, are most often done so one time, the

inclusion of test files may artificially inflate recall rates and reduce overall precision

when said test files are also repeat offenders; in other words, test files would “dilute”

the practical application of the predicted results.

The inclusion of test files in predicted results is not only inaccurate with respect

each individual vulnerability prediction, but it also prevents the learner from locking
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on to the true vulnerability signal, which as we reasoned earlier, is not accurately

characterized by repeat offenders alone (i.e., RawCount based). Empirical data re-

peatedly show an order of magnitude more files individually associated with single

security fixes (i.e., 1:1), than are associated with multiple security fixes (i.e., 1:N). For

a given software product on which we wish to perform vulnerability prediction, if we

assume such empirical observations are some approximation of the real population

of residual vulnerabilities, then the resulting models (built with RawCount estima-

tors) would suffer to solve the real problem of predicting a wider range of entities

responsible for residual vulnerabilities because they favor a minority (repeat offend-

ers) within the vulnerable file population. Our experience with automatically mined

test files being included in the vulnerable file set (i.e., labeled Vuln = 1), informs

our claims and also serve as an intuitive example where non-essential, less relevant

items, dilute model performance.
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Chapter 6

Contributions and Future Work

This chapter summarizes our research problem: the residual vulnerability problem,

or the latent persistence of security related defects, termed vulnerabilities, remaining

in software after its release. We review the problem’s significance as well as the

significance of our work in this context. We also highlight the creative, original, and

novel aspects of our research contribution and findings. We conclude this chapter

with caveats and suggestions for future research.

6.1 Contributions to Residual Vulnerability Prediction in Software

Our emphasis on more accurately characterizing the residual vulnerability problem

and focus on practical automated methods for better quantifying the severity of

vulnerability impact, leads directly to several of our significant contributions. A brief

description of each follows, with references as appropriate for additional detail.

A new approach for metric selection based on correlation with quantified mea-

sures of severity, for use in software vulnerability prediction models implemented

with supervised machine learners. Through careful explanation and reasoning about
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the residual vulnerability problem, we provide a completely new ontology that bet-

ter characterizes the relative value of predictions by evaluating their correlation with

quantified measures of severity based on CVE data.

A practical and automated approach to training set construction is presented

according to the new approach for metric selection, demonstrating the feasibility

of of automating the construction of a training set that is more representative of

the characteristic relationships between measurable features and our ontology for

learner evaluation. Specific techniques are discussed in Sections 4.4, 4.5, and 4.6.

New insights revealed by our mined data lead to new ways of thinking about

vulnerability density over time in a software product. Hence, entirely new concepts

and additional explanations for previously observed phenomena emerge on review

of mined data (i.e., mined according to our approach for automated training set

construction). Specifically, this work discusses the following new concepts:

• Previous Vulnerability Assumption introduced as a new concept to aid train-

ing set construction, through careful study of CVE vulnerability data available

from the NIST National Vulnerability Database for the software projects stud-

ied in this work.

• Vulnerability Signal introduced as a new concept in 4.5, and empirically demon-

strated in Section 5, as the top edge defining a software project’s historical vul-

nerability distribution that appears when visualizing the count of unique CVE

entries against affected versions of a software product over time.

• Fix Signal and Vulnerability Oracle introduced as a new observed phenomena

in sections 4.5.1 and 5 that unify observations from past vulnerability predic-
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tion research; specifically the phenomena observed in our study better explain

the need for LOC correction and cross-correlation compensation when per-

forming prediction studies.

Empirical data supporting the value of historical evaluation is provided by way

of explanation and experiments in Chapter 5. Primarily, there are more samples

on which to train a machine learner when the Previously Vulnerable Assumption

holds for a software project. We argue that under certain conditions, this approach

better approximates the true population of vulnerabilities in the software, and by

extension, provides a better test environment in which to select features in order to

build and evaluate vulnerability prediction models.

6.2 A Timely Contribution

This work is especially timely, as one only needs to look at the non-stop stream of

news headlines publicizing the latest exploits and cyber attacks, testifying to the fact

that the state of computer and network security is not improving. In fact, one of the

core issues in computer security, one of the central issues enabling modern attacks,

is the insecurity of modern software [39]. Crypto-analytic attacks, hardware-based

attacks (such as side channel attacks) withstanding, the literature shows, and indus-

try widely recognizes, software borne vulnerabilities as a prime culprit responsible

for the majority of modern cyber security attacks against computers and informa-

tion networks. This state of affairs is at odds with the continual push within the

software industry to deliver compelling value added features. The current state of

affairs within the software development domain grows ever more acute as software

continually grows ever larger and more complex.
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The pace of development, increasing complexity, and ever growing distributed

nature of software products is at odds with classic security design principles such

as economy of mechanism and central mediation, making software more difficult to

comprehend when making changes, and more difficult to exhaustively test. Com-

pounding these factors are the forces vying for limited developer time. The com-

mercial sector, finds a feature-centered development culture where security con-

cerns often take a back seat to differentiating features; the return on investment

and impact to the bottom line resulting from the differentiating features is more

deterministic [53]. It’s not that the commercial sector doesn’t care about security,

but more about spending resources efficiently. Within the software development

industry, developer time is a constrained, highly contended, and highly demanded

resource. Management therefore wants to make efficient and effective use of devel-

oper time. This is the larger context and commercial motivations that just so happen

to be aligned against security improvement rather than with it. That is, given that

residual vulnerabilities are already known to be difficult to detect, what can be done

to motivate commercial development organizations to expend effort, appropriating

development resources to search for what is commonly known as “a needle in a

haystack"? The answer, from the perspective of this work, is to provide a superior

approach to building vulnerability prediction models by quantifying severity and

seeking out metrics that show correlation with the same.

We are confident that models built on such relationships will further enable what

we refer to as suspect prioritization, such that the “top 10”, or top suggested vul-

nerability predictions are likely to represent vulnerabilities that are exploitable and

have the potential to cause severe security violations, compromising confidentiality,

integrity, or availability. Ideally, the prioritized “top 10” should be free of false pos-

itives, thereby maximizing the efficacy of any resulting triage and inspection efforts
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when applied. Although the empirical results from our case studies did not show

stable mean precision values free of such false positives, we believe the framework

presented for metric evaluation provides a better approximation of, and is more con-

servative with respect to the true vulnerability density, and vulnerability distribution

across files and modules in a software project. Using the framework we presented

for metric evaluation, we were able to show that automatically mined, architecture

and change-based burst metrics selected for our study outperformed conventional

metrics in earlier characterization of severity. We therefore believe architectural

level and frequency based change metrics provide additional value as features to

consider when building supervised machine learning models for vulnerability pre-

diction.

Our work represents an important advancement in the area of vulnerability pre-

diction and we are already at work on future improvements. We remind the reader

of some key points from our work, because looking at the experimental numbers

alone fail to properly characterize the significance of our results. First, we largely

used an automated approach to data collection and classification. Second, aside from

the commercial SciTools Understand tool we used to collect conventional metrics

(and compute call based metrics), the tools we used for data extraction (i.e., git)

are widely and freely available. Lastly, our empirical data, and insights from it,

suggest future improvements from a new model building approach based on the ad-

ditional consideration of architectural information and application of what we have

presented as the Previously Vulnerable Assumption.

We stress the importance of the automated mining approach used. As working

professionals in the software industry, we highlight the importance of automated

approaches as key aspects of both the practicality and scalability required to further

motivate wider industry adoption (and corresponding overall socioeconomic bene-
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fits). We have stressed practicality for industry adoption several times throughout

this work. Developer time (not to mention time from developers with security ex-

pertise), is an extremely precious and limited resource. Developers busy at work

completing product-differentiating features have little time left to hunt through mil-

lions of lines of code to identify vulnerabilities. Moreover, when vulnerabilities in a

component are known, the usual practice is to patch or move to the subsequent ver-

sion. However, moving forward is not always possible, especially for already-fielded

embedded products lacking connectivity.

The tools we used for data extraction are significant in their simplicity. Einstein

is often quoted as saying “Everything should be made as simple as possible, but not

simpler”. There are few primitives as widely universal as directory structures and

VCS control tools such as git. We leave the reader with the jovial remark, “how

much simpler can you git?” as a quick shorthand to remember our re-interpretation

of Naggappan et. al. [65] change-based burst metrics for git repositories, and module

identification according to directory structure of the same. The results, especially

from our Firefox case study, indicate that the frequency and size characteristics

of VCS-derived metrics (i.e., architectural change-bursts) offer earlier detection of

what might be considered a projects’ “vulnerability signal”, of which we provided

empirical evidence, and presented by logical reasoning via the concept we presented

as the Previously Vulnerable Assumption.

If we believe the Previously Vulnerable Assumption, that is, that a file or mod-

ule found vulnerable in the future was already vulnerable at present (but simply

undiscovered), then the implication is that earlier detection of whatever fundamen-

tal properties coincide with their vulnerability potential and severity provides value

in solving the residual vulnerability problem. In this ontological framework, we

seek closer correspondence between the innate features of such entities and any de-
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tectable features that relate not only to their probable occurrence as a vulnerability,

but that when exploited by bad actors, cause greater resulting impact. Furthermore,

this concept facilitates a mental construct for better characterization of a software

project as a whole, given its particular vulnerability density; that is, due to the man-

ner in which we ascribe severity, we would expect the impact from vulnerabilities

that are coincident with a project’s vulnerability signal, to be more damaging when

exploited in the future. For all these reasons, we therefore believe a historical model

built by applying these concepts, provides value by better characterizing severity,

and by increasing the number of samples on which to train supervised vulnerability

prediction models.

6.3 Future Work

There are several future directions for this work, however the most fundamental

deal with evaluation of ranked results, further validation of the approach, and more

clearly establishing the contexts and caveats characterizing it’s suitability an appli-

cability.

As presented, our approach is entirely new. The more modern and novel repository-

mined change-based frequency metrics, along with architectural module metrics,

showed mixed results for class discrimination largely dependent upon the partic-

ular version slice of the respective software project in which they were evaluated.

Indeed, although we experimentally “abused” the intent of our metrics in a classifica-

tion context, this work did not explore evaluation of actual ranked results as was our

original intent. Our original premise for the application of repository mined change

and architectural metrics was for use in a ranking stage within model pipelines where

established classification metrics would discriminate predictions to be ranked. This
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speaks to the need for additional validation beyond our initial evaluation of Spear-

man correlation measurements against our own CVE based quantification of severity.

We are excited to further explore the intended application for scoring. To this

end, we also note that CVE-based CVSS scores offered a convenient method for quan-

tifying severity, but the ideas presented are just as applicable to better severity

quantification techniques. Additionally, further validation is needed to understand

strengths and limitations of this approach. A key example for immediate inves-

tigation is research into the extent and applicability of the Previous Vulnerability

Assumption.

A caution related to the Previous Vulnerability Assumption is the extent to which

we apply it to a given software project. That is, the historical extent to which it is still

accurate to label vulnerable samples (e.g., files) for training vulnerability prediction

learners. We conjecture that the assumption holds as long as the corresponding soft-

ware project’s physical architecture (i.e., repository organization and inter-module

call structure) remains consistent over time (i.e., over successive versions). We note

here that future additional areas of research might investigate additional tuning

parameters that relate to penalty windows or tail limits that stop application of the

Previous Vulnerability Assumption at some prior version when building and labeling

the vulnerable training set.
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Chapter 7

Appendix 1: Mozilla Foundation
Security Advisory Data

This appendix is included for the benefit of others who wish to better under-

stand the companion software for this work, or who are interested in undertaking

a similar study utilizing Mozilla Foundation Security Advisories (MFSAs). In partic-

ular, depending on investigation time frame, different parsing approaches may be

required for MFSA pages. A particular example of a change in the MFSA format over

time is the location of the Bugzilla URLs, relative to the CVE (if listed).

MFSA pages published after September, 2016, contain a dedicated section tag

with class attribute "cve". Listing 7.1 shows a code snippet from the spider used

to parse pages with the dedicated cve section. The cve section in the more recent

MFSA pages yields more deterministic parsing results and is especially useful for

vulnerability oriented research since the CVE can be consistently determined.

MFSA pages published prior to 2006 often omit CVE, listing only the Bugzilla

URL. CVE is not listed consistently, if at all. A majority of the MFSA pages (from

2005 to late 2016) list fix information following a references heading. Most often,

the fix information includes one or more Bugzilla entries, *optionally* followed by

the associated CVE id. However, some MFSA pages do not follow the aforementioned
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structure, despite having been published after 2006.

The snippet in Listing 7.2 shows the formatting and parsing code for a MFSA

“summary" block. Note that the summary block is common to most MFSA pages.
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1 #
2 # MFSA 2016 -85 introduced the use of cve section blocks
3 #
4 # <section class ="cve">
5 # <h4 id="CVE -2016 -5270" class ="level -heading">
6 # <a href ="#CVE -2016 -5270" >
7 # <span class =" anchor">#</span >
8 # CVE -2016 -5270: Heap -buffer -overflow in
9 # nsCaseTransformTextRunFactory :: TransformString

10 # </a>
11 # </h4 >
12 # <dl class=" summary">
13 # <dt>Reporter </dt >
14 # <dd>Atte Kettunen </dd >
15 # <dt>Impact </dt >
16 # <dd><span class="level high">high </span ></dd>
17 # </dl >
18 # <h5 >Description </h5>
19 # <p>
20 # An out -of-bounds write of a boolean value during text
21 # conversion with some unicode characters
22 # </p>
23 # <h5>References </h5 >
24 # <ul>
25 # <li>
26 # <a
27 #

href="https :// bugzilla.mozilla.org/show_bug.cgi?id=1291016" >
28 # Bug 1291016
29 # </a>
30 # </li>
31 # </ul >
32 # </section >
33 #
34

35 xpath_cve_section_block = ’//div[@itemprop =" articleBody "]\
36 /section[@class ="cve"]’
37 sel_cve_id = ’./*[ contains(@id ,"CVE")]/@id’
38 sel_cve_summary_text = ’./*[ contains(@id ,"CVE")]\
39 /a[contains(@href ,"#CVE")]/text()’
40 sel_cve_summary_block = ’./dl[@class =" summary "]’
41 sel_cve_summary_impact_item = ’./dt[contains (.," Impact ")]/\
42

./following -sibling ::dd/span/text()’
43 sel_cve_description_item =

’./*[ contains (./ text() ,"Description ")]/\
44 ./following -sibling ::p/text()’
45 sel_cve_bugzilla_url =

’./ul/li/a[contains(@href ," bugzilla ")]/ @href ’

Listing 7.1: Example MFSA with section “cve" and xpath parsing code
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1 #
2 # Typical format of a the common summary block.
3 #
4 # <dl class =" summary">
5 # <dt >Announced </dt ><dd>January 21, 2005</dd >
6 # <dt >Reporter </dt><dd > Firstname Lastname </dd>
7 # <dt >Impact </dt ><dd><span class =" level low">Low </span ></dd >
8 # <dt >Products </dt><dd >Firefox , Mozilla Suite </dd >
9 # <dt >Fixed in </dt>

10 # <dd >
11 # <ul>
12 # <li >Firefox 1</li >
13 # <li >Mozilla Suite 1.7.5 </li >
14 # </ul >
15 # </dd >
16 # </dl>
17 #
18 xpath_summary_block =

’//div[@itemprop =" articleBody "]/dl[@class =" summary "]’
19 sel_date_item_text =

’./dt[contains (.," Announced ")]/following -sibling ::dd/text()’
20 sel_impact_item_text =

’./dt[contains (.," Impact ")]/following -sibling ::dd/text()’
21 sel_fixedin_item_text = ’./dt[contains (.," Fixed in")]\
22

/following -sibling ::dd/ul/li[contains(., "Firefox ")]\
23 /text()’

Listing 7.2: Example common MFSA “summary" block
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Chapter 8

Appendix 2: Supplemental Analysis

This section contains additional graphs and data showing intermediate results gath-

ered during our study.

The scatter matrix in Figure 8.5 reflects intuitive relationships between traditional

complexity metrics across all versions sampled. As would be expected, the count

based metrics show strong linear relationships with each other.
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Figure 8.1: VulnCount as number of ITS entries (RawCount) fixed at specific ver-
sions
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Figure 8.2: Count of CVEs by maximum affected version

Figure 8.3: CVE density by version
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Figure 8.4: Number of vulnerable files by version
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Figure 8.5: Firefox scatter matrix comparing count based metrics
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Figure 8.6: Firefox aggregate churn scatter matrix
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Figure 8.7: Preliminary visualization of aggregate burst metrics for Firefox, across
all all combinations of gap and burst size.
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Figure 8.8: Firefox vulnerability distribution; all versions
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Figure 8.9: Firefox vulnerability distribution; versions 3..49
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Figure 8.10: Aggregate complexity counts and vulnerabilities by Firefox version
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Figure 8.11: Maximum inheritance depth, nesting level, and vulnerabilities by Firefox
version
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Figure 8.12: Firefox maximum cyclomatic complexity metrics and vulnerabilities by
version
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Figure 8.13: Firefox path count and vulnerabilities by version
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Figure 8.14: Average LOC, source files, header files, and vulnerabilities by Firefox
version
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