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Abstract 
The goal of this study was to validate the SIP model for bi-pedal quiet standing on healthy old adults and 

people with PD by comparing the linear and nonlinear measures extracted from the COP that the SIP 

creates (COPSIP), and the ones extracted from the experimental COP (COPexp). In addition, this study 

intended to determine if the accuracy of the COPSIP to replicate the COPexp was sensitive to the current 

practice of assuming zero as initial conditions (ICs) in the differential equation (DEQ) of the SIP. It was 

also investigated if the accuracy of the COPSIP was sensitive to the linearization of the DEQ that describes 

the motion of the SIP. Finally, this study investigated if it is appropriate to use a SIP model in 

unperturbed sway studies that analyze PD progression, since it is usually believed that people with PD 

sway like a SIP due to the increment of stiffness at the ankles. 

This study showed that using zero, instead of optimized, ICs in the SIP DEQ is a practice that increases 

the error of the COPSIP in terms of magnitude and shape of curve when compared to the COPexp. In 

addition, this study determined that linearizing the DEQ around the vertical position of the SIP is a safe 

practice, since at worst, 3% of similarity would be lost when the linear DEQ is used, instead of the 

nonlinear DEQ. Regarding the optimized ICs, this study proposed to select as optimized ICs the set that 

maximizes the Cross Correlation between the COPSIP (calculated using the linear DEQ) and the COPexp. 

This study also showed that the SIP is a valid model for unperturbed sway studies on healthy adults and 

people with PD, if an error of 30% or less is accepted in the linear and nonlinear measures extracted 

from the COPexp, and the COPSIP is calculated using the linear DEQ with optimized ICs. In fact, the COPSIP 

has a 30% or less error only for certain linear and nonlinear measures (depending on the subject group); 

therefore, the SIP is a 70% (or more) valid model depending on the linear and nonlinear measures that 

want to be replicated from the COPexp. 

Finally, this study also showed that as PD progresses and ankle stiffness increases, the SIP becomes a 

less valid model. The increment of stiffness at the ankles reduces their motion, making the hips move 

more to maintain balance. This proposes that a double inverted pendulum could represent better the 

unperturbed sway of moderate to more severe PD subjects. 
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Chapter One: Introduction 

1 Background and Motivation 

Parkinson’s disease (PD) is a neurodegenerative disorder for which there is currently no cure, and it is 

the second most common neurological disease in the world. PD has chemical and physiological 

consequences in the people who have it. The dopamine level in the basil ganglia is reduced to 50% or 

less when compared to healthy people, and therefore, daily living activities become more difficult. The 

most common symptoms that cause this reduction on quality of life are tremor, bradykinesia, and 

rigidity, which usually results in Postural Instability (PI) as the disease progresses. PI results in an 

increase in fall risk and actual falls for the person with PD, and since falls can lead to death or other 

health complications, assessment of PI is currently a significant unmet need. 

Clinical methods such as the Unified Parkinson’s Disease Rating Scale (UPDRS), Schwab & England Scale, 

and Hoehn & Yahr Scale (H&Y) are being used in hospitals and clinics to assess PI. However, it has been 

determined that they do not predict future falls. Therefore, PI assessment is being researched using 

signal processing and mechanical modeling techniques applied to activities of the daily living such as 

standing, walking, sitting, etc. done in controlled research laboratory settings that offer advanced 

measurement technologies. For the quiet standing task, signal processing (or posturographic) methods 

consists on analyzing through linear and nonlinear measures the postural sway or center of pressure 

(COP) time series of the subjects as they stand on a force plate. On the other hand, mechanical modeling 

consists on developing a mechanical system that can replicate the linear and nonlinear measures 

extracted from the experimental COP. Mechanical models of the human biomechanical system can be 

categorized by the number of rigid bodies that are used to model the human body while standing, and 

what type of controller is used to model the central nervous system. 

The single inverted pendulum (SIP) is the most common mechanical model used to represent the human 

body during quiet bi-pedal standing. Because of this, over the last decades of research, multiple theories 

and mechanical systems for human sway have been proposed. They have helped to understand the 

motor control system of the body while standing, and have added insight into the problem of PI. 

However, recently it has been claimed that the SIP is not an accurate model for the postural sway task. 

In order to defend the theories and mechanical systems created around the SIP, authors have started to 

validate the SIP for certain ages, diseases and experimental conditions. The SIP has not been validated 

for the postural sway task in people with PD, which represents a gap in our knowledge, since multiple 
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mechanical systems and theories are based on the SIP. The main motivation of this study is to determine 

how accurate the SIP is for sway studies on people with PD, so that informed decisions can be made 

regarding the application of the theories and mechanical systems proposed up to this point (and in the 

future) to the PD population within the context of the modeling limitations. 

2 Specific Aims 

The goal of this study is to validate the SIP model for healthy old adults and people with PD using a novel 

validation approach. To date, the primary method used to validate the SIP model consists of comparing 

the whole body center of mass (COM) time series when it is calculated using kinematic and kinetic data. 

On the other hand, the approach proposed in the current study consists of comparing the COP obtained 

experimentally with the COP resulting from the SIP model which uses its dynamics and mathematical 

equations. It is hypothesized that the accuracy of the SIP is sensitive to the initial conditions (ICs) used in 

the differential equation (DEQ) that describes the SIP; but not sensitive to the linearization of this DEQ. 

In addition, it is hypothesized that the SIP can describe at least 70% of the experimental COP in healthy 

subjects, and that as PD progresses, people with PD behave more like a SIP due to their increased 

stiffness at the ankles. 

3 Thesis Content 

This document contains four chapters. Chapter One consists of an introduction and motivation to the 

work done in this study. Chapter Two consists of an extensive background survey of relevant literature 

published. Chapter Three consists of the validation study of the SIP model for healthy older adults and 

people with PD for bi-pedal quiet standing. Finally, Chapter Four consists of a summary of the work done 

in this study, its conclusions and future work. 
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Chapter Two: Background 

1 Parkinson’s Disease 

Parkinson’s disease (PD) is a neurological disease that is present in 0.3% of the population of 

industrialized countries, and in 1% of the population older than 60 years old (de Lau and Breteler, 2006). 

According to the World Health Organization, PD can become the second most common cause of death, 

overtaking cancer by 2040 (World Health Organization, 2008). In addition, PD increases the falls and fall 

risk in people (Grimbergen et al., 2004; Wood et al., 2002), which leads to reduced quality of life, 

depression, and possibly mortality (Bloem et al., 2004). Falls in general are not only catastrophic for the 

patient; but as well for the economy of a country. In a study performed in the United States of America 

in 2006, it was found that in 2000, 0.2 billion dollars and 19 billion dollars were used to treat fatal and 

non-fatal falls cases in old adults (≥ 65 years old) (Stevens et al., 2006). 

In terms of physiological characteristics, PD is reflected as the loss of dopamine cells in the basil ganglia 

(below 50% of the common content in healthy subjects) (Lauk et al., 1999; Rektorova et al., 2012), which 

is reflected in changes of the motor cortex (Centonze et al., 1999). The most common symptoms 

observed in PD are bradykinesia, tremor, rigidity (Carpenter et al., 2004; Horak et al., 1996), and 

postural instability (PI) (Centonze et al., 1999); which are shown in the ability of PD patients to keep 

their balance while standing quietly or under perturbations. Currently, there is no cure for PD; however, 

multiple treatments to control the disease’s symptoms are available. These treatments vary from  

pharmaceutical treatments like Levodopa (Mancini et al., 2008; Salat and Tolosa, 2013), to novel 

treatments such as electroacupuncture therapy (Toosizadeh et al., 2015), to more conventional 

treatments like exercise (boxing, or cycling) (Combs et al., 2011; Hazamy et al., 2017), and to more 

invasive treatments like deep brain stimulation (Colnat-Coulbois et al., 2005; Maurer et al., 2003). 

2 Postural Instability (PI) 

As PD progresses, the ability of the subject to keep a stable stance is reduced, as well as the ability to 

perform other daily-living tasks such as walking, reaching, sitting, standing up, etc. This phenomenon, 

referred as PI, is the most common factor for falls and risk of falling in PD patients (Qutubuddin et al., 

2007; Smania et al., 2010). This creates a need in PD clinics to measure the PI of the patients, as well as 

the physiological and chemical parameters of the body. Currently, there are 3 standardized rating scales 

to measure PI: Unified Parkinson’s Disease Rating Scale (UPDRS), Schwab & England Scale, and Hoehn & 

Yahr (H&Y) (Pahwa et al., 2003). Regardless of the worldwide use and success of these standardized 



4 
 

rating scales, it is recognized by the literature that the outcomes of these scales are subjective to the PD 

patients and doctors, creating the need of more objective measures (Adkin et al., 2005; Visser et al., 

2008). That is why gait, quiet standing, perturbed standing, and sitting/standing tests (among others) 

are being investigated by biomechanical engineers.  

3 Postural Sway 

For quiet standing tests (which is one of the many tests to measure PI), postural sway is the 

measurement that is obtained from each subject. Postural sway has been used extensively over the last 

two decades in PD research since it allows scientists to analyze the combined performance of the visual, 

vestibular and somatosensory feedback systems during quiet or perturbed standing (Winter, 1995). This 

combination of feedback systems during quiet standing is a complex relationship that involves the 

peripheral and central nervous structures of the brain (Schoneburg et al., 2013), which if understood 

correctly, it can help the diagnosis and stage identification of PD (Hoehn and Yahr, 1967). In fact, it has 

been determined that postural sway is a more accurate measure for PI than regular clinical neurological 

examinations (Adkin et al., 2005; Visser et al., 2008). 

Postural sway is commonly measured using a force plate attached to the ground. The readings of the 

force plate (foot/floor force and moment reactions) are used to calculate the location of the Center of 

Pressure (COP) time series. The COP represents the location of the resultant force exerted on the force 

plate by the subject when standing on it in the Anterior-Posterior (AP) and Medial-Lateral (ML) 

directions, and it can be calculated using the following equations (Winter, 1990): 

= −
+ ∙

 

=
− ∙

for a reference system where the x-axis is pointing to the anterior of the body (↑), the y-axis is pointing 

to the lateral right of the body (→), and the z-axis is pointing to the inferior of the body, as well as where 

M and F are the moments and forces read by the force plate. Finally, dz represents the distance below 

the force plate surface and the origin of the coordinate system, which is given by the manufacturer of 

the force plate. 

When postural sway is not obtained using a force plate, there are alternative methods such as Inertial 

Measurement Unit technology (Mancini et al., 2012b; Whitney et al., 2011). Both methods have its 
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advantages and disadvantages depending on the dedicated use. However, it has been proved that 

measures obtained through Inertial Measurement Units are reliable and consistent with the ones 

obtained using a force plate during quiet standing tests (Whitney et al., 2011). Another method to 

obtain postural sway, that has already been validated with an COP average error of ±2 mm when 

compared to force plate measures is Markerless Motion Capture (Corazza and Andriacchi, 2009). 

3.1 Postural Sway Measures 

Postural sway or COP, which is a time series, is normally characterized by a set of measures. These 

measures could be extracted from the time series using linear or nonlinear analysis, depending on the 

approach of the scientists. The most popular linear and nonlinear measures, as well as the conclusions 

driven from them, used recently in research studies are summarized below. 

3.1.1 Linear Measures 

The latest linear measures used in COP time series for quiet standing PD studies that have shown 

significant differences between Healthy Subjects (HS) and PD subjects, as well as the conclusions driven 

from them, are: 

Table 1 - Linear Measures for Bi-Pedal Quiet Standing Studies in PD and Healthy Subjects 

Measure Time 
Series Conclusion 

Mean 

 

 PD subjects showed larger and significant mean COP jerk (AP and ML) 
when compared to HS; however, difference in the ML was more 
significant than AP (Mancini et al., 2012a). 

 Mean COP jerk in the resultant direction is one of the most 
distinguishable measures between PD subjects and HS (Mancini et al., 
2012b), and between PD subjects (Din et al., 2016). 

 

 PD subjects showed larger and significant mean COP velocity (AP and 
ML) when compared to HS (Adkin et al., 2005; Mancini et al., 2012a; 
Maurer et al., 2003; Schlenstedt et al., 2016). 

 Mean COP velocity is one of the best measures to differentiate 
between PD subjects and HS (Mancini et al., 2012b), and between PD 
subjects (Ni et al., 2016). 

 PD subjects showed significant reduction of mean COP velocity, 
which is considered improvement of stability, when Levodopa is 
consumed (Maurer et al., 2004). 

 

 PD subjects showed significant differences in mean COP when 
compared to HS (Adkin et al., 2005; Schlenstedt et al., 2016), as well 
as when compared between PD subjects (Ni et al., 2016). 

 Mean COP (AP) is one of the best measures to differentiate PD 
subjects and HS (Błaszczyk et al., 2007). 
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Standard 
Deviation 

(SD) 
 

 PD subjects showed significant and larger SD COP (AP) than HS 
(Colnat-Coulbois et al., 2011; Mancini et al., 2012a). 

 SD COP (AP and ML) is significant larger in PD subjects than in HS; 
however, this is inconclusive due the nonstationary behavior of the 
COP (Schmit et al., 2006). 

 PD subjects can be differentiated between each other using SD COP 
(Ni et al., 2016). 

Root Mean 
Square (RMS) 

 
 RMS COP acceleration in the resultant direction is one of the best 

measures to differentiate PD subjects and HS (Mancini et al., 2012b) 

 

 PD subjects showed significant and larger RMS COP (AP and ML) 
when compared to HS (Mitchell et al., 1995; Morrison et al., 2008; 
Schlenstedt et al., 2016). 

 RMS COP does not reflect improvement of stability in PD subjects 
based on UPDRS scores (Maurer et al., 2004). 

Frequency at 
95% of Power 

Spectrum 
Density 

 

 PD subjects showed significant differences in COP frequency (AP and 
ML) when compared to HS (Adkin et al., 2005). 

 COP frequency (AP and ML) is one of the best measures to 
differentiate PD subjects and HS (Mancini et al., 2012b). 

95% Ellipsis  

 PD subjects showed significant and larger COP acceleration area than 
HS (Colnat-Coulbois et al., 2011; Doná et al., 2016; Morrison et al., 
2008). 

 95% Ellipsis on PD subjects shows a relationship with confidence on 
stability (Lee et al., 2016). 

Radial Area   PD subjects showed a significant and larger radial area when 
compared to HS (Mitchell et al., 1995; Stylianou et al., 2011). 

Curve Length  

 COP curve length (AP and ML) is not a good differentiator between 
PD subjects and HS (Horak, 1997). 

 COP curve length in the resultant direction is one of the best 
measures to differentiate PD subjects and HS (Błaszczyk et al., 2007; 
Colnat-Coulbois et al., 2011); as well as in the AP and ML directions 
(Morrison et al., 2008; Park et al., 2015; Stylianou et al., 2011) 

Range  

 COP range (ML) is one of the best measures that can differentiate PD 
subjects and HS (Błaszczyk et al., 2007). 

 PD subjects showed be significant different to young and age-
matched HS in terms of COP range (AP and ML) (Stylianou et al., 
2011) 

 

As it can be seen in Table 1, there is no clear understanding on how PD affects the stability of a patient 

when he/she is tested using bi-pedal quiet standing experiments, and is analyzed with linear measures. 

This observation has been made by multiple authors (Błaszczyk et al., 2007; Schmit et al., 2006) since 

they observed that up to the point of their work, quiet standing experiments that were analyzed using 

linear measures were contradictory between authors, or inconclusive. In fact, a recent study could not  

differentiate between HS and PD subjects using linear measures when the participants were asked to 
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stand “still” (Sciadas et al., 2016), meaning that it was possible that the HS and PD subjects used 

standing strategies for which linear measures were not sensitive. However, there are researchers who 

still believe that it is possible to differentiate PD subjects from HS, and even to evaluate the evolution of 

PD, using linear measures. For example, Rocchi et al conducted quiet standing tests on PD subjects and 

HS, and through a principal component analysis of linear measures it was concluded that the RMS COP, 

mean COP velocity, SD COP, and frequency of the COP time series were sufficient to differentiate 

between PD subjects in ON and OFF states of Levodopa, as well between PD subjects and HS (Rocchi et 

al., 2006). But, other authors like Gervasoni et al, claim that linear measures of the COP velocity, plus 

non-posturographic tests are the best predictors of falls and differentiators in PD subjects (Gervasoni et 

al., 2015). 

3.1.2 Nonlinear Measures 

In addition to the linear measures, nonlinear analysis has started to be used since it has been 

determined that COP is a nonlinear and time-dependent signal (Winters and Stark, 1985), which is 

completely opposite to the assumptions made when linear measures are used (time invariant and 

stationary signal). For example, it has been found that COP changes mostly in the first 30 seconds of 

quiet standing, and that it changes at different rates for HS and PD subjects (Din et al., 2016). It was also 

determined in this study that after 30 seconds into a standing trial, quiet standing becomes more 

stationary. In addition, a recent study on machine learning for HS during multiple tasks while standing, 

showed that linear measures perform better when used as nonlinear (polynomials) classifiers than when 

they are used as linear classifiers (Saripalle et al., 2014). Even when the human body is modeled as a 

single inverted pendulum (SIP), it is possible to observe nonlinear features such as stable states (limit 

cycles) and bifurcation points (Creath et al., 2005). This idea of viewing the COP coming from a chaotic 

nonlinear dynamical system, have allowed authors to hypothesize that diseases such as PD can be 

detected when the COP becomes less complex and more deterministic (Schmit et al., 2006; Stergiou and 

Decker, 2011), which are qualities that can be observed through nonlinear measures. With that said, the 

latest nonlinear measures used in COP time series for bi-pedal quiet standing on PD studies that have 

shown significant differences between HS and PD subjects, as well as the conclusions driven from them, 

are summarized next. 
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3.1.2.1 Detrended Fluctuation Analysis (DFA) 

Detrended Fluctuation Analysis (DFA) was first proposed by Peng et al in the analysis of DNA structures 

(Peng et al., 1994), with the purpose of analyzing how a time series fluctuated when it was observed 

using different scales in time. The equation to calculate this measure is: 

( ) =
1

[ ( ) − ( )]  

where n is the number of equal divisions of the time series in time, N is the total number of elements of 

the time series, y is the time series in the division defined by n, and yn is the linear trend of y. In other 

words, DFA is an improvement of the RMS, since it does not assume that the time series is stationary 

and time-invariant. After calculating the fluctuations (F) as a function of the number of equal intervals in 

the time series (n), they are plotted against each other (F vs. n) where both axis are scaled using a log10. 

The slope (α) of the log-log plot is calculated since it describes the behavior of the signal (Delignières et 

al., 2011; Peng et al., 1995): 

Table 2 - DFA log-log Slope Range Description 

Range Description 
0 < α < 0.5 Anti-correlated and anti-persistent 

α ≈ 0.5 Uncorrelated (White Noise) 
0.5 < α < 1 Correlated and persistent 

α ≈ 1 1/f-noise (Pink Noise) 
1 < α < 1.5 Non-stationary, unbounded and anti-persistent 

α ≈ 1.5 (Brown Noise) 
α > 1.5 Non-stationary, unbounded and persistent 

     

One of the most important factors when calculating the slope of the DFA log-log plot is the minimum 

and maximum number of n. A final decision on this aspect has not been made; however, according to 

the literature, they range around 8 ≤ nmin ≤ 10 samples (sampling frequency 40 Hz), and N/10 ≤ nmax ≤ 

N/2 (Delignières et al., 2011; Hu et al., 2001; Teresa Blázquez et al., 2009). 

DFA analysis was introduced in COP studies by Collins and De Luca (Collins and De Luca, 1994), and it has 

then been applied to PD bi-pedal quiet standing studies by authors like Mitchell et al (Mitchell et al., 

1995). In these last two studies, DFA analysis was not explicitly performed; Stabilogram Diffusion 

Analysis was done instead. But, in a later study (Delignières et al., 2011), it was proven that the DFA of 

the COP velocity was equivalent to the Stabilogram Diffusion Analysis of the COP position. Multiple 
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authors (Collins and De Luca, 1994; Delignières et al., 2011; Mitchell et al., 1995; Teresa Blázquez et al., 

2009), agree that in bi-pedal quiet standing tests it is possible to notice a breaking point in the log-log 

plot which creates the need of the calculation of two slopes. For example, authors have found that HS 

and PD subjects significantly differ in the slopes before this breaking point, as well as in the slopes of the 

entire log-log plot for both AP and ML directions (Mitchell et al., 1995; Stylianou et al., 2011). In fact, it 

was observed that the slopes before the breaking point were larger in PD subjects than in HS. It was also 

observed in the same study that the slope after the breaking point in the ML direction has a possible 

relationship with the history of falls in PD subjects. 

3.1.2.2 Approximated Entropy (AE) 

Approximated Entropy (AE) was developed as an approximation of the real entropy of a system (defined 

by differential equations) (Pincus, 1991). The equations to calculate the AE from a time series x(N) are: 

( , , ) = ( ) − ( ) 

( ) = ( − + 1) ln ( ) 

( ) = ( − ) ln ( ) 

( ) =
   [ ( ), ( )] ≤

− + 1
 

( ) =
   [ ( ), ( )] ≤

−
 

[ ( ), ( )] = , ,… | ( + − 1) − ( + − 1)| 

( ) = [ ( ), ( + 1), … , ( + − 1)] 

where N is the number of elements in the time series, m is the dimension of the vectors x(i) and x(j), and 

r is the maximum distance (number of SD) between vectors x(i) and x(j) that counts them as similar 

vectors. AE is sometimes scaled by dividing it by the length of data points N (Nicholas Stergiou editor, 

2016). The value of AE indicates the level of complexity or how predictable the time series is. A high 

value of AE means that the time series is very complex and has low predictability, and vice versa. Finally, 

choosing the parameters m, r, and N is an important part of this calculation since they have a significant 
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effect on the result of AE. A final decision for AE’s parameters in sway data has not been made yet; 

however it is advised that the time series has a N > 200, that m represents a biological characteristic, 

and that after calculating AE with the chosen m and r, the study is repeated around the chosen values to 

make sure the result is consistent (Yentes et al., 2013). 

Regarding COP, it is hypothesized that when the body creates a COP that has low levels of complexity 

(low value of AE), any small perturbation can take the body out of balance; while a body with higher 

levels of complexity (high value of AE) can withstand those small perturbations and still be in balance 

(Morrison et al., 2008). In addition in this last study and others (Karimi et al., 2015; Park et al., 2015), it 

was found that AE can detect differences between PD subjects and HS, as well as when PD subjects were 

ON and OFF from Levodopa. It was also observed that the significant differences between PD subjects 

come from larger AE in both AP and ML directions as PD progressed. These increments of AE in PD 

subjects support the theory that the healthy level of complexity is dependent on the task being 

performed (Vaillancourt and Newell, 2002), not meaning that higher complexity means automatically 

healthier and better balance (Goldberger et al., 2002). 

3.1.2.3 Sample Entropy (SE) 

Sample Entropy (SE) was developed by Richman and Moorman, and it was intended to improve the AE 

(Richman and Moorman, 2000); however, after using these two parameters in biomechanics research, 

there is no wide spread agreement regarding  which one is better, since it all depends on the analysis 

that is being performed. The equations to calculate SE are: 

( , , ) = − ln
( )
( )

 

( ) = ( − ) ln ( ) 

( ) = ( − ) ln ( ) 

( ) =
   [ ( ), ( )] ≤

− − 1
 

( ) =
   [ ( ), ( )] ≤

− − 1
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[ ( ), ( )] = , ,… | ( + − 1) − ( + − 1)|    ℎ ≠  

( ) = [ ( ), ( + 1), … , ( + − 1)] 

Where the parameters m, r, and N have the same meaning as in AE; however, SE is not scaled by being 

divided by the length of the time series N. In addition, the value of SE has the same interpretation as in 

AE; the higher the value, the more complex and less predictable the time series is, and vice versa. 

Finally, as mentioned in the AE explanation, selection of m, r, and N have a significant effect on the value 

of SE. With that said, it has been recommended that in biomechanical signals the time series has a N > 

200, that m represents a biological characteristic, and that after calculating SE with the chosen m and r, 

the study should be repeated around the chosen values of m and r to make sure the result is consistent 

(Yentes et al., 2013). In addition, a study that consisted on studying the sensitivity of SE in COP in terms 

of m, and r found that SE converges when m ≥ 3, and that the highest confidence of estimation from SE 

to the real entropy value of the time series is obtained around r = 0.3 (Ramdani et al., 2009). It needs to 

be mentioned that this last study had a sampling frequency of 40 Hz. Finally, a similar study to the last 

one was conducted on PD subjects’ COP time series. This study (Pelykh et al., 2015) recommends using a 

sampling frequency of 100 Hz to record the COP time series, and use m = 2 and r = 0.1, 0.2 to calculate 

the SE. It needs to be mentioned that the methods from the last two studies to select r were the same 

one, which consisted on maximizing the confidence of estimation of the SE. 

Regarding PD bi-pedal quiet standing studies, it has been observed that SE can differentiate between 

diseases such as PD, Multiple Sclerosis, and Strokes; however, it could not differentiate between eyes 

open (EO) and eyes closed (EC) (Cattaneo et al., 2016). In addition, when it comes to comparing PD 

subjects and HS, SE (r = 0.2 and m = 2, in a 100 Hz study) can differentiate PD subjects (with and without 

freezing of gait) from HS (Pelykh et al., 2015; Schlenstedt et al., 2016). 

3.1.2.4 Largest Lyapunov Exponent (LLE) 

The Largest Lyapunov Exponent (LLE) is a nonlinear measure that indicates if the time series is sensitive 

to initial conditions which is one of the most accepted qualities of chaotic time series (Steven H Strogatz, 

2015). Multiple numerical methods to calculate the LLE have been proposed; however the two most 

common methods in biomechanics research are Wolf’s (Wolf et al., 1985) and Rosenstein’s (Rosenstein 

et al., 1993) algorithms which are available online. Rosenstein’s algorithm was developed as an 

improvement of Wolf’s calculation; however, multiple authors have concluded that both methods have 

their disadvantages and advantages depending on the experiment being conducted (Nicholas Stergiou 
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editor, 2016). Regardless of the method used to calculate the LLE, the obtained value has the same 

interpretation which is: if LLE < 0, it means that the system converges which is not an indication of 

sensitivity to initial conditions; if LLE > 0, it means that the system diverges which is an indication of 

sensitivity to initial conditions; and finally, if LLE = 0, it means that the system does not diverge or 

converge which is an indication of a limit cycle. 

Since there is not an absolute answer on which method is the best to calculate the LLE, the method used 

in this thesis will be Wolf’s which is defined by the following equations: 

=
1

 

=
log ′( )

( )
∆ ∙

 

where L is the distance travelled by a state after being evolved, Δt is the sampling time in the time 

series, n is the number of evolutions, and M is the number of exponents Z that are calculated. In other 

words, the LLE is calculated by choosing a trajectory in the time series (normally the trajectory starting 

at its initial point is chosen), find the nearest neighbor within a specified distance and angle, let those 

two states evolve n times, calculate the distances travelled, calculate Zi, and repeat the process until the 

time series allows it. This calculation is graphically explained in this image: 

 

Figure 1 - Wolf's Method to Calculate LLE (Nicholas Stergiou editor, 2016) 

It needs to be acknowledged that before calculating the LLE, the time series must be reconstructed in its 

state-space form, meaning that the embedding dimension (EmbDim) and time delay (τ) need to be 

calculated previous to the LLE. Different methods to calculate these two parameters exist; however, the 

chosen method to calculate τ in this thesis is through mutual information (MI) (Fraser and Swinney, 
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1986), which bins the time series based on the optimal bin size (Scott, 1979), and the chosen method to 

calculate the EmbDim is through Euclidian distances (Kennel et al., 1992). 

Regarding PD bi-pedal quiet standing studies on the COP time series, the LLE has been used to see if the 

postural sway time series in subjects is chaotic or not. For example, Pascolo et al found that the LLE 

indicates that both HS and PD subjects have chaotic COP time series; however, it was not possible to 

differentiate the LLE between PD subjects and HS (Pascolo et al., 2006, 2005). 

4 Modeling Postural Sway 

Modeling the human body during quiet stance using a mechanical system has been a common research 

in the last two decades (Crétual, 2015), especially in PD (Boonstra et al., 2013; Chagdes et al., 2016a; 

Maurer et al., 2004; Park et al., 2004). Linear and nonlinear measures of the COP time series (most 

common research in PD assessment for PI) have limitations when it comes to describing how the central 

nervous system (CNS) is performing while the subject is standing. In other words, based on our current 

understanding of the linear and nonlinear measures, they are a binning tool for PD; while a mechanical 

model represents an opportunity for a diagnostic tool. When linear and nonlinear measures of the COP 

are determined from a PD subjects, it is possible to correlate them with UPDRS and H&Y scores, or 

number of falls, etc., and then see where the subject stands when compared to other PD subjects and 

HS. However, they cannot explicitly tell how the CNS system is working in the PD subjects during the 

performed test (Visser et al., 2008). That is why if a mechanical model could reproduce the measures 

extracted from the experimental COP of the PD subjects by tuning the model’s parameters, that have 

physiological meaning, it potentially could provide a level of diagnosis about his/her CNS. If needed, this 

diagnosis can then be further developed through more expensive diagnosis tools such as brain scanning 

techniques. As stated by multiple researchers, developing a mechanical model for bi-pedal quiet 

standing would allow the understanding of the changes in linear and nonlinear measures extracted from 

the COP time series (Chagdes et al., 2016b), how the human body interacts with the environment (Park 

et al., 2004), how the muscles are activated (Pang and Mak, 2012), among others. 

There are many mechanical models for bi-pedal quiet standing and they differ on the type of controller 

chosen and the number of links that it contains. In more recent publications, it has been discussed how 

many members or links the model needs to have to represent the body accurately. The most common 

way to represent the human body during bi-pedal quiet standing is by modeling the body as a SIP. 
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5 Single Inverted Pendulum (SIP) 

Modeling the human body stance in general cannot be done using a SIP since not all balance corrections 

are controlled by the ankles (Bloem et al., 2000); in fact, it has been observed that the human body 

performs different muscles and body segments synergies depending on the perturbation that is applied 

(Allum et al., 1993, 1989; Horak and Kuo, 2000), as well as where the body was located before the 

perturbation (Tokuno et al., 2006). However, during bi-pedal quiet stance (<0.5 Hz) or small body 

perturbations, the SIP is believed to be an accurate representation of the human body (Fujisawa et al., 

2005; Horak and Nashner, 1986; McCollum and Leen, 1989; Nashner, 1976), as well as when the body is 

not close to its limits of stability in either the AP or ML directions (Mancini et al., 2008). This hypothesis 

was tested by Clifford and Holder-Powell by making healthy subjects stand using one leg (dominant and 

non-dominant) (Clifford and Holder-Powell, 2010). It was observed that the SIP could model the 

kinematics of the subject, if his/her motion was not large enough to trigger the motion of the other 

joints (knee and hip). This was proven when the triple inverted pendulum (TIP) (shank, quad and head-

arm-torso (HAT)) and the SIP predicted similar locations for the Center of Mass (COM) of the whole 

body. 

The validation of the SIP during stance experiments has become a needed step since lately multiple 

authors have claimed that human quiet stance on two feet cannot be modeled using a SIP (Freitas et al., 

2009; Günther et al., 2011, 2009; Kato et al., 2014; Sasagawa et al., 2009; Yamamoto et al., 2015). 

Conclusions to believe that the SIP is not an accurate representation of bi-pedal quiet standing has been 

tested by using invasive testing such as strapping the knee, hips, and torso with casts to see if the body 

is represented by a SIP (Freitas et al., 2009), to non-invasive testing. From these non-invasive 

experiments, the main argument is that the when the motion of the ankle and hip are correlated, the 

value is not equal to 1 which is the value that the SIP would produce (Günther et al., 2011; Kato et al., 

2014; Sasagawa et al., 2009). However, they have also found that the motion of the knee correlates 

different with the hip and ankles, meaning that instead of using a double inverted pendulum (DIP) to 

simulate quiet standing, a TIP should be used (Günther et al., 2009; Yamamoto et al., 2015). Following 

the need for the DIP or TIP to model quiet standing, it was shown  (Wang et al., 2014) that during bi-

pedal quiet standing the neck moves as well, and that the coherences (or correlations) between the 

motion of shank, quad, torso and neck change as function of the frequency (0.0167 – 0.8016 Hz) of the 

COP. However, in the same study it was found that the coherence of COP and COM remained almost 

constant for all frequencies and its value was always bigger than 0.8; not like the coherences between 
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body links which were around 0.5 in average for all frequencies. This means that it is acknowledged that 

bi-pedal quiet standing requires the motion of multiple body parts; however, the most constant relation 

in this dynamic behavior is the one between the COP and COM (Wang et al., 2014), which has been also 

identified in the SIP models (Gage et al., 2004). 

Looking that SIP models can analyze the relationship between the COP and COM, which is considered an 

important collective variable in bi-pedal quiet standing (Kilby et al., 2016; Mani et al., 2015; Wang et al., 

2014), validation of the SIP as representation of the human body during bi-pedal quiet stance has been a 

common research over last decade. This work started by performing bi-pedal quiet standing tests with 

eyes open in 11 healthy university students (Age = 26.5 ± 3.9) while gathering kinematic and kinetic data 

using 3D cameras and force plate respectively (Gage et al., 2004). The kinematic data was used to 

calculate the COM of the entire body, as well as the COM of the different parts of the body; while the 

kinetic data was used to calculate the COP. The results and conclusions that supported the SIP as a valid 

model for bi-pedal quiet standing were: (1) the strong correlation between the acceleration of the COM 

of the body and the difference COP – COM (RAP = -0.954 ± 0.020, RML = -0.840 ± 0.054), which is a derived 

relationship when the human body is modeled as a SIP, and (2) the strong correlation between the 

amount of motion (RMS) of each body part’s COM in the AP and ML directions, and their height from 

the ankle (R2 > 0.9 for AP and ML). These strong and almost perfect correlations allowed Gage et al to 

claim that the body does not only consist on ankle motion; however, it is mostly described by ankle 

motion. Other studies have agreed with these conclusions. For example, a study of 26 healthy young 

adults (Mean age = 26) obtained R2 values bigger than 0.8 when the amount of motion of the body parts 

was plotted vs. the height of them from the ankles (Winter et al., 1997), which agrees with the second 

conclusion; while a study of bi-pedal quiet standing on young and post-stroke subjects found that for 

both subject groups, the acceleration of the body COM has a strong linear correlation with the 

difference COP – COM (R > 0.9) (Yu et al., 2008), which agrees with the first conclusion. Another study 

(Masani et al., 2007) compared the acceleration of the COM of the body calculated from the 3D cameras 

(kinematic data), and the one calculated from the force plate (kinetic data) which assumed that the 

body was a SIP. Their subject population was 15 healthy old adults (Mean age = 72) and 11 healthy 

young adults (Mean age = 29), and the test consisted on EO and EC bi-pedal quiet standing. Their main 

result was the comparison of the body COM accelerations (EO and EC) in the AP direction when 

calculated from the kinematic and kinetic data, which for the young adults was = −0.21 +

1.14 ∙  (R = 0.973), and = −0.04 + 1.01 ∙  (R = 0.976) for the old adults. Using 

those equations, the authors of the study concluded that the SIP is an appropriate method for EO and EC 
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bi-pedal quiet standing since the slope of the equations, and fitting coefficients were very close to 1. 

Finally, a study on 29 young adults (16 male of age = 24.6 ± 3.2, 13 female of age = 23.3 ± 2.9) for quiet 

standing (bi-pedal, tandem and single leg) with EO showed through principal component analysis that 

during bi-pedal quiet stance 71.7% of the sway in the AP direction can be explained by the motion of the 

ankles (Federolf et al., 2013). From this same study, it was also concluded that in bi-pedal quiet stance, 

ankle motion was always the most significant motion for all subjects during sway in the AP direction, 

which was not the case on the tandem and single-leg stances. 

Other studies have not focused on validating the SIP for bi-pedal quiet stance, but have obtained results 

that support the model. For example, an experiment that consisted on analyzing the correlation 

between the body COM and the shank COM before and after the lumbar region was fatigued (Madigan 

et al., 2006), found that there were not significant differences due to fatigue (Rbefore = 0.8 ± 0.18, Rafter = 

0.79 ± 0.17). Similar to the last study, an experiment that consisted on analyzing the motion of the 

ankles, knees and hip before and after the fatigue of the ankle region (Boyas et al., 2013), found that 

only during bi-pedal quiet standing with EC, differences were found in all the motions. These two results 

support the SIP since the ankle strategy was present before and after fatigue, which is the strategy 

assumed in the SIP models. Also, two studies that consisted on modifying the mass (m) and mass 

moment of inertia (J) of the subjects during bi-pedal quiet stance (Costello et al., 2012; Rosker et al., 

2011), obtained the results that a SIP model of the body would have predicted (regarding amplitude of 

sway). Finally, validating the SIP model in general is not the ideal case for biomechanics research since 

diseases can change the behavior of the human body. With that said, validation of the SIP model for 

certain human conditions and/or disease is being done. For example, the SIP model has been 

successfully validated for bi-pedal quiet standing tests on transtibial prosthesis users (Rusaw and 

Ramstrand, 2016), and partially successful for post-stroke subjects (Yu et al., 2008). 

Besides the validity of the SIP in mechanical modeling studies, the way its differential equation (DEQ) is 

used differs between authors. For example, the SIP DEQ (Refer to Figure 2, Table 7 and Appendix A: 

Equations – Section 1.1) that relates the angular position of the pendulum and the torque applied at the 

ankles: 

=
1

( − ℎ sin − − ℎ ) 

can be linearized (sin ≅ ) around the vertical orientation of the pendulum. Turning this nonlinear 

differential equation (N-DEQ) into a linear differential equation (L-DEQ). 
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=
1

( − ℎ − − ℎ ) 

The L-DEQ is currently the most popular practice (Asai et al., 2009; Bottaro et al., 2008; Kooij et al., 

1999; Loram and Lakie, 2002; Maurer et al., 2004, p. 2; Peterka, 2002; Vette et al., 2010); however, 

some authors prefer to the use the N-DEQ (Chagdes et al., 2016a, 2016b). The advantage of using the 

nonlinear differential equation is the improved accuracy of the model when large sways occur; however, 

authors who use the L-DEQ claim that the magnitude of unperturbed sway of humans is small enough to 

be represented by the linear differential equation. Regardless of the chosen DEQ (linear vs. nonlinear), 

most of the mechanical modeling studies use initial conditions equal to zero for simplicity (Initial angle 

= 0, and initial angular velocity = 0). However, it has been observed in experimental studies that 

the initial position of the body changes significantly the sway in humans (Tokuno et al., 2006). 

Finally, all validations listed previously for the SIP have used the strategy of comparing the COM 

obtained through kinematic and kinetic data. However, the SIP has not been validated using the COP 

that it creates when its dynamics and mathematical equations are used. In fact, the COP that the SIP 

creates when the feet are assumed to be stationary in an inverse dynamics study, is described by the 

following equation (Refer to Figure 3 and Appendix A: Equations – Section 1.2): 

=
1

( + + ℎ ) 

which requires the solution of either the L-DEQ or N-DEQ using initial conditions equal to zero, or non-

zero. 
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Chapter Three: Single Inverted Pendulum Validation for Healthy and Parkinson’s Disease 
Subjects for Bi-Pedal Quiet Standing 

1 Abstract 

Background: Assessment of postural instability (PI) in people with Parkinson’s disease (PD) is a 

significant unmet need. Analyzing the center of pressure (COP) time series calculated using force plate 

measures during bi-pedal quiet standing task can be done by utilizing a mechanical model that 

represents the human biomechanical system. The single inverted pendulum (SIP) is the most common 

mechanical model used to analyze the quiet standing task; however, recently this modeling approach 

has received criticism. In this study, we validated the SIP model for healthy older adults and people with 

mild (H&Y 2) and moderate (H&Y 3) PD, by comparing the linear and nonlinear measures extracted from 

the COP time series obtained experimentally (COPexp), and the COP time series obtained from the SIP 

model (COPSIP). In addition, it was investigated if assuming zero as initial conditions (ICs) on the SIP 

differential equation (DEQ), and linearization around its vertical position had effect on the COPSIP’s 

ability to represent the COPexp. Finally, it was also investigated if it is appropriate to assume that as PD 

progresses, people with PD sway more like a SIP due to increment of stiffness at their ankles. 

Methods: Foot-floor reactions were obtained from two different quiet standing studies: 1) Healthy 

Controls (n = 12) vs. PD Mild (n = 12); 2) Healthy Controls (n = 9) vs. PD moderate (n = 10), for eyes open 

(EO) and eyes closed (EC) conditions. In the Anterior-Posterior (AP) direction, the COPexp time series was 

calculated, as well as the COPSIP using anthropometric equations and the SIP DEQ in its linear and 

nonlinear form with zero, or optimized ICs. Using time series similarity measures (Goodness of Fit, Sum 

Squared Errors, Mutual Information and Cross Correlation), it was determined how similar was the 

COPSIP to the COPexp. Finally, it was determined for each group of subjects if the errors between the 

COPSIP and COPexp based on the extracted linear and nonlinear measure were within a ±5%, ±10%, ±15%, 

and ±20%. 

Results: When the COPSIP is calculated using zero as ICs in the SIP DEQ, instead of optimized ICs, a 

significant error in magnitude and shape of curve (10% to 35%) is added to the time series. In addition, 

its ability to replicate linear and nonlinear measures is reduced when zero as ICs are used, instead of 

optimized ICs. On the other hand, when the COPSIP is calculated using the Linear SIP DEQ does not 

significantly affect the accuracy of the COPSIP; i.e. at the most 3% in shape of curve is lost when the 

Linear DEQ is used, instead of the Nonlinear DEQ. Finally, the SIP is a valid model for unperturbed sway 

studies on healthy older adults and mild and moderate PD patients, when an error of 30% or less is 
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allowed in certain group of linear and nonlinear measures. However, the SIP model losses accuracy as 

PD progresses. 

Conclusions: Assuming zero as ICs in the SIP model for unperturbed sway studies, significantly decreases 

the accuracy of the model. However, linearizing the DEQ around its vertical location does not. Finally, 

the SIP is valid model for healthy old adults and people with PD (H&Y 2 and 3) when its COP is calculated 

using the linear DEQ, and ICs that are determined based on the Cross Correlation between the COPSIP 

and COPexp. The validity of the SIP is contingent for each group of subjects if an error of 30% is accepted 

for certain groups of linear and nonlinear measures. Finally, as PD progresses the SIP losses accuracy, 

suggesting the use of a double inverted pendulum to represent the sway of people with moderate or 

more severe PD. 
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2 Introduction 

Parkinson’s Disease (PD) is a neurological disease that affects around 1% of the population in 

industrialized countries (de Lau and Breteler, 2006), and it is predicted to become the second most 

common cause of death by 2040 (World Health Organization, 2008). PD has negative physiological 

effects such as tremor, bradykinesia, and rigidity. It has been determined that as PD progresses, the 

stiffness at the ankles increases (Carpenter et al., 2004; Horak et al., 1996). But in terms of the impact 

on the activities of daily living, postural instability (PI) is the most significant and common effect and is 

directly related to the problem of increased fall risk (Smania et al., 2010). Due to the increased incidence 

of falls and fall risk, PI assessment on people with PD has become a high priority since falls lead to lower 

quality of life, injury, and even death (Bloem et al., 2004). PI in PD patients has been assessed using 

standardized clinical tests such as the United Parkinson’s Disease Rating Scale (UPDRS), Schwab & 

England Scale, and the Hoehn and Yahr (H&Y) (Pahwa et al., 2003), or through human performance tests 

such as the analysis of postural sway during bi-pedal quiet stance. The postural sway task consists of the 

participant standing relaxed on one or two force plates, which measure the foot-floor reaction forces 

and moments over a period of time. The foot-floor reactions are used to calculate the location of center 

of pressure (COP) time series, which is the location in space of the whole body resultant force as a 

function of time (Winter, 1990). Previous studies that have investigated the effect of PD on the COP time 

series can be divided in posturographic analysis and mechanical modeling. 

Posturographic analysis of the COP time series in PD studies has been done by extracting characteristics 

of the time series using both linear and nonlinear measures. Linear measures, which focus on the 

amount or the magnitude of the signal, consist of the mean, standard deviation (SD), root mean square 

(RMS), frequency, or areas (among others) of the COP time series and/or its respective derivatives with 

respect to time (Błaszczyk et al., 2007; Gervasoni et al., 2015; Mancini et al., 2012; Rocchi et al., 2006). 

Nonlinear measures, which focus on the temporal structure or organization of the signal, consist of 

detrended fluctuation analysis (DFA) (Mitchell et al., 1995; Stylianou et al., 2011), approximated entropy 

(AE) (Karimi et al., 2015; Park et al., 2015), sample entropy (SE) (Pelykh et al., 2015; Schlenstedt et al., 

2016), or the largest Lyapunov exponent (LLE) (Pascolo et al., 2006, 2005) (among others) of the COP 

time series. Both linear and nonlinear methods have produced successful results regarding the goal of 

assessing PI in people with PD, and have gained acceptance in the literature over the last couple of 

decades. 



28 
 

The modeling strategy in PD studies consists of developing a dynamical model, based on the appropriate 

physics, mathematics, and control principles, that represents the physical system and can be used to 

analyze and predict the system dynamics (Boonstra et al., 2013; Chagdes et al., 2016a; Maurer et al., 

2004; Park et al., 2004). Authors have proposed multiple models for bi-pedal quiet stance in humans, 

which can be categorized by the number of included rigid bodies (single, double, triple, etc.) and by the 

type of controller (linear, nonlinear, stochastic, intermittent, etc.) included in the model (Asai et al., 

2009; Bottaro et al., 2008; Chagdes et al., 2016b; Kooij et al., 1999; Loram and Lakie, 2002; Peterka, 

2002; Suzuki et al., 2012; Vette et al., 2010). A common approach for modeling postural sway is to 

represent the human body as a single inverted pendulum (SIP) (Crétual, 2015). Although a widely 

utilized model, the SIP approach has received some criticism with limitations observed (Günther et al., 

2009; Sasagawa et al., 2009; Yamamoto et al., 2015). The criticism often results from observed motion in 

other articulations besides the ankles during the quiet standing task. In response to the criticism of the 

SIP approach, several studies have attempted to validate the SIP for bi-pedal postural sway (Gage et al., 

2004; Masani et al., 2007; Winter et al., 1997; Yu et al., 2008). Also, other studies (Boyas et al., 2013; 

Costello et al., 2012; Federolf et al., 2013) on bi-pedal quiet stance inadvertently produced results that 

added additional support to the validation of the SIP model approach for standing quietly. Boyas et al 

tested the ankle strategy dominancy, before and after ankle muscle fatigue was induced on 13 young 

healthy subjects (Age = 21.4 ± 4.6), and found that the ankle strategy (SIP) was the dominant postural 

strategy both before and after fatigue. Costello et al analyzed how increasing weight and inertia on 16 

young healthy subjects (Age = 22.1 ± 1.7) affected their sway and found that the magnitude of the sway 

in their subjects changed in accordance to the SIP model. Federolf et al using PCA, quantified how much 

of the sway of 29 young adults (Age = 23.9 ± 3) can be explained by the motion of the ankles and found 

that 71.7% of the sway with eyes open in the AP direction can be explained by the motion of the ankles. 

The original method to validate the SIP was proposed in (Gage et al., 2004) using 11 healthy young 

subjects (Age = 26.5 ± 3.9), which consisted on analyzing ∝ −  (where COM is the 

estimation of the total body center of mass location based on body segment kinematic measures using 

3D cameras, and COP is the center of pressure location calculated based on force plate measurements) 

which is a fundamental relationship on the SIP model, as well as analyzing the relationship between the 

amount of motion of the body segments (RMS) and their height with respect to the ankles 

(  ) ∝ ℎ  / . Gage et al obtained very high linear correlations for both 

observations RAP = -0.954 ± 0.020, RML = -0.840 ± 0.054, and R2 > 0.9 respectively, allowing the conclusion 
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that, although the SIP model cannot completely replicate the human body dynamics during sway, it can 

be mostly described by the SIP. To support Gage et al conclusions, the first conclusion was supported by 

Yu et al using 12 post-stroke and 22 heathy controls (R > 0.9, Age = 66.5 ± 4.9) (Yu et al., 2008), while the 

second conclusion was supported by Winter et al using 26 healthy subjects (R2 > 0.8, Mean Age = 26). 

However, the method used by Gage et al is not the only accepted method to validate the SIP model. For 

example, Masani et al (Masani et al., 2007) compared the  term calculated using two different 

methods: 1) body segment kinematics measured using 3D cameras and 2) force plates. Masani et al 

results were = −0.21 + 1.14 ∙  (R = 0.973) for 11 healthy young adults (Mean Age = 29), 

and = −0.04 + 1.01 ∙  (R = 0.976) for the 15 healthy old adults (Mean Age = 72). Since a 

perfect validation is represented with an intercept equal to 0 and slope equal to 1, Masani et al 

concluded that the SIP can represent the majority of the sway in healthy subjects. 

Validation of the SIP during sway studies cannot be generalized. It is not only task specific (e.g. 

perturbed, eyes open/closed, etc.), but also population specific (e.g. age, disease, etc.). For example, in 

the presence of a balance perturbation during bi-pedal quiet stance, the SIP has been shown not to be 

valid (Horak and Nashner, 1986; McCollum and Leen, 1989). In addition, the SIP model for bi-pedal quiet 

standing has been validated for certain conditions such as prosthesis users (Rusaw and Ramstrand, 

2016), through the method proposed by Gage et al (Gage et al., 2004) and other calculations, and 

partially validated for post-stroke subjects (Yu et al., 2008). However, the SIP has not been validated for 

participants who have been diagnosed with PD, or as PD progresses. 

The current use of the SIP in mechanical modeling studies differ from author to author. For example, the 

differential equation that relates the angular position of the pendulum and the torque applied at the 

ankles is normally linearized (sin ≅ ) around the vertical orientation of the pendulum (Asai et al., 

2009; Bottaro et al., 2008; Kooij et al., 1999; Loram and Lakie, 2002; Maurer et al., 2004, p. 2; Peterka, 

2002; Vette et al., 2010); however, sometimes it is not linearized (Chagdes et al., 2016a, 2016b). The 

advantage of using the nonlinear differential equation is the improved accuracy of the model when large 

sways occur; however, authors who use the linear differential equation claim that the magnitude of 

unperturbed sway of humans is small enough to be represented by the linear differential equation. 

Regardless of the chosen differential equation (linear vs. nonlinear), most of the mechanical modeling 

studies use initial conditions (ICs) equal to zero for simplicity (Initial angle = 0, and initial angular 

velocity = 0). However, it has been observed that the initial position of the body changes 
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significantly the sway in humans (Tokuno et al., 2006). A sensitivity study of linear vs. nonlinear and ICs 

equal to zero. vs non-equal to zero have not been done for the SIP. 

The purpose of the current study is to validate the SIP model using a novel approach. All validations 

listed above have used the strategy of comparing the body COM obtained through kinematic and kinetic 

data. However, the SIP has not been validated using the COP that it creates when its dynamic and 

mathematical equations are used in all forms (linear/nonlinear and ICs equal to zero/non-zero). Model 

validation is done based on the bi-pedal quiet standing in the Anterior-Posterior (AP) direction, using 

two visual feedback conditions (eyes open (EO) and closed (EC)) and three participant groups (healthy 

subjects (HS), mild PD (PD-Mi), and moderate PD (PD-Mo)). The parameters used for validation included 

both linear and nonlinear measures extracted from two COP time series: 1) obtained from the force 

plates directly (COPexp) and 2) predicted from the SIP inverse dynamics model (COPSIP). It is 

hypothesized: (1) The SIP model accuracy is sensitive to whether or not the ICs are set equal to zero or 

appropriate values are derived (zero vs optimized ICs); (2) The SIP model accuracy is not sensitive to 

linearizing the differential equation of motion (linear vs nonlinear); (3) The SIP model can represent at 

least 70% of the sway in HS in both EO and EC conditions; and (4) As PD progresses the human body 

behaves more like a SIP in the AP direction due to increased rigidity at the ankles associated with PD 

progression. 

3 Methods 

3.1 Participants 

Subjects for this study were obtained from two separate PD sway studies: 1) a Healthy Control vs. Mild 

PD study (PD-Mi-Study) and 2) a Healthy Control vs. PD Moderate study (PD-Mo-Study). The studies 

were conducted in the Human Performance Laboratory at the University of Kansas Medical Center and 

the Biodynamics Laboratory at The University of Kansas, respectively (Barnds, 2015; Stylianou et al., 

2011). The PD-Mi-Study consisted on 12 HS (7 female, Age = 66.4 ± 9.2, Height = 165.8 ± 9.6 cm, Weight 

= 68.9 ± 9.5 Kg), and 12 PD-Mi (H&Y 2, 6 female, Age = 61.5 ± 8.0, Height = 167.4 ± 7.0 cm, Weight = 74.4 

± 11.3 Kg); while the PD-Mo-Study consisted on 9 HS (2 female, Age = 67.7 ± 5.0, Height = 174.5 ± 5.4, 

Weight = 73.7 ± 11.8 Kg), and 10 PD-Mo (H&Y 3, 1 female, Age = 67.4 ± 3.4, Height = 175.0 ± 8.7 cm, 

Weight = 92 ± 12.6 Kg). All individuals gave written consent as approved by The University’s Institutional 

Review Board. In addition, PD-Mi had no postural deficits, while PD-Mo subjects were all diagnosed with 
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PI. However, all subjects could stand and walk without assistance. Finally, HS had no significant 

cognitive, musculoskeletal or neurological issues. Details on the subjects can be found in Table 3Table 6. 

3.2 Experimental Protocol 

Details on the experimental protocols for the postural sway tests during quiet standing can be found in 

(Barnds, 2015; Stylianou et al., 2011); however, a brief description of the protocols is provided here. The 

participant was instructed to stand on two force plates (one under each foot) using standardized shoes, 

with arms relaxed at their sides, with feet at a self-selected and comfortable width, and with their feet’s 

medial malleolus aligned with the coordinate system of the force plates. The selected position for their 

feet was recorded, marked and used for all trials. Three 30-second trails were collected using two 

conditions: EO and EC, with 1-minute break between trials. The order of the trials was randomized for 

each participant, and for the EO trials, participants were asked to look at a stationary image placed 

directly in front of them. Finally, participants with PD were tested during the “on period” of their usual 

medication, and the time between the test and their last intake of medication was approximately 1 

hour. The 6 trials for each participant were collected in a single session, and before each session, 

multiple measures of the participant’s body were taken. The measures used for the current study 

included: body mass (M), body height (H), length of the thigh (lthigh), length of the calf (lcalf), length of 

the foot (lfoot), and height from the ground to the ankle (hank). 

The kinetic data (foot-floor force and moment reactions) collected from the force plates (AMTI, 

Watertown, MA, USA) were recorded at 1080 Hz and 1000 Hz for the PD-Mi-Study and PD-Mo-Study, 

respectively using a 16-bit A/D acquisition system and LabVIEW (NI, Austin, TX, USA). Finally, all data and 

statistical analyses were done using MATLAB (Mathworks, Natick, MA, USA). 

3.3 Data Analysis 

3.3.1 COPexp Calculation 

The center of pressure location based on experimental measures (COPexp) was calculated based on the 

raw measured foot-floor kinetic data from the force plates using standardized equations (Winter, 1990) 

in the AP direction. 

 = −
+ ∙

 (1) 
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The COPexp was then downsampled to 40 Hz, which falls within the range of frequencies previously used 

in published sway studies (10 Hz – 100 Hz), and has been proven to be an adequate frequency for 

nonlinear measures in sway studies (Delignières et al., 2011; Ramdani et al., 2009).  

3.3.2 COPSIP Calculation 

The center of pressure location based on the SIP model results (COPSIP) was calculated based on the SIP 

model, which used anthropometric data and a differential equation (DEQ) as the equation of motion. 

The human body (i.e. without feet) was modeled as a single rigid body with a fixed revolute joint at the 

ankles (SIP) using the following anthropometric equations (Winter, 1990): 

 = 0.971  (2) 

 
ℎ =

+ + + ( + + )
 

(3) 

 = + +  (4) 

where mSIP is the mass of the human body without feet when simulated as a SIP, hSIP is the distance from 

the ankles to the COM of the mSIP, and JSIP is the mass moment of inertia of the mSIP with respect to the 

ankles. The equations to derive the constants of equations (2) through (4) are provided in Table 7.  

3.3.2.1 Linear and Nonlinear SIP Model 

A kinetic study was performed to obtain a DEQ that determines the angular position, velocity and 

acceleration of the SIP in the AP direction. Using the calculated anthropometric values for the SIP, and 

assuming that the feet are rigid bodies and stationary, the DEQ for SIP in the AP direction is (Refer to 

Figure 2 and Appendix A: Equations – Section 1.1): 

 =
1

( − ℎ sin − − ℎ ) (5) 

which uses the COPexp and foot-floor reactions after being downsampled, making COPexp and COPSIP time 

series of equal length and sampling time. Equation (5) is a second order nonlinear differential equation 

(N-DEQ), which was used for the nonlinear SIP model. This N-DEQ can be linearized using the small angle 

assumption, i.e. it is assumed that sin ≅ . The resultant linearized equation is:  

 =
1

( − ℎ − − ℎ ) (6) 

Equation (6) is a second order linear DEQ (L-DEQ), which was used for the linear SIP model. 
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3.3.2.2 COPSIP with Zero and Optimized ICs 

To calculate the COPSIP (Equation (7), Refer to Figure 3 and Appendix A: Equations – Section 1.2), the N-

DEQ (5) and L-DEQ (6) had to be solved first since the angular position, velocity, and acceleration of the 

SIP are required. 

 =
1

( + + ℎ ) (7) 

To solve the N-DEQ (5) and L-DEQ (6), the ICs  and  are required. Two different methods were used 

to select the ICs: 1) zero as ICs ( = 0, = 0), and 2) optimized ICs. The method used to select the 

optimized ICs involved comparing the time series COPSIP and COPexp. The method included maximizing 

the Goodness of Fit (GOF, Equation (8)), Mutual Information (MI, Equation (10)), and Cross Correlation 

(CrossCorr, Equation (11)), or minimizing the Sum of Squared Errors (SSE, Equation (9)) between the 

COPSIP and COPexp, using the following equations. 

  [%] = 100 ∙ 1 −
1 −

 (8) 

 
 [ ] = ( − )  (9) 

  [  ] =

∑ ( , ) log
( , )

( ) ( )

∑ ( , ) log
( , )

( ) ( )

 (10) 

  [ ] = ( − 1)
∑ ( − )( − )

∑ ( − ) ∙ ∑ ( − )
 (11) 

The process used to select the optimized ICs consisted on using all the possible combinations in 

−0.5 ≤ ≤ 0.5  ∩ −1 ≤ ≤ 1  using ∆ = 0.01  ∩  ∆ = 0.02  as ICs to 

solve equations (5) and (6), calculate the COPSIP using equation (7), and then calculate the different 

similarity measures between COPSIP and COPexp (Equations (8) to (11)). Each set of ICs that maximized 

GOF, MI and CrossCorr, or minimized SSE was recorded as a set of optimized ICs, i.e. 8 sets of optimized 

ICs were calculated (4 based on GOF, SSE, MI and CrossCorr for equations (5) and (6)) per trial on a 

subject. An example of the outcome of this optimization process using all similarity measures and 

equations (5) and (6) is found in Figure 4. 
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3.3.3 COPSIP Sensitivity to ICs and Linearization of DEQ Determination 

To investigate how sensitive the COPSIP was to the ICs and linearization of the DEQ of motion for all trials 

in each group of subjects, the similarity measures (GOF, SSE, MI and CrossCorr) between COPexp and 

COPSIP were calculated when the COPSIP was calculated using zero and optimized ICs, as well as the N-

DEQ (5) and L-DEQ (6). 

For the sensitivity to ICs, the difference of each similarity measure in each subject when the COPSIP was 

calculated using optimized and zero ICs was determined. Finally, the differences were separated 

between the conditions EO and EC, and the average between all trials in each group of subjects per 

condition was calculated. In other words, for all trials the difference Similarity MeasureICs: Optimized – 

Similarity MeasureICs: Zero was performed for all permutations of HSPD-Mi-Study/PD-Mi/HSPD-Mo-Study/PD-Mo ∩ 

EO/EC ∩ N-DEQ/L-DEQ, and the average of all trials per condition in each group of subjects was 

calculated. 

For the sensitivity to the linearization of the DEQ of motion, the difference of each similarity measure in 

each subject when the COPSIP was calculated using the N-DEQ (5) and L-DEQ (6) was determined. Finally, 

the differences were separated between the conditions EO and EC, and the average between all trials in 

each group of subjects per condition was calculated. In other words, for all trials the difference Similarity 

MeasureN-DEQ – Similarity MeasureL-DEQ was performed for all permutations of HSPD-Mi-Study/PD-Mi/HSPD-Mo-

Study/PD-Mo ∩ EO/EC ∩ Op mized ICs/Zero ICs, and the average of all trials per condition in each group 

of subjects was calculated. 

3.3.4 COPSIP Accuracy Determination and Further ICs Sensitivity Analysis 

Up to this point there were 8 ways to calculate the COPSIP using optimized ICs (optimization based on 

GOF, SSE, MI, or CrossCorr using equation (5) or (6)), and 2 ways to calculate the COPSIP using zero as ICs 

(using equation (5) or (6)). Based on the results regarding the sensitivity of COPSIP to the linearization of 

the DEQ of motion (Section 4.2), it was decided to not use the N-DEQ (5) further in this study. The 

differences observed in the COPSIP when using equations (5) and (6) were in average less than 2% when 

optimized ICs were used, and less than 3% when zero ICs were used. In addition, to decide the method 

that selects the final optimized ICs, a comparison between optimized ICs based on each similarity 

measure using optimized ICs was performed. Details on this analysis are in Appendix C: Selecting the 

Final Optimized ICs. The final method used to select the optimized ICs was to calculate the CrossCorr 

between COPSIP and COPexp, with the COPSIP based on the L-DEQ (6) and multiple sets of ICs, and finding 

the ICs that maximized this similarity measure. Therefore, from this point forward in the study, the 
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COPSIP calculated with optimized ICs (COPSIP (CC)) was determined using the L-DEQ (6), and ICs that are 

found through the optimization of CrossCorr; while the COPSIP calculated with zero ICs (COPSIP (0,0)) was 

determined using the L-DEQ (6), and ICs that are equal to zero. 

An example of how the COPexp, COPSIP (CC), and COPSIP (0,0) compared visually to each other is 

demonstrated in Figure 9. However, to investigate truly how well the COPSIP time series (COPSIP (0,0) and 

COPSIP (CC)) represented the COPexp time series, two methods were used: 1) Linear analysis parameter 

extraction, and 2) nonlinear analysis parameter extraction. Within each measure extracted in subject 

and trial, two absolute percent errors were calculated. ERROR 1: based on the difference between that 

measure derived from the COPexp and COPSIP (CC) time series. ERROR 2: based on the difference between 

that measure derived from the COPexp and COPSIP (0,0) time series. In both errors for each measure, an 

error of zero suggested that for that measure, no difference existed between COPexp and COPSIP(CC) or 

COPSIP (0,0). For both methods, the EO and EC trials were organized from best-to-worst fit for each subject 

based on the CrossCorr between COPexp and COPSIP (CC) (R1, R2, R3). 

3.3.4.1 Linear Measures Analysis 

Linear measures were extracted from the COPexp, COPSIP (CC) and COPSIP (0,0) time series. The parameters 

extracted from each COP time series included: mean, SD, RMS, 95% power spectrum frequency (f95%), 

median frequency (fmed), curve length, range, and maximum magnitude (|Max|) (Doná et al., 2016; 

Mancini et al., 2012; Ni et al., 2016; Park et al., 2015; Schlenstedt et al., 2016). These linear measures 

were calculated on the unfiltered COP time series (COPPos), and in the first and second derivatives of the 

COPPos (COPVel and COPAcc). The COPPos was filtered using a second order low pass Butterworth filter with 

a cutoff frequency of 5 Hz prior to the numerical differentiation. For each linear measure extracted in 

subject and trial, ERROR 1 and 2 were calculated. Also, for each subject, EO and EC trials were organized 

using R1, R2, and R3. Next, the averages of both error types on each linear measure and trial were 

calculated between the subjects of each group. In other words, the means of errors for each linear 

measure were determined for trial numbers (R1, R2, and R3), condition (EO and EC), and group of 

subjects (HSPD-Mi-Study, PD-Mi, HSPD-Mo-Study, and PD-Mo). Finally, it was determined if these means of errors 

were within a ±5%, ±10%, ±15%, and ±20% error, and the ones that had a p-value less or equal than 0.05 

were identified (white * in Figure 24-Figure 27). This operation was further analyzed when filters of 

CrossCorr were applied; i.e. this operation was done for the errors that had a CrossCorr between COPexp 

and COPSIP (CC)/COPSIP (0,0) larger than 0, 0.90, 0.95, and 0.99. In summary, it was identified if the means of 

linear measure errors 1 and 2 between subjects in a group were within a ±5%, ±10%, ±15%, and ±20% 
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error for all permutations of Linear Measure ∩ R1/R2/R3 ∩ EO/EC ∩ HSPD-Mi-Study/PD-Mi/HSPD-Mo-Study/PD-

Mo ∩ CrossCorr > 0, 0.90, 0.95, 0.99. 

3.3.4.2 Nonlinear Measures Analysis 

Nonlinear measures were extracted from the COPexp, COPSIP (CC) and COPSIP (0,0) time series. The 

parameters extracted from each COP time series included: 

 Time lag (τ) was determined through the analysis of MI as the time lag increases (Fraser and 

Swinney, 1986) 

 Embedding dimension (EmbDim) was determined by using Euclidian distance method using Rtol 

= 15, Atol = 2, and Rtol ∩ Atol (Kennel et al., 1992). 

 DFA’s (Peng et al., 1994) slopes (α) and coefficients of determination (R2) at small and large 

window sizes using (Teresa Blázquez et al., 2009) method, due to the observed breaking point in 

the log-log plot (Collins and De Luca, 1994; Delignières et al., 2011; Mitchell et al., 1995). The 

minimum and maximum window sizes were tmin = 0.1 seconds and tmax = 4.5 seconds at a 

sampling frequency of 40 Hz (Delignières et al., 2011; Hu et al., 2001; Teresa Blázquez et al., 

2009). 

 SE (Richman and Moorman, 2000) and AE (Pincus, 1991) using 2 ≤ m ≤ 5 (Δm = 1) and 0.1 ≤ r ≤ 

0.6 (Δr = 0.1) at a frequency of 40 Hz, which agrees with the recommendations of entropy 

analysis on sway studies (Pelykh et al., 2015; Ramdani et al., 2009; Yentes et al., 2013). 

 LLE (Wolf et al., 1985) using the minimum and maximum distance for nearest neighbor 

respectively as 10-3 and 10-1 of the range of the time series. In addition, the evolve number of 

points in the time series were 1 to 5 (Δ = 1) times the calculated time lag. 

These nonlinear measures were calculated only on the unfiltered COP time series. Also, a parallel 

analysis was done on the nonlinear analysis parameters as was done on the linear analysis parameters. 

3.3.4.3 Linear, Nonlinear and Overall Performance of SIP 

Once the linear and nonlinear measures were identified that had errors 1 and 2 that had an average 

between subjects in a group within a ±5%, ±10%, ±15%, and ±20%, it was decided to group them. The 

linear measures were grouped based on the time series used: COPPos, COPVel, and COPAcc, and as all the 

linear measures; while the nonlinear measures of the COPPos were grouped in: State-Space 

Reconstruction (τ and EmbDim), LLE, SE, AE, all nonlinear measures, and all nonlinear measures except τ, 

EmbDim and LLE. Next, it was determined for each group the percentage of the errors that were 
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successfully within the analyzed error boundaries. In other words, the number of white * in each group 

were counted, divided by the number of measures in each group, and multiplied by 100. This count was 

done for the permutations of Measure Group ∩ HSPD-Mi-Study/PD-Mi/HSPD-Mo-Study/PD-Mo ∩ COPSIP 

(CC)/COPSIP (0,0) ∩ R1/R2/R3 based on the permutations of EO/EC ∩ Error of ±5%, ±10%, ±15%, and ±20% ∩ 

CrossCorr > 0.00, 0.90, 0.95, 0.99. Referring to Figure 10-Figure 20, heat maps for each measure group 

were used to visualize the linear and nonlinear performance of the SIP, where the y-axes were HSPD-Mi-

Study/PD-Mi/HSPD-Mo-Study/PD-Mo ∩ COPSIP (CC)/COPSIP (0,0) ∩ R1/R2/R3, and the x-axes were EO/EC ∩ Error of 

±5%, ±10%, ±15%, and ±20% ∩ CrossCorr > 0.00, 0.90, 0.95, 0.99. 

A final heat map (Figure 21) that shows the overall performance of the SIP was created (State-Space 

Reconstruction and LLE were omitted). It consisted of averaging the percentages determined in previous 

heat maps between trials (R1, R2, R3), and not restricting the percentages based on CrossCorr (CrossCorr 

> 0). The final heat map had a re-arrangement that consisted of making the y-axes HSPD-Mi-Study/PD-

Mi/HSPD-Mo-Study/PD-Mo ∩ COPSIP (CC)/COPSIP (0,0), and the x-axes Measure Group ∩ EO/EC ∩ Error of ±5%, 

±10%, ±15%, and ±20%. The means of the percentages between trials were identified by the color 

outside the circle or square using the color bar on the left. On the other hand, the color inside the circle 

or square indicated the SD of the percentages between trials using the color bar on the right. Also, the 

shape that enclosed the SD declared if the variability was less than ±5% (circle), or larger (square). 

Finally, in all heat maps, the HS listed on top of the PD-Mi came from the PD-Mi-Study; while the HS 

listed on top of the PD-Mo came from the PD-Mo-Study. 

3.4 Statistical Analysis 

All statistical analysis was performed in MATLAB (Mathworks, Natick, MA, USA) with significance defined 

using α = 0.05. The comparison between COPexp and COPSIP using similarity measures when the ICs were 

optimized and equal to zero, as well as the comparison between similarity measures when the COPSIP 

was calculated using equations (5) and (6), were performed using a two-tail one-sample t-test with α = 

0.05 and H0 = 0 (Section 3.3.3). 

Determining if the mean of the linear and nonlinear measures errors between subjects were within a 

±5%, ±10%, ±15%, and ±20% error, was done using a left-tail one-sample t-test with α = 0.05 and H0 ≥ 

0.05, 0.10, 0.15, and 0.20 respectively (Determination of white * in Sections 3.3.4.1 and 3.3.4.2). Due to 

the large number of linear measures (24) and nonlinear measures (61), multiple comparisons 

(Bonferroni) correction was applied on this step (Benjamini and Hochberg, 1995). The correction 
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number used for the linear measures was 8 since they were grouped in COPPos, COPVel, and COPAcc, and 

each of them had 8 linear measures. Therefore, the significance on these statistical analyses became α = 

0.00625. On the other hand, the correction number for the nonlinear measures was based on the 

number of measures of each group. This strategy was decided because each group expresses different 

qualitative information about the COP time series. Therefore, the correction numbers and significance 

on these statistical analyses were: 4 and α = 0.0125, 4 and α = 0.0125, 5 and α = 0.01, 24 and α = 

0.00208, and 24 and α = 0.00208, for State-Space Reconstruction, DFA, LLE, SE, and AE respectively. 

Finally, the linear and nonlinear errors were averaged between trials (Section 3.3.4.3), and to determine 

if the means between trials were within 5%, a left-tail one-sample t-test with α = 0.05 and H0 ≥ 0.05 was 

performed. 

4 Results 

4.1 COPSIP Sensitivity to ICs 

The effect of ICs (zero vs optimized) was initially determined by calculating the difference in similarity 

measures between COPexp and COPSIP, when the COPSIP was calculated using optimized and zero ICs 

(Section 3.3.3). The difference Similarity MeasureICs: Optimized – Similarity MeasureICs: Zero was calculated for 

all permutations of HSPD-Mi-Study/PD-Mi/HSPD-Mo-Study/PD-Mo ∩ EO/EC ∩ N-DEQ/L-DEQ, and the average of 

all trials per condition (EO and EC) in each group of subjects was calculated. A significant difference 

(two-tail one-sample t-test, H0 = 0, α = 0.05) meant that the difference in similarity measures was 

different than zero (95% confidence) when the COPSIP was calculated using optimized and zero ICs. 

Results from these comparisons are in Figure 5-Figure 6, in which the p-value of each comparison is 

displayed; red font meaning p ≤ 0.05. 

Results showed that the COPSIP’s accuracy depended strongly on the ICs when similarity between COPSIP 

and COPexp was measured using GOF, SSE, MI and CrossCorr. In both sets of results (using L-DEQ (6) and 

N-DEQ (5)), most of the similarity measures were significantly different than zero. In addition, it was 

noticed that both sets of results did not differ from a visual point of view when the L-DEQ and N-DEQ 

were used. 

In the PD-Mi-Study, 3 out of 8 (EO GOF, EC GOF, EC CrossCorr) and 2 out 8 (EO GOF, EC GOF) similarity 

measures did not show significant difference for HS and PD-Mi respectively, when the COPSIP was 

calculated using equations (5) and (6). Acknowledging that the GOF was not significant different in the 

PD-Mi-Study, HS and PD-Mi showed an approximate loss of 10% in GOF with EO, as well as a loss of 
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approximately 20% with EC when the ICs were not optimized. Also, acknowledging that CrossCorr was 

not significantly different for HS with EC, in terms of MI and CrossCorr, losses of approximately 20% and 

10% respectively for HS and PD-Mi are expected when ICs are assumed to be zero for EO and EC. Finally, 

acknowledging that SSE was not significantly different for PD-Mi with EO when their COPSIP was 

calculated using equation (5), in terms of SSE, a negative difference was always obtained.  

In the PD-Mo-Study, 3 out of 8 (EO GOF, EC GOF, EC CrossCorr) and 2 out of 8 (EO GOF, EC GOF) 

similarity measures did not show a significant difference for PD-Mo using equations (5) and (6) 

respectively. Acknowledging that the GOF was not significantly different for PD-Mo, GOF did not show 

large losses of accuracy for HS and PD-Mo; respectively in average 2% and 2.5%. However, 

acknowledging that CrossCorr was not significant for PD-Mo with EC when their COPSIP was calculated 

using equation (6), approximate losses of 30% and 20% for HS, and 25% and 10% for PD-Mo are 

expected according to MI and CrossCorr respectively (EO and EC). Finally, in terms of SSE (significant in 

all cases), a negative difference was always obtained.  

4.2 COPSIP Sensitivity to Linearization of DEQ 

The effect of linearizing the DEQ (N-DEQ (5) vs L-DEQ (6)) was determined by calculating the difference 

in similarity measures between COPexp and COPSIP, when the COPSIP was calculated using the N-DEQ and 

L-DEQ (Section 3.3.3). The difference Similarity MeasureN-DEQ – Similarity MeasureL-DEQ was calculated for 

all permutations of HSPD-Mi-Study/PD-Mi/HSPD-Mo-Study/PD-Mo ∩ EO/EC ∩ Op mized ICs/Zero ICs, and the 

average of all trials per condition (EO and EC) in each group of subjects was calculated. A significant 

difference (two-tail, one-sample t-test, H0 = 0, α = 0.05) meant that the difference in time series 

similarity was different than zero (95% confidence) when the COPSIP was calculated using equations (5) 

and (6). Results from these comparisons are in Figure 7-Figure 8, in which the p-value of each 

comparison is displayed; red font meaning p ≤ 0.05. 

Results showed that the COPSIP’s accuracy when calculated using equations (5) and (6) was very similar. 

Even though the majority of the similarity measures proved to be significantly different when optimized 

ICs were used, the largest difference was found in MI with EC for PD-Mo, which was approximate -1.7%. 

When the COPSIP was calculated using zero as ICs, it was possible to notice that there were less 

significant measures present (due to more variability in results) when compared to the other set of 

results (Optimized ICs). In addition, regardless if the similarity measure was significant, the largest 

difference was found in CrossCorr with EO for HS, which was approximate -3%. Since results from 
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Section 4.1 showed that optimizing ICs allowed stronger similarity between COPSIP and COPexp, further 

results of this sub-section were only based on the COPSIP that used optimized ICs. 

In the PD-Mi-Study, the COPSIP’s accuracy for HS according to GOF (EO) and MI (EO and EC) proved to be 

significantly different; while for PD-Mi, GOF (EO and EC), SSE (EO) and MI (EO) proved to be significantly 

different. Even though some of the similarity measures in the PD-Mi-Study were significantly different in 

accuracy when the COPSIP was calculated using equations (5) and (6) and optimized ICs, the largest 

difference (magnitude) in accuracy was approximately -0.5%. In addition, regardless if SSE proved to be 

significantly different, the sign of the means of SSE between subjects in each group was always positive. 

In the PD-Mo-Study, the COPSIP’s accuracy for HS and PD-Mo according to GOF, SSE and MI (EO and EC) 

proved to be significantly different. Even though the majority of the similarity measures in the PD-Mo-

Study were significantly different in accuracy when the COPSIP was calculated using equations (5) and (6) 

and optimized ICs, the largest difference (magnitude) in accuracy was around -1.7%. In addition, the sign 

of the means of SSE between subjects in each group was always positive. 

4.3 COPSIP Linear Measures Performance 

The ability of the COPSIP (CC) and COPSIP (0,0) to replicate the linear measures extracted from the COPexp and 

its respective first and second derivates, was determined by calculating and averaging the errors per 

linear measure between COPexp and COPSIP (CC) or COPSIP (0,0), and then observing if the averages of errors 

between subjects were within a ±5%, ±10%, ±15%, and ±20%, utilizing as a filter the CrossCorr between 

COPexp and COPSIP (CC) or COPSIP (0,0) and R1, R2, R3 (Section 3.3.4.1). Significance (left-tail, one-sample t-test, 

H0 ≥ 0.05, 0.10, 0.15, 0.20, α = 0.05 with multiple comparisons correction) meant that the average of 

errors between subjects for the extracted linear measure was within 5%, ±10%, ±15%, and ±20% 

respectively with a confidence of 95%. Examples of results that show the linear measures that fell within 

an error (±15%) in a trial (R2) for all subject groups are in Appendix B: Figures and Tables under Section 

3.1. Next, the percent of the linear measures, in each measure group, that were within the listed errors 

based on R1, R2, R3 and CrossCorr was calculated (Section 3.3.4.3). Results for the percent of linear 

measures that fell on each analyzed error per measure group (COPPos, COPVel, COPAcc, all linear measures) 

are in Figure 10-Figure 13. Finally, similar to the last result, the mean between trials of the percent of 

linear measures that were within the listed errors was calculated without any CrossCorr restriction 

(Figure 21). These results were also used to further determine how sensitive COPSIP was to ICs. 
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Regarding the extracted linear measures in the measure group COPPos (Figure 10 and Figure 21) in 

general: (1) Not optimizing the ICs through CrossCorr (ICCC) and using zero as ICs (IC00) reduced the 

percent of linear measures that fell within any of the errors for all trials (R1, R2, R3); (2) Filtering results 

by the level of CrossCorr did not increase largely the percent of linear measures that fell within certain 

error; and (3) No large differences were found visually between conditions EO and EC. More specifically 

about COPPos when ICCC were used, PD-Mi had in average 88% and 96% of the linear measures within an 

error of ±15% and ±20% for EO and EC respectively; PD-Mo had in average 88% of the linear measures 

within an error of ±15% for EO and EC. HS from the PD-Mo-Study had in average 100% of the linear 

measures within an error of ±20% for EO, as well as 100% of them within an error of ±15% for EC; while 

HS from the PD-Mi-Study had in average 79% of the liner measures within an error of ±20% for EO and 

EC. 

Regarding the extracted linear measures in the measure group COPVel (Figure 11 and Figure 21) in 

general: (1) Not finding ICCC and using IC00, reduced the percent of linear measures that fell within any of 

the errors for all trials; (2) Filtering results by the level of CrossCorr did not increase largely the number 

of linear measures that fell within certain error; and (3) Differences in percent of linear measures within 

certain errors were found visually between conditions EO and EC. More specifically about COPVel when 

ICCC were used, PD-Mi had in average 67% of the linear measures within a ±20% error for EO, and in 

average 75% of them within a ±20% error for EC; while PD-Mo had in average 13% of the linear 

measures within a ±20% error for EO, and a range of 25% to 75% of them between trials within a ±20% 

error for EC. HS from the PD-Mo-Study had in average 83% of the linear measures within an error of 

±20% for EO and EC; while HS from the PD-Mi-Study had in average 75% of the linear measures within 

an error of ±20% for EO, and in average 83% of them within an error of ±20% for EC. 

Regarding the extracted linear measures in the measure group COPAcc (Figure 12 and Figure 21) in 

general: (1) Not finding ICCC and using IC00 did not reduce largely the percent of linear measures that fell 

within any of the errors for all trials, with the only subject group that showed a large difference in 

performance between ICCC and IC00 was HS from the PD-Mo-Study; (2) Filtering the results by the level of 

CrossCorr did not increase largely the number of linear measures that fell within certain error; and (3) 

Differences in percent of linear measures within certain errors were found visually only in PD-Mi 

between EO and EC. More specifically about COPAcc when ICCC were used, PD-Mi had a maximum of 50% 

of the linear measures within any of the errors for EO, and in average 58% of them within an error of 

±20% for EC; while PD-Mo had at best 25% of the linear measures within any of the errors for EO and EC. 
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HS from the PD-Mi-Study had in average 88% of the linear measures within an error of ±20% for EO and 

EC; while HS from PD-Mo-Study had in average 83% and 88% of the linear measures within an error of 

±20% for EO and EC respectively. 

Finally, looking over all the linear measures extracted (Figure 13 and Figure 21) in general: (1) Not 

finding ICCC and using IC00 reduced largely the number of linear measures that fell within any of the 

errors for all trials; (2) Filtering the results by the level of CrossCorr did not increase largely the number 

of linear measures that fell within certain error; and (3) Differences in percent of linear measures 

between EO and EC were visually found in PD-Mi and PD-Mo at the error of ±20%. More specifically 

about all the linear measures extracted when ICCC were used, PD-Mi had in average 61% and 76% of the 

linear measures within an error of ±20% for EO and EC respectively. PD-Mo had in average 42% of the 

linear measures within an error of ±15% for EO, and in average 56% of them within an error of ±20% for 

EC. HS from the PD-Mi-Study had in average 81% and 83% of the linear measures within an error of 

±20% for EO and EC respectively; while HS from the PD-Mo-Study had in average 90% of the linear 

measures within an error of ±20% for EO and EC. 

4.4 COPSIP Nonlinear Measures Performance 

The ability of the COPSIP (CC) and COPSIP (0,0) to replicate the nonlinear measures extracted from the 

unfiltered COPexp, was determined by performing a parallel study to the linear measures analysis. 

Significance had the same interpretation as in Section 4.3. Examples of results that show the nonlinear 

measures that fell within an error (±15%) in a trial (R2) for all subject groups are in Appendix B: Figures 

and Tables under Section 3.2. Also, results of the percent of nonlinear measures in each measure group 

that fell within the errors used in this study and based on CrossCorr are in Figure 14-Figure 20; while the 

percent of nonlinear measures that fell within the errors used in this study without CrossCorr restriction 

are in Figure 21. Finally, as it was mentioned in the COPSIP Linear Measures Performance, these results 

were also to further determine how sensitive COPSIP was to ICs. 

Regarding the nonlinear measures τ, EmbDim, and LLE extracted on the COP time series (Figure 14Figure 

15), it was possible to observed that neither the COPSIP (CC) or COPSIP (0,0) could replicate these nonlinear 

measures. For τ and EmbDim (State-Space Reconstruction), both time series of COPSIP could replicate an 

average of 25% of these nonlinear measures within an error of ±20% for all subjects and conditions. 

However, for the LLE, both time series could not replicate any of these measures within any error for all 

subjects and conditions. 
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Regarding the nonlinear measures of the DFA on the COP time series (Figure 16 and Figure 21) in general: 

(1) Not finding ICCC and using IC00 reduced the percent of DFA measures that fell within any of the errors 

for all trials, except for PD-Mi at an error of ±15% and ±20%; (2) Filtering the results by the level of 

CrossCorr did not increase largely the number of DFA measures that fell within certain error; and (3) No 

differences were found visually between EO and EC, except on PD-Mo at an error of ±10%. More 

specifically about the DFA measures when ICCC were used, PD-Mi had in average 100% of the DFA 

measures within an error of ±10% for EO, and 100% of them within an error of ±15% for EC. PD-Mo had 

in average 100% of the DFA measures within an error of ±20% for EO, and 100% of them within an error 

of ±15% for EC. HS from both studies had in average 100% of the DFA measures within an error of ±10% 

for EO and EC; except HS from the PD-Mo-Study who had 100% of the DFA measures within an error of 

±15% for EC. 

Regarding the nonlinear measure of the SE on the COP time series (Figure 17 and Figure 21) in general: (1) 

Not finding ICCC and using IC00 reduced the percent of SE measures that fell within any of the errors for 

all trials; (2) Filtering the results by the level of CrossCorr did not increase largely the number of SE 

measures that fell within certain error; and (3) Differences were found visually between EO and EC. 

More specifically about the SE measures when ICCC were used, PD-Mi had in average 58% (high 

variability) of the measures within an error of ±20% for EO, and 92% of them within an error of ±20% for 

EC. PD-Mo had basically none of the SE measures within any of the errors for EO and EC. HS from the 

PD-Mi-Study had in average 68% of the measures within an error of ±20% for EO, and 89% of them 

within an error of ±20% for EC; while HS from the PD-Mo-Study had 100% of the measures within an 

error of ±20% for EO and EC. 

Regarding the nonlinear measure of the AE on the COP time series (Figure 18 and Figure 21) in general: (1) 

Not finding ICCC and using IC00 reduced the percent of AE measures that fell within any of the errors for 

all trials; (2) Filtering the results by the level of CrossCorr did not increase largely the number of SE 

measures that fell within certain error; and (3) Differences were found visually between EO and EC. 

More specifically about the AE measures when ICCC were used, PD-Mi had in average 53% of the 

measures within an error of ±20% for EO, and 79% of them (high variability) within an error of ±20% for 

EC. PD-Mo had basically none of the AE measures within any of the errors for EO and EC. HS from the 

PD-Mi-Study had in average 54% of the measures within an error of ±20% for EO, and 92% of them 

within an error of ±20% for EC; while HS from the PD-Mo-Study had 100% of the measures within an 

error of ±20% for EO and EC. 
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Regarding all the nonlinear measures extracted on this study (Figure 19), it was possible to conclude that 

the COPSIP (CC) was not an adequate model to replicate nonlinear measures extracted from COPexp. This 

was a consequence of the poor results from the State-Space Reconstruction and Lyapunov Exponent 

nonlinear measures. However, if the overall COPSIP nonlinear accuracy was based on fractality and 

entropy characteristics (Figure 20 and Figure 21), it was observed that better results were obtained. In 

general, from Figure 20: (1) Not finding ICCC and using IC00 reduced the percent of nonlinear measures 

that fell within any of the errors for all trials, in fact, the difference was not large between COPSIP (CC) and 

COPSIP (0,0) when both had a poor performance; (2) Filtering the results by the level of CrossCorr did not 

increase the number of nonlinear measures that fell within certain error; and (3) No differences were 

found visually between EO and EC for the PD-Mo-Study; however, differences between EO and EC were 

present for the PD-Mi-Study. More specifically about all nonlinear measures (except State-Space 

Reconstruction and LLE) extracted when ICCC were used, HS from the PD-Mi-Study had in average 74% of 

the nonlinear measures within a ±20% for EO, and 89% of them within a ±20% for EC; while HS from the 

PD-Mo-Study had in average 100% of the nonlinear measures within a ±20% for EO and EC. PD-Mi had in 

average 71% of the nonlinear measures within an error of ±20% for EO, and 94% of them within an error 

of ±20% for EC. PD-Mo had in average 37% of the nonlinear measures within a ±20% for EO, and 56% 

(high variability) of the measures within a ±20% for EC. 

All numerical observations explained in Sections 4.3 and 4.4, are summarized in Table 8. Red and bolded 

numbering means that the variability between trials was less than ±5% with a 95% confidence. However, 

to combine the error with the percent of measures between subjects fell, the equation (100% - 

|%Error|) x %Measures was used. Table 9 shows the result of this multiplication where red and bolded 

numbering means that the variability between trials was less than ±5% with a 95% confidence. 

5 Discussion 

The aim of this study was to investigate the accuracy of the COPSIP in HS and PD subjects when it was 

compared to the COPexp for bi-pedal quiet standing with EO and EC, and its sensitivity to ICs (optimized 

vs. zero) and the linearization of the DEQ (L-DEQ vs. N-DEQ). The primary results showed that the 

common practice in sway modeling studies of using zero as ICs reduced the accuracy of the COPSIP. The 

results also showed that very little accuracy is gained by modeling the SIP using the N-DEQ (5), over 

using the L-DEQ (6). Regarding HS, PD-Mi and PD-Mo, results showed that the COPSIP (CC) is an accurate 

model for quiet bi-pedal standing when the COPexp is compared to the COPSIP (CC) using certain linear and 
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nonlinear measures. Finally, it was determined that as PD progresses, the human body behaves less like 

a SIP, and more like a DIP. 

Hypothesis 1 claimed that the performance of the COPSIP was sensitive to ICs, and based on the results 

of this study, hypothesis 1 is valid. Initially, this hypothesis was tested by comparing time series 

similarity measures between COPexp and COPSIP when it was calculated using optimized and zero ICs, 

using both the L-DEQ (6) or N-DEQ (5) (Figure 5 and Figure 6). During this first analysis, the optimized ICs 

were calculated using all the optimization methods. GOF, which is a measure that calculates how much 

(percentage) a time series represents another time series in terms of magnitude, was only significantly 

different when the COPSIP was calculated using zero and optimized ICs for HS from the PD-Mo-Study. 

Therefore, no conclusions were made based on this similarity measure. The high variability of this 

similarity measure was believed to come from the nature of the GOF (8). GOF has the COPexp in the 

denominator of the equation, creating a possibility for discontinuity if the value of the COPexp was equal 

to zero at any instance. Since the subjects were asked to align their medial-malleolus with the force 

plates coordinate system, it is highly likely that the COPexp will have a value equal to zero since it 

represents a subject going from leaning forward to leaning backwards, or vice versa. On the other hand, 

SSE, which is similar to GOF but with the difference that it is not a percentage value (i.e. the COPexp is not 

in the denominator), proved to be significantly different when the COPSIP was calculated using zero and 

optimized ICs for all subjects and conditions; except PD-Mi with EO when the COPSIP was calculated using 

the N-DEQ (5). In addition, SSE was always negative, meaning that when the COPSIP was calculated using 

optimized ICs, it always had less error than the COPSIP when it was calculated using zero as ICs. Finally, 

MI and CrossCorr, which measure how similar the shape of curves of two time series are, were 

significantly different when the COPSIP was calculated using zero and optimized ICs for all subjects and 

conditions (32); except three cases (CrossCorr for HS from PD-Mi-Study with EC using L-DEQ and N-DEQ, 

and CrossCorr for PD-Mo with EC using L-DEQ). The results showed that the COPSIP and COPexp could 

have from a 10% to a 35% difference in shape of a curve when optimized ICs were not used based on all 

subjects. With that said, it was concluded that the ability of the COPSIP to represent the COPexp was 

sensitive to ICs, making this hypothesis valid. Therefore, it was concluded that to achieve the highest 

similarity between COPSIP and COPexp, the ICs of the model should be optimized, instead of being  

assumed to be zero, as it is done in the majority of previous studies (Asai et al., 2009; Bottaro et al., 

2008; Chagdes et al., 2016b, 2016a; Kooij et al., 1999; Loram and Lakie, 2002; Maurer et al., 2004, p. 2; 

Peterka, 2002; Vette et al., 2010). This hypothesis was further tested by observing that the accuracy of 

the COPSIP (CC) was always superior than the COPSIP (0,0) when it came to replicating extracted linear and 
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nonlinear measures from the COPexp (Figure 10-Figure 21). Our model based finding is consistent to an 

experimental study which investigated the sensitivity of sway on the initial position of the body before 

testing. Tokuno et al (Tokuno et al., 2006) concluded that the balance performance of the subjects for all 

sway tests was dependent on the initial location of the body. Therefore, this experimental conclusion is 

consistent with our first hypothesis. 

Hypothesis 2 claimed that the performance of the COPSIP was not sensitive to linearizing the DEQ of 

motion, and based on the results of this study, hypothesis 2 is valid. This hypothesis was tested by 

comparing time series similarity measures between COPexp and COPSIP when the latter was calculated 

using the L-DEQ (6) and N-DEQ (5), either with optimized or zero ICs (Figure 7 and Figure 8). Since 

hypothesis 1 was valid, conclusions for this hypothesis were focused only on the optimized ICs case. As 

the results showed, the majority of the GOF, MI and CrossCorr comparisons were significantly different 

when COPSIP was calculated using the L-DEQ (6) and N-DEQ (5); however, the largest difference was only 

-1.7% based on MI for PD-Mo with EO. In addition, regardless if the similarity measures were significant, 

the signs of GOF, MI and CrossCorr were always negative; while the sign of SSE was always positive for 

all subject groups. This means that when the COPSIP was calculated using the N-DEQ (5) and optimized 

ICs, compared to using the L-DEQ (6) and optimized ICs, all similarity measures demonstrated that the 

COPSIP that uses the N-DEQ (5) had a larger error in magnitude and shape of curve, than the COPSIP that 

uses the L-DEQ (6). Due to such small differences in similarity measures, and less error obtained through 

the L-DEQ, it was concluded that using a N-DEQ to model the SIP as some authors do (Chagdes et al., 

2016b, 2016a), instead of using the L-DEQ, adds little to the accuracy to the COPSIP. In fact, modeling the 

SIP using the L-DEQ (6) is mathematical easier since there are currently more tools to analyze linear 

differential equations, compared to nonlinear differential equations. Finally, linearizing the DEQ of 

motion on unperturbed bi-pedal sway studies is the common practice in mechanical modeling studies 

for sway; therefore, the validity of this hypothesis supports this current practice. In addition, the validity 

of this hypothesis adds to the experimental observation by Gage et al regarding the small amount of 

motion in quiet standing (Gage et al., 2004), i.e. around 1 to 1.5 degrees in bi-pedal quiet standing for 

young healthy subjects. This observation supports the use of a linearized DEQ for quiet bi-pedal sway 

studies in young healthy subjects. We observed that linearizing the DEQ has little effect on the error of 

the COPSIP for both HS and PD subjects, supporting the linearization of the DEQ. This result suggests that 

small sway angles were present for HS and PD subjects during this study. Therefore, adding to Gage et al 

observation, it is possible to linearize the DEQ of motion for old healthy adults and participants with 

mild to moderate PD. 
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Before analyzing hypothesis 3 and 4 without using τ, EmbDim and LLE, it was expected that the COPSIP 

based on these nonlinear measures would not perform well. The low COPSIP performance regarding LLE 

is due to its dependency to τ and EmbDim. In fact, the COPSIP could replicate only 25% of the nonlinear 

measures of τ and EmbDim when an error of ±20% was accepted. Since the LLE nonlinear measures are 

a function of τ and EmbDim, the low performance of the LLE can be justified because errors were 

introduced to this calculation before even being calculated. In addition, the nonlinear measures τ, 

EmbDim and LLE, in terms of differential equations, depend on the number of states, as well as the 

inputs and disturbances modeled in the differential equation (Steven H Strogatz, 2015). The inverse 

dynamics model utilized in this study only included the 2 state variables of the SIP , , and the 

moments and forces at the ground; while in real life there are additional inputs such as visual, 

vestibular, and proprioceptive feedback, as well as internal disturbances. These additional inputs and/or 

disturbances could increase the dimensions and complexity of the time series, to the point that they 

account for the error observed in these three nonlinear measures. Finally, low performance in LLE for PD 

sway studies had been observed in other PD sway studies (Pascolo et al., 2006, 2005). 

Hypothesis 3 claimed that the COPSIP could represent at least 70% of the COPexp for EO and EC, and 

based on the results of this study, hypothesis 3 is valid with conditions. This hypothesis was tested by 

comparing the error of the extracted linear and nonlinear measures from the COPexp, when the COPSIP 

was calculated using the L-DEQ and optimized ICs for the HS from the PD-Mi- and PD-Mo-Study (Figure 

10-Figure 21). We conclude that hypothesis 3 is valid with conditions, because the COPSIP (CC) could 

represent 70% of the COPexp for certain measure groups (COPPos, COPVel, and COPAcc, LLE, SE, or AE) that 

characterized the COPexp. In fact, when results from Table 9 were based on the HS from the PD-Mo-

Study, the COPSIP (CC) could describe 70% or more of the COPexp, when the COPexp was represented by the 

linear measures of the COPPos (EO and EC) and COPAcc (EC), as well as when it was represented by the 

nonlinear measures of DFA, SE and AE (EO and EC). In addition, when the results of Table 9 were based 

on the HS from the PD-Mi-Study, the COPSIP (CC) could describe 70% or more of the COPexp, when the 

COPexp was represented by the linear measures of the COPAcc (EO and EC), as well as when it was 

represented by the nonlinear measures of DFA (EO and EC). Regarding the HS from the PD-Mi-Study, SE 

and AE (EC) were measures with percentages larger than 70%; however, they were not considered since 

they were not significant. Therefore, hypothesis 3 is 100% valid if “representing the COPexp” consists on 

the COPSIP (CC) replicating the DFA nonlinear measures (EO and EC), and COPAcc linear measures (EC) 

extracted from the COPexp. This allows future studies to design SIP models that replicate DFA (EO and EC) 

nonlinear measures and COPAcc (EC) linear measures extracted from the COPexp, draw conclusions from 
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how the SIP model recreated these measures based on its parameters and other successful studies on 

HS (Delignières et al., 2011; Teresa Blázquez et al., 2009), and be confident that the conclusions driven 

are at least 70% true. This conclusion could not be made based on the extracted linear measures on the 

COPPos (EO and EC), SE (EO and EC), AE (EO and EC), and COPAcc (EO) since there was not an agreement 

between HS from both studies. Finally, hypothesis 3 is 100% invalid if “representing the COPexp” consists 

on the COPSIP (CC) replicating the COPVel linear measures extracted from the COPexp. This meant that 

results and conclusions from posturographic studies on COPVel such as (Gervasoni et al., 2015), could not 

be combined with results from SIP modeling studies. 

Hypothesis 4 claimed that as PD progresses the human body behaves more like a SIP in the AP 

direction due to increased rigidity at the ankles, and based on the results of this study, hypothesis 4 is 

invalid. This hypothesis was tested in parallel with hypothesis 3; but instead of observing the results for 

the HS subjects, the results for PD-Mi and PD-Mo were observed (Figure 10-Figure 21). Using Table 9, it 

was possible to observe that the COPSIP (CC) could better represent the COPexp in PD-Mi than in PD-Mo. 

For every measure group and condition, the PD-Mi had a higher or equal percentage of representation 

of the COPexp than PD-Mo. Because of this observation, and the already mentioned increase in ankle 

stiffness as associated with PD progression (Carpenter et al., 2004; Horak et al., 1996), it was concluded 

that hypothesis 4 was invalid. The invalidity of this hypothesis does not have conflict with the previously 

observed increase in ankle stiffness as PD progresses. On the other hand, this observation simply claims 

that rigidity at the ankles in PD subjects does not result in sway that can be described with a single 

degree of freedom or SIP model. In fact, it supports Fujiwasa et al observations (Fujisawa et al., 2005), 

which state that as perturbations during sway increase (reduction of stance width in Fujisawa et al’s 

study), the ankle motion is reduced, and the hip motion is increased to maintain balance, suggesting an 

increase in the degrees of freedom within the system. If PD is considered as a perturbation that 

increases as the disease progresses, it is possible to relate both studies and agree that as PD progresses, 

the ankles become stiffer, creating less motion at the ankles. However, due to the low motion at the 

ankles, the hips must be utilized more to keep the balance of the body, resulting in the SIP model 

reducing accuracy as PD progresses towards a two degree of freedom system. 

Finally, it was observed that the COPSIP (CC) could represent 70% of the COPexp in PD-Mi and PD-Mo under 

certain conditions. Using the analysis done for hypothesis 3, the COPSIP (CC) in PD-Mi could describe at 

least 70% of the COPexp, when the COPexp was represented by the linear measures of COPPos (EO and EC), 

and the nonlinear measures of the DFA (EO and EC), and SE (EC). In the case of PD-Mo, the COPSIP (CC) 
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could describe at least 70% of the COPexp, when the COPexp was represented by the linear measures of 

COPPos (EO and EC), and the nonlinear measures of the DFA (EO and EC). This allows future studies to 

design SIP models that replicate COPPos (EO and EC) linear measure, and nonlinear measures on DFA (EO 

and EC) and SE (EC) extracted from the COPexp, draw conclusions from how the SIP model recreated 

these measures based on its parameters and other successful studies on PD (Błaszczyk et al., 2007; 

Mitchell et al., 1995; Pelykh et al., 2015; Schlenstedt et al., 2016; Stylianou et al., 2011), and be 

confident that the conclusions driven are at least 70% true. 

6 Conclusions 

In conclusion, it was identified that determining the ICs of the SIP when using it for mechanical modeling 

studies is a very important step. The current study, along with the study by Tokuno et al (Tokuno et al., 

2006) are mathematical and experimental proof of this concept. If the ICs are assumed to be zero, it is 

possible to lose around 20% on accuracy regarding the shape of curve, and this assumption increases 

the error in magnitude on either EO and EC quiet bi-pedal stance. In addition, if the ICs of the SIP are not 

appropriately determined in a mechanical modeling study and assumed to be zero, the unbalance of the 

SIP in the model would be originated by external/internal disturbances since zero ICs do not make the 

SIP sway. Using zero as ICs is not realistic since the body is in a constant sway, and naturally it is very 

unlikely to be located at a perfect balance with zero ICs. Mechanical modeling studies need to 

destabilize the SIP originally using ICs and/or disturbances. 

Regarding the linearization of the DEQ, it was concluded that the DEQ of motion that relates the angular 

position, velocity and acceleration of the SIP with the torque at the ankles can be linearized. Linearizing 

the DEQ of motion improved the accuracy of the model up to 2% in terms of similarity measures; 

however, this conclusion needs further study since the N-DEQ is meant to be a more accurate than the 

L-DEQ. 

It was also concluded that the COPSIP, when it is calculated using the L-DEQ and optimized ICs, can 

describe 70% or more of the COPexp for HS when the COPexp is represented with linear measures of the 

COPAcc (EC) and nonlinear measures of DFA (EO and EC). In addition, the COPSIP (CC) can describe 70% or 

more of the COPexp for PD-Mi, when the COPexp is represented with linear measures of the COPPos (EO 

and EC), and nonlinear measures of the DFA (EO and EC) and SE (EC). While for PD-Mo, the COPSIP (CC) can 

describe 70% or more of the COPexp, when the COPexp is represented with linear measures of COPPos (EO 

and EC), and the nonlinear measures of the DFA (EO and EC). 
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Finally, it was possible to conclude that as the stiffness at the ankles increases due to PD progression 

(Carpenter et al., 2004; Horak et al., 1996), the human body behaves less as a SIP, and more as a DIP. In 

fact, it was observed in the current study that as PD progresses the SIP model becomes a less valid 

model, creating the possible need of using a DIP for PD subjects. 
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7 Tables and Figures 

Table 3 - HS from PD-Mi-Study 

Subject Gender Height [cm] Weight [kg] Age UPDRS H&Y Years w/ PD 

1001 F 160.0 60.9 76 N/A N/A N/A 

1003 F 164.0 55.3 67 N/A N/A N/A 

1004 M 165.5 69.4 75 N/A N/A N/A 

1005 F 149.8 55.1 77 N/A N/A N/A 

1006 M 172.0 74.9 67 N/A N/A N/A 

1007 F 162.0 68.0 62 N/A N/A N/A 

1008 F 150.5 69.9 71 N/A N/A N/A 

1010 M 170.0 72.6 71 N/A N/A N/A 

1011 M 170.0 77.4 72 N/A N/A N/A 

1012 M 187.5 91.2 61 N/A N/A N/A 

1013 F 169.5 66.7 50 N/A N/A N/A 

1014 F 168.5 65.8 48 N/A N/A N/A 

Mean (SD) 165.8 (9.6) 68.9 (9.5) 66.4 (9.2) N/A N/A N/A 
 

 

Table 4 - PD-Mi from PD-Mi-Study 

Subject Gender Height [cm] Weight [kg] Age UPDRS H&Y Years w/ PD 

3001 F 168.5 70.3 55 48 2 3.5 

3002 M 181.5 83.9 64 51 2 16.0 

3003 M 173.2 79.6 77 37 2 1.0 

3004 M 170.0 94.5 62 34 2 5.0 

3005 F 162.0 78.2 65 10 2 4.0 

3006 M 162.0 71.5 56 25 2 8.0 

3008 M 176.5 82.3 64 33 2 13.0 

3009 F 157.5 81.6 73 22 2 3.0 

3010 M 169.5 78.1 51 30 2 2.0 

3011 F 167.0 55.3 48 11 2 2.0 

3013 F 161.0 58.2 63 18 2 12.0 

3014 F 159.5 59.6 60 12 2 1.0 

Mean (SD) 167.4 (7.0) 74.4 (11.3) 61.5 (8.0) 27.6 (13.2) 2 (0) 5.9 (4.9) 
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Table 5 - HS from PD-Mo-Study 

Subject Gender Height [cm] Weight [kg] Age UPDRS H&Y Years w/ PD 

1001 F 171.0 55.1 63 N/A N/A N/A 

1002 M 171.5 86.2 67 N/A N/A N/A 

1003 M 169.5 66.2 63 N/A N/A N/A 

1005 M 170.5 69.9 68 N/A N/A N/A 

1006 M 185.7 88.0 65 N/A N/A N/A 

1007 M 175.4 91.6 70 N/A N/A N/A 

1008 M 181.0 71.1 62 N/A N/A N/A 

1009 F 169.5 61.6 73 N/A N/A N/A 

1010 M 176.0 73.5 78 N/A N/A N/A 

Mean (SD) 174.5 (5.4) 73.7 (11.8) 67.7 (5.0) N/A N/A N/A 
 

 

Table 6 - PD-Mo from PD-Mo-Study 

Subject Gender Height [cm] Weight [kg] Age UPDRS H&Y Years w/ PD 

4001 M 172.0 86.7 72 66 3 5.0 

4002 F 157.0 64.4 71 47 3 13.0 

4004 M 170.0 115.8 61 36 3 10.0 

4005 M 166.5 90.0 69 57 3 3.0 

4006 M 186.0 103.0 71 47 3 7.0 

4007 M 179.0 85.8 66 35 3 2.0 

4008 M 182.0 89.4 63 65 3 9.0 

4009 M 181.0 97.5 68 31 3 2.5 

4010 M 184.5 90.3 65 44 3 9.0 

4011 M 171.5 97.1 68 53 3 10.0 

Mean (SD) 175.0 (8.7) 92.0 (12.6) 67.4 (3.4) 48.1 (11.6) 3 (0) 7.1 (3.6) 
 

 

Table 7 - Anthropometric Equations for the SIP Model Constants 

Parameter HAT Thighs Calfs Feet 
 0.678  2×0.1  2×0.0465  0.029  

 (0.818 − 0.530)  Measured Measured Measured 
 0.374  0.567  0.567  0.5  

 
(0.496 )

+ ( +
+ )  

2×[ 0.323

+ + ] 

2
× (0.643 )  N/A 
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Table 8 - Average Percent between Trials of Linear and Nonlinear Measures within Defined Error for COPSIP with 
Optimized ICs 

  COPPos COPVel COPAcc 
All Linear 
Measures DFA SE AE All Nonlinear 

Measures 

  EO EC EO EC EO EC EO EC EO EC EO EC EO EC EO EC 
PD-
Mi-

Study 

HS 79% 79% 75% 83% 88% 88% 81% 83% 100% 100% 68% 89% 54% 92% 74% 89% 

PD-Mi 88% 96% 67% 75%  29% 58% 61% 76% 100% 100% 58% 92% 53% 79% 71% 94% 

PD-
Mo-

Study 

HS 100% 100% 83% 83% 83% 88% 89% 90% 100% 100% 100% 100% 100% 100% 100% 100% 

PD-Mo 88% 88%  13% 54% 25% 25% 42% 56% 100% 100%  8% 42% 3% 26% 37% 56% 

                  

    ±10% Error     ±15% Error     ±20% Error    

Red and bolded numbering means that the variability between trials was less than ±5% (α = 0.05) 

 

Table 9 - Average Percent between Trials of Linear and Nonlinear Measures with Error Applied for COPSIP with 
Optimized ICs 

  COPPos COPVel COPAcc 
All Linear 
Measures DFA SE AE All Nonlinear 

Measures 
  EO EC EO EC EO EC EO EC EO EC EO EC EO EC EO EC 

PD-
Mi-

Study 

HS 63% 63% 60% 66% 70% 70% 65% 66% 90% 85% 54% 71% 43% 74% 59% 71% 

PD-Mi 75% 77% 54% 60% 23% 46% 49% 61% 90% 85% 46% 74% 42% 63% 57% 75% 

PD-
Mo-

Study 

HS 80% 85% 66% 66% 66% 70% 72% 72% 90% 90% 80% 80% 80% 80% 80% 80% 

PD-Mo 75% 75% 10% 43% 20% 20% 36% 45% 80% 85% 6% 34% 2% 21% 30% 45% 

Average percent between trials and error are combined using %Measures x (100% - |%Error|). Red and bolded numbering 
means that the variability between trials was less than ±5% (α = 0.05) 
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Figure 2 - SIP Free Body Diagram: Kinetic Study of SIP 

 

 

Figure 3 - SIP Free Body Diagram: Kinetic Study of Stationary Foot 
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Figure 4 - PD-Mi-Study (Sub 1013): ICs Optimization for Nonlinear/Linear Differential Equation 

 

 

Figure 5 - PD-Mi-Study: Overall Comparison of Optimized and Zero ICs in EO and EC 
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Figure 6 - PD-Mo-Study: Overall Comparison of Optimized and Zero ICs in EO and EC 

 

 

Figure 7 - PD-Mi-Study: Overall Comparison of Nonlinear/Linear Differential Equation 
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Figure 8 - PD-Mo-Study: Overall Comparison of Nonlinear/Linear Differential Equation 

 

 

Figure 9 - PD-Mo-Study (Sub 4011): Comparison of COPexp and COPSIP with Optimized/Zero ICs 
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Figure 10 - SIP Linear Performance Based on Linear Measures on COPPos 

Percent of linear measures extracted from the COPSIP (CC) and COPSIP (0,0) that had an average error when compared to COPexp 
within a ±5%, ±10%, ±15%, and ±20% (α = 0.05) based on subject groups, EO and EC, trials (R1, R2, R3), and similarity between 

COPexp and COPSIP (CC) or COPSIP (0,0) (CrossCorr > 0, 0.9, 0.95, 0.99) 
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Figure 11 - SIP Linear Performance Based on Linear Measures on COPVel 

Percent of linear measures extracted from the first derivative of COPSIP (CC) and COPSIP (0,0) with respect to time that had an 
average error when compared to COPexp within a ±5%, ±10%, ±15%, and ±20% (α = 0.05) based on subject groups, EO and EC, 

trials (R1, R2, R3), and similarity between COPexp and COPSIP (CC) or COPSIP (0,0) (CrossCorr > 0, 0.9, 0.95, 0.99) 
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Figure 12 - SIP Linear Performance Based on Linear Measures on COPAcc 

Percent of linear measures extracted from the second derivative of COPSIP (CC) and COPSIP (0,0) with respect to time that had an 
average error when compared to COPexp within a ±5%, ±10%, ±15%, and ±20% (α = 0.05) based on subject groups, EO and EC, 

trials (R1, R2, R3), and similarity between COPexp and COPSIP (CC) or COPSIP (0,0) (CrossCorr > 0, 0.9, 0.95, 0.99) 
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Figure 13 - SIP Linear Performance Based on Linear Measures on COPPos, COPVel and COPAcc 

Percent of linear measures extracted from the COPSIP (CC) and COPSIP (0,0), and their first and second derivatives, that had an 
average error when compared to COPexp within a ±5%, ±10%, ±15%, and ±20% (α = 0.05) based on subject groups, EO and EC, 

trials (R1, R2, R3), and similarity between COPexp and COPSIP (CC) or COPSIP (0,0) (CrossCorr > 0, 0.9, 0.95, 0.99) 
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Figure 14 - SIP Nonlinear Performance Based on τ and EmbDim 

Percent of State-Space Reconstruction nonlinear measures extracted from the COPSIP (CC) and COPSIP (0,0) that had an average 
error when compared to COPexp within a ±5%, ±10%, ±15%, and ±20% (α = 0.05) based on subject groups, EO and EC, trials (R1, 

R2, R3), and similarity between COPexp and COPSIP (CC) or COPSIP (0,0) (CrossCorr > 0, 0.9, 0.95, 0.99) 
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Figure 15 - SIP Nonlinear Performance Based on LLE 

Percent of Largest Lyapunov Exponent nonlinear measures extracted from the COPSIP (CC) and COPSIP (0,0) that had an average 
error when compared to COPexp within a ±5%, ±10%, ±15%, and ±20% (α = 0.05) based on subject groups, EO and EC, trials (R1, 

R2, R3), and similarity between COPexp and COPSIP (CC) or COPSIP (0,0) (CrossCorr > 0, 0.9, 0.95, 0.99) 
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Figure 16 - SIP Nonlinear Performance Based on DFA 

Percent of Detrended Fluctuation Analysis nonlinear measures extracted from the COPSIP (CC) and COPSIP (0,0) that had an 
average error when compared to COPexp within a ±5%, ±10%, ±15%, and ±20% (α = 0.05) based on subject groups, EO and EC, 

trials (R1, R2, R3), and similarity between COPexp and COPSIP (CC) or COPSIP (0,0) (CrossCorr > 0, 0.9, 0.95, 0.99) 
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Figure 17 - SIP Nonlinear Performance Based on SE 

Percent of Sample Entropy nonlinear measures extracted from the COPSIP (CC) and COPSIP (0,0) that had an average error when 
compared to COPexp within a ±5%, ±10%, ±15%, and ±20% (α = 0.05) based on subject groups, EO and EC, trials (R1, R2, R3), and 

similarity between COPexp and COPSIP (CC) or COPSIP (0,0) (CrossCorr > 0, 0.9, 0.95, 0.99) 
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Figure 18 - SIP Nonlinear Performance Based on AE 

Percent of Apprimated Entropy nonlinear measures extracted from the COPSIP (CC) and COPSIP (0,0) that had an average error when 
compared to COPexp within a ±5%, ±10%, ±15%, and ±20% (α = 0.05) based on subject groups, EO and EC, trials (R1, R2, R3), and 

similarity between COPexp and COPSIP (CC) or COPSIP (0,0) (CrossCorr > 0, 0.9, 0.95, 0.99) 
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Figure 19 - SIP Nonlinear Performance Based on All Nonlinear Measures 

Percent of all nonlinear measures extracted from the COPSIP (CC) and COPSIP (0,0) that had an average error when compared to 
COPexp within a ±5%, ±10%, ±15%, and ±20% (α = 0.05) based on subject groups, EO and EC, trials (R1, R2, R3), and similarity 

between COPexp and COPSIP (CC) or COPSIP (0,0) (CrossCorr > 0, 0.9, 0.95, 0.99) 
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Figure 20 - SIP Nonlinear Performance Based on All Nonlinear Measures (Except τ, EmbDim, and LLE) 

Percent of all nonlinear measures (Except τ, EmbDim, and LLE) extracted from the COPSIP (CC) and COPSIP (0,0) that had an average 
error when compared to COPexp within a ±5%, ±10%, ±15%, and ±20% (α = 0.05) based on subject groups, EO and EC, trials (R1, 

R2, R3), and similarity between COPexp and COPSIP (CC) or COPSIP (0,0) (CrossCorr > 0, 0.9, 0.95, 0.99) 
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Figure 21 - SIP Linear and Nonlinear Overall Performance 

Average between trials without CrossCorr restrictions (CrossCorr > 0) of percent of linear (COPPos, COPVel, COPAcc, and All linear 
measures) and nonlinear (DFA, SE, AE, and All nonlinear measures except τ, EmbDim, LLE) measures extracted from the COPSIP 

(CC) and COPSIP (0,0) that had an average error when compared to COPexp within a ±5%, ±10%, ±15%, and ±20% (α = 0.05) based on 
subject groups, and EO and EC. Outside color (left color bar) represents the average between trials, while inside color (right color 
bar) represents the standard deviation. Average values enclosed by a circle indicate that the variability of percentages between 

trials was less than ±5% (α = 0.05); otherwise the average value is enclosed by a square.  
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Chapter Four: Summary 

1 Summary of Study 

The goal of this study was to validate the SIP model for bi-pedal quiet standing on healthy old adults and 

people with PD by comparing the linear and nonlinear measures extracted from the COP that the SIP 

creates (COPSIP), and the ones extracted from the experimental COP (COPexp). In addition, this study 

intended to determine if the accuracy of the COPSIP to replicate the COPexp was sensitive to the current 

practice of assuming zero as initial conditions (ICs) when using the differential equation (DEQ) of the SIP. 

As well as if the accuracy of the COPSIP was sensitive to the linearization of the DEQ of the SIP. 

The results of this study showed that assuming zero as ICs increments significantly the error of the 

COPSIP time series in magnitude, and shape of curve (10% to 35%) when compared to the COPexp time 

series. In addition, when the ICs are assumed to be zero, the COPSIP replicates less linear and nonlinear 

measures extracted from the COPexp when errors from ±5% to ±20% are accepted, than when the ICs are 

optimized. Regarding the optimization of ICs, the study showed that the best practice to find them is by 

calculating the COPSIP using the linear version of the SIP DEQ, and finding the ICs that maximize the cross 

correlation between the COPSIP and COPexp. This study also showed that linearizing the SIP DEQ is a safe 

practice since the change in accuracy of the COPSIP was at the most 3% when the nonlinear DEQ was 

used instead of the linear version. 

Regarding the ability of the COPSIP to represent the COPexp based on linear and nonlinear measures, it 

was determined that the COPSIP can describe 70% of the COPexp for healthy subjects if “representing the 

COPexp” consists of replicating the nonlinear measures of a detrended fluctuation analysis (eyes open 

and closed), and the linear measures of the second derivative of the COP time series with respect to 

time (eyes closed). In addition, the COPSIP can represent 70% of the COPexp for subjects with mild PD, 

when the COPexp is described by the linear measures of the COP (eyes open and closed), and nonlinear 

measures of a detrended fluctuations analysis (eyes open and closed), and sample entropy (eyes closed). 

Finally, the COPSIP can represent 70% of the COPexp for subject with moderate PD, when the COPexp is 

described by the linear measures of the COP (eyes open and closed), and the nonlinear measures of a 

detrended fluctuation analysis (eyes open and closed). Also, it was shown that as PD progresses, the SIP 

becomes a less accurate model to represent bi-pedal quiet standing. 
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2 Conclusions and Recommendations 

The main conclusion of this study was that the current practice of assuming zero for the initial 

conditions in the SIP model significantly decreases the accuracy of the model results. This reduces the 

similarity between the COPSIP to the COPexp time series, and the ability of the COPSIP to replicate linear 

and nonlinear measures used to characterize the COPexp. Therefore, an alternative approach is 

recommended to determine more accurate initial conditions by finding the set that maximizes the cross 

correlation between the COPSIP and COPexp. It is also recommended to use linearized differential 

equations within the SIP model when calculating the COPSIP time series, since using the nonlinear 

differential equation results in a very small increase in accuracy. 

It is also concluded that the SIP can be a valid model for unperturbed sway studies on healthy old adults 

and people with mild and moderate PD, when validation is defined as a maximum error of 30% or less. 

In other words, if a study on healthy old adults and people with PD is defining their COPexp using 

detrended fluctuation analysis, it is possible to design a SIP mechanical system that replicates those 

nonlinear measures, and draw conclusions from this mechanical system knowing that they are at least 

70% correct. Therefore, it is recommended that SIP mechanical systems are designed with the goal of 

replicating the linear and nonlinear measures that assure 70% of the COPexp (Table 9), and linear and 

nonlinear measures that have already been analyzed in posturographic studies. This would allow a 

connection between posturographic and mechanical modeling studies that is at least 70% correct. 

Finally, it was concluded that as PD progresses, the SIP model becomes less valid. Therefore, it is 

recommended to explore the use of a double inverted pendulum when people with moderate PD (H&Y 

≥ 3) are included in the study. 

3 Limitations and Future Work 

This study had a few limitations. For example, the PD subjects were only tested in their ON medication 

state. Therefore we could not determine if the SIP could model their sway during the OFF medication 

state, so no insight is available regarding the use of the SIP model for diagnosis of balance deficits in the 

off medication state. Another limitation was that the stance width was not controlled. Therefore, we 

could not analyze the COP in the medial-lateral direction, since not controlling the width would 

introduce additional variability that would skew the results. The participants with PD, compared to the 

healthy controls, naturally chose a wider stance width, providing an increase lateral base of support an 

improved stability. 
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Future studies should consider improving the validation technique proposed in this study. Additional 

nonlinear measures such as Recurrence Quantification Analysis (RQA), or Adaptive Fractal Analysis (AFA) 

could be added to the list of nonlinear measures. In addition, future studies should control the stance 

width of the participants and analyze if the SIP could be a valid model within a defined error for the 

medial-lateral direction. Finally, using the same validation technique of this study, the double inverted 

pendulum should be analyzed and observe if the results improve. In fact, this study should be focused 

more on people with moderate PD since that is where the SIP cannot be considerate a very valid model. 
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Appendices 

1 Appendix A: Equations 

1.1 SIP Free Body Diagram: Kinetic Study of SIP 

Based on Figure 2, these are the steps to obtain the differential equation that determines the angular 

position, velocity and acceleration (AP direction) of the SIP when the COPexp (AP direction) and force 

plate measures (Fx, Fz) are known. It is assumed that the feet are a single rigid body that is stationary in 

all degrees of freedom. 

 

=  

− ℎ sin − − ℎ + =  

=
1

( − ℎ sin − − ℎ ) 

1.2 SIP Free Body Diagram: Kinetic Study of Stationary Foot 

Based on Figure 3, these are the steps to obtain the ground reaction forces (GRFx, GRFz) and COP in the 

AP direction (COPSIP) that a force plate would measure if the human body is a SIP. Same assumptions, 

and angular position, velocity and acceleration previously determined from Appendix A: Equations – 

Section 1.1. 
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From window 1: 

=  =  =  

=  + =  − ℎ sin + =  

 = ( − ) = + ℎ sin  

From window 2: 

= 0 = 0 = 0 

− − = 0 − + − = 0 − − − ℎ + = 0 

= −  = − +  =
1

( + + ℎ ) 

Knowing that  and  in terms of hSIP and θ are: 

= ℎ sin  = −ℎ cos  

= ℎ cos  = ℎ sin  

= ℎ cos − ℎ sin  = ℎ sin + ℎ cos  

2 Appendix C: Selecting the Final Optimized ICs 

As mentioned in Section 3.3.4, there were 8 ways to select the ICs to calculate the COPSIP that used 

optimized ICs. These ways were based on the similarity measure that was optimized (GOF, SSE, MI or 

CrossCorr), and the DEQ (N-DEQ (5) or L-DEQ (6)). 
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To select the DEQ, results from Section 4.2 were analyzed. It was found that the differences of GOF, MI 

and CrossCorr between COPexp and COPSIP when the N-DEQ and L-DEQ were used with optimized ICs, 

were in average less than 2% in the worst-case scenario. In addition, it was found that the difference in 

SSE was negative for all comparisons, meaning that the N-DEQ had in average more error than the L-

DEQ. Due to these observations, it was decided to use the L-DEQ (6) to calculate the COPSIP, instead of 

using the N-DEQ (5). 

To select which similarity measure was going to be optimized and used to select the optimized ICs, the 

following analysis was performed. Using the L-DEQ (6) to calculate the COPSIP, a set of optimized ICs was 

determined for each similarity measure using their respective optimization method (maximization for 

GOF, MI and CrossCorr; and minimization for SSE). Next the absolute differences of all optimized ICs 

were calculated for each subject and trials. These absolute differences were then separated by subject 

groups (HS, PD-Mi and PD-Mo) and condition (EO and EC), and averaged between all trials. In other 

words, the difference |ICsSimilarity Measure x – ICsSimilarity Measure y| was performed for all permutations of HSPD-

Mi-Study/PD-Mi/HSPD-Mo-Study/PD-Mo ∩ EO/EC, and the average of all trials per condition in each group of 

subjects was calculated. Finally, to determine if the absolute differences between ICs calculated from 

various optimization methods were significant different, a left-tail one-sample t-test with α = 0.05 and 

H0 ≥ 0.02 was performed. Significance meant that the difference between ICs ( = 0, = 0) was less 

than 0.02 in magnitude with a 95% confidence. Results from this analysis are in Figure 22 and Figure 23, 

in which the p-value of each comparison is displayed, red font meaning p ≤ 0.05. 

Results showed that the optimized ICs calculated using GOF differ the most (EO and EC) for both studies 

when compared with the other optimized ICs calculated using MI, SSE, and CrossCorr. The most number 

of significant differences between optimized ICs was found when SSE, MI and CrossCorr were compared. 

In fact, the absolute difference between optimized ICs was always smaller in comparisons that were 

between SSE, MI and CrossCorr, than in any other comparison that involved GOF. This meant that the 

agreement of optimized ICs was stronger between SSE, MI and CrossCorr, than between GOF and any 

other similarity measure. Due to these observations, and the nature of CrossCorr (bounded from 0 to 1), 

it was decided to use CrossCorr as the similarity measure to find ICs in this study. 

In conclusion, the method to select the final optimized ICs (used in Section 3.3.4) consisted on 

calculating COPSIP using the L-DEQ (6) with all the possible combinations of ICs in −0.5 ≤ ≤
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0.5  ∩ −1 ≤ ≤ 1  using ∆ = 0.01  ∩  ∆ = 0.02 , and then selecting the ICs 

that maximized the CrossCorr between COPexp and COPSIP. 

 

Figure 22 - PD-Mi-Study: Overall Comparison of ICs between Similarity Measures for EO and EC 

 

 

Figure 23 - PD-Mo-Study: Overall Comparison of ICs between Similarity Measures for EO and EC 
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3 Appendix B: Figures and Tables 

3.1 SIP Linear Measure Accuracy between Subjects 

 

Figure 24 - PD-Mi-Study: Linear Accuracy (±15%) for SIP (R2) with Optimized ICs 

 

Figure 25 - PD-Mi-Study: Linear Accuracy (±15%) for SIP (R2) with Zero ICs 
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Figure 26 - PD-Mo-Study: Linear Accuracy (±15%) for SIP (R2) with Optimized ICs 

 

Figure 27 - PD-Mo-Study: Linear Accuracy (±15%) for SIP (R2) with Zero ICs 
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3.2 SIP Nonlinear Measure Accuracy between Subjects 

 

Figure 28 - PD-Mi-Study (HS): Nonlinear Accuracy (±15%) for SIP (R2) with Optimized ICs 

 

Figure 29 - PD-Mi-Study (PD-Mi): Nonlinear Accuracy (±15%) for SIP (R2) with Optimized ICs 
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Figure 30 - PD-Mi-Study (HS): Nonlinear Accuracy (±15%) for SIP (R2) with Zero ICs 

 

Figure 31 - PD-Mi-Study (PD-Mi): Nonlinear Accuracy (±15%) for SIP (R2) with Zero ICs 
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Figure 32 - PD-Mo-Study (HS): Nonlinear Accuracy (±15%) for SIP (R2) with Optimized ICs 

 

Figure 33 - PD-Mo-Study (PD-Mo): Nonlinear Accuracy (±15%) for SIP (R2) with Optimized ICs 
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Figure 34 - PD-Mo-Study (HS): Nonlinear Accuracy (±15%) for SIP (R2) with Zero ICs 

 

Figure 35 - PD-Mo-Study (PD-Mo): Nonlinear Accuracy (±15%) for SIP (R2) with Zero ICs 

 

 


