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Abstract

Microsphere-based polymeric tissue-engineered scaffolds offer the advantage of shape-specific 

constructs with excellent spatiotemporal control and interconnected porous structures. The use of 

these highly versatile scaffolds requires a method to sinter the discrete microspheres together into 

a cohesive network, typically with the use of heat or organic solvents. We previously introduced 

subcritical CO2 as a sintering method for microsphere-based scaffolds; here we further explored 

the effect of processing parameters. Gaseous or subcritical CO2 was used for making the scaffolds, 

and various pressures, ratios of lactic acid to glycolic acid in poly(lactic acid-co-glycolic acid), 

and amounts of NaCl particles were explored. By changing these parameters, scaffolds with 

different mechanical properties and morphologies were prepared. The preferred range of applied 

subcritical CO2 was 15–25 bar. Scaffolds prepared at 25 bar with lower lactic acid ratios and 

without NaCl particles had a higher stiffness, while the constructs made at 15 bar, lower glycolic 

acid content, and with salt granules had lower elastic moduli. Human umbilical cord mesenchymal 

stromal cells (hUCMSCs) seeded on the scaffolds demonstrated that cells penetrate the scaffolds 

and remain viable. Overall, the study demonstrated the dependence of the optimal CO2 sintering 

parameters on the polymer and conditions, and identified desirable CO2 processing parameters to 

employ in the sintering of microsphere-based scaffolds as a more benign alternative to heat-

sintering or solvent-based sintering methods.
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INTRODUCTION

Microspheres have long been an ingredient in scaffold fabrication strategies, but more 

recently have incited interest as the sole building block of scaffolds given the versatility they 

afford the scaffold in terms of 3D shape, high-resolution spatiotemporal control over 

mechanical integrity and growth factor release, and pore interconnectivity.1–4 Microsphere-

based scaffolds have many proven merits, such as ease of fabrication, the aforementioned 

control over varying spatial composition and spatiotemporal release of bioactive signals, and 

physicochemical characteristics.5,6 Furthermore, the microsphere-based scaffold properties 

can be modulated by modifying the microsphere composition, size, and fabrication method. 

The most crucial process that microsphere-based scaffolds have in common is the need to 

sinter the microspheres into a single, cohesive structure. Heat7–11 or ethanol5,12,13 (or 5% 

acetone in ethanol for some nanocomposites) 14,15 have traditionally been used to join 

microspheres together, and approaches to compare various solvents such as acetone and 

tetrahydrofuran (together with hexane as a non-solvent) have been investigated as well for 

sintering microspheres.16 However, CO2 may be an attractive alternative for sintering these 

scaffolds.

Supercritical and subcritical CO2 have been widely used in the processing of polymeric 

materials. The critical point of CO2 is 31.1°C and 73.8 bar. The degree of plasticization and 

swelling of polymers, and consequently their free volume, can be controlled simply by 

changing the pressure (leading to increased CO2 solubility), exposure duration, and release 

rate of the CO2. The relatively low temperature of the process and the stability of CO2 also 

allow for minimal damage or denaturing to processed compounds. An advantage of using 

the CO2 as a plasticizer is that it is easily removed from the processed polymers (i.e., 

lyophilization may not be required, unlike with ethanol sintering). Furthermore, CO2 is seen 

as a promising green solvent because it has low toxicity and low environmental impact when 

used from non-sequestered sources.17–19

The traditional method using CO2 for making tissue-engineered scaffolds is a gas-foaming 

technique. However, a significant disadvantage of gas-foaming techniques to make a porous 

scaffold is that constructs made by this method may suffer from a closed pore structure. 

Sometimes very high pressures are used to create pore interconnectivity by sheer virtue of 

extremely high porosities, but this may lead to drawbacks in mechanical integrity as well as 

inappropriate pore sizes for cell adhesion and growth. In this study, we plasticized the 

surfaces of microspheres and sintered them into interconnective porous scaffolds by 

reducing the applied CO2 pressure and exposure time. In an attempt to increase the porosity 

with this sintering approach, NaCl was included with the microspheres during the sintering 

step.11 The objective of this research was to investigate the mechanical integrity and cell 

compatibility of poly(lactic-co-glycolic acid) (PLGA) microsphere-based porous scaffold 

systems using gaseous or subcritical CO2 for tissue engineering.
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MATERIALS AND METHODS

Materials

PLGA (50:50, 75:25, and 85:15 lactic acid:glycolic acid; intrinsic viscosity 0.34–0.35 dL/g, 

MW 30,000–40,000 Da) was purchased from Lakeshore Biomaterials (Birmingham, AL, 

USA). Poly(vinyl alcohol) (PVA; 88% hydrolyzed, 25,000 Da) was obtained from 

Polysciences (Warrington, PA, USA). Methylene chloride (MC; HPLC grade) was obtained 

from Fisher Scientific (Pittsburgh, PA, USA).

PLGA microsphere preparation

Microspheres composed of 50:50, 75:25, and 85:15 PLGA were made using Precision 

Particle Fabrication technology from our previous reports.5,20 In brief, 2 g of PLGA 

dissolved in 10 mL of MC (20% w/v) was injected through a small-gauge needle of diameter 

1.54 mm (BD Precision Glide needle, 16G1-1/2, BD Biosciences, San Jose, CA, USA). 

Uniform polymer droplets were produced by an ultrasonic transducer (Branson Ultrasonics, 

Danbury, CT, USA) and a waveform generator (model 33220A; Agilent Technologies, 

Santa Clara, CA, USA). A carrier stream (0.5% PVA w/v in D.I. water) surrounded and 

separated the droplets individually. The polymer/carrier stream was then collected into a 

beaker containing approximately 0.5% w/v PVA. Polymer droplets were agitated for 1 day 

to evaporate residual MC. The hardened microspheres were rinsed with distilled water and 

filtered. Finally, the microspheres were lyophilized for 2 days (Freezone, Labconco 

benchtop model, Kansas City, MO, USA). Although some degree of polydispersity existed 

in the diameter range of the microspheres, the target diameter was approximately 200 

microns, to be consistent with our previous studies.5,21

Scaffold fabrication

Cylindrical-shaped molds were loaded with 80 mg of microspheres for scaffolds without 

NaCl and 60 mg of microspheres for NaCl mixed scaffolds and exposed to dense-phase CO2 

at various subcritical levels (10, 14, 15, 20, 25, 30, and 50 bar) for 1 h. The CO2 

pressurization rate was 3–5 bar/min, and the depressurization rate (Back pressure regulator 

(ABPR), Waters Technologies Corp, Milford, MA, USA) was 0.5 bar/min. CO2 sintering 

was performed using a custom-made stainless steel high-pressure reaction chamber. The 

custom-made CO2 chamber (Figure 1) had a pressure safety rating of 60 bar and consisted of 

cylindrical-shaped Teflon molds of the dimensions 9.5 ± 0.3 mm height and 3.7 mm 

diameter. Nearly 34 scaffolds can be prepared using this chamber in a single run. After 

depressurization, scaffolds remained in the reaction chamber for 24 h to allow any residual 

CO2 to escape from the PLGA microspheres. Scaffolds were then lyophilized for 2 days as a 

precaution and stored at room temperature prior to analyses.

To increase the porosity of the scaffolds, 12.5, 25, and 50 wt % of NaCl particles (200–250 

μm) were mixed with PLGA microspheres, then both mixtures were placed into a cylindrical 

mold prior to sintering. 15 bar (scanning electron microscopy [SEM] and porosity) and 25 

bar (mechanical characterization) were used to sinter the scaffolds with the different PLGA 

ratios and weight fractions of NaCl. Scaffolds with incorporated NaCl particles were 
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submerged in deionized water (Milli-Q, Millipore, Billerica, MA, USA) for 3 days to leach 

out NaCl particles, with the deionized water being replaced every 12 h.

Mechanical characterization

Compression tests (37°C, phosphate buffered saline) were performed using a uniaxial testing 

apparatus (Instron Model 5848, Canton, MA, USA) with a custom-built compressive platen-

bath assembly as previously described.5 Cylindrical scaffolds of the dimensions 9.4 ± 0.3 

mm height and 3.7 ± 0.1 mm diameter were compressed at a strain rate of 1 mm/min. Elastic 

moduli were obtained from the initial linear regions of the stress-strain plots.

Porosity measurement

Porosities of the scaffolds were calculated using the density (ρ) of the bulk PLGA and the 

apparent densities (ρapp) of the scaffolds (n = 5). Apparent density and porosity were 

calculated as:

(1)

(2)

where m, d, and h are the mass, diameter, and height of the scaffolds respectively. Our 

previous reports have indicated a close match between the calculated porosity [Eq. (2)] and 

porosities measured by microCT.5 In addition, the current calculated porosities were 

validated by comparing values of selected groups (n = 5) with measurements taken via 

mercury intrusion and extrusion methods using AUTOPORE IV 9500 (Micromeritics, 

Norcross, GA, USA) with an equilibration time of 10 s (differences between values from 

each group were found to be smaller than 5% of the mean calculated value for each group).

Cell harvest

Human umbilical cord collection and cell harvests were approved by the University of 

Kansas Human Subjects Committee (KU-Lawrence IRB approval no. 15402 and KU 

Medical Center IRB approval no. 10951). Human umbilical cord mesenchymal stromal cells 

(hUCMSCs) were harvested from the Wharton’s jelly as we have described previously.22 

Briefly, one cord was used for this study (male, 10-cm long), which was first cut into 3–5 

cm pieces, then the vessels were removed, and the segments were minced and incubated in 

0.75 mg/mL type II collagenase (Worthington Biochemical, Lakewood, NJ) at 37°C for 6 h. 

Cells were plated and fed every 2 to 3 days and passaged to P4.

Cell seeding on scaffolds and viability

Scaffolds were sterilized by ethylene-oxide prior to cell seeding after which they were air 

dried in a fume hood for 24 h and placed in a 24-well plate. Cells were seeded drop-wise, in 

a volume equal to about 50% of the scaffold volume, directly on top of the scaffolds at a 

density of 2 × 106 cells/mL of scaffold, and allowed to penetrate into the scaffold via 

capillary action. They were then allowed to attach for 3 h, after which 1.5 mL of the medium 

was added and cultured for 7 days. The culture medium consisted of Dulbecco’s modified 
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Eagle medium (DMEM-LG; Invitrogen, Carlsbad, CA, USA), 1% penicillin–streptomycin 

(Invitrogen) and 10% fetal bovine serum ((FBS; Gemini, West Sacramento, CA, USA) and 

was replaced at Day 1 and 5. After 7 days of culture, the constructs were stained with LIVE/

DEAD assay reagent (Molecular Probes, Carlsbad, CA, USA) and incubated for 30 min, 

then viewed via fluorescence microscopy (Olympus/Intelligent Innovations Spinning Disk 

Confocal Microscope). Another group of constructs after 7 days of culture was treated with 

glutaraldehyde and dehydrated by critical point drying, then inspected with a Leo 1550 field 

emission scanning electron microscope at an accelerating voltage of 5 kV under a high 

vacuum.

Statistical analysis

Data are presented as mean ± standard deviation of six measurements. All data were 

compared among groups by analysis of variance (ANOVA). Post-hoc comparisons were 

made using the Tukey–Kramer comparison test when the p-value was significant (p < 0.05).

RESULTS

PLGA microspheres were prepared using the Precision Particle Fabrication method.5,20 

Cylindrical scaffolds were produced using subcritical CO2 sintering as described previously. 

The appearance and microstructure of scaffolds after exposure to various CO2 pressures was 

visualized using SEM (Figure 2). SEM imaging revealed that the scaffolds exposed to 25 bar 

for 1 h and a depressurization rate of 0.5 bar/min demonstrated a higher degree of sintering 

and more bridges between the adjoining microspheres when compared to the other groups 

sintered at different CO2 pressures. The spherical shape of the microspheres was retained in 

all of the groups.

The scaffolds made at 10 and 14 bar showed insufficient mechanical integrity to maintain 

their shape in an aqueous environment (data not shown). Other groups prepared at 30 and 50 

bar showed a foamy and glassy state on the scaffold on visual inspection (data not shown), 

indicating over-sintering. Therefore, the pressure range from 15 to 25 bar and 1 h period of 

CO2 exposure were selected to sinter all of the microspheres.

Figure 3 shows the appearance and visualization of the scaffolds synthesized using various 

salt concentrations (0%, 12.5%, 25%, and 50% NaCl) and different lactic and glycolic acid 

ratios. It was difficult to discern any significant difference in the degrees of sintering among 

the different PLGA ratios at a given salt concentration. However, larger void regions were 

apparent in the groups prepared with higher salt contents.

The elastic moduli of the scaffolds were found to be from 0.24 to 1.1 MPa (Figure 4). 

Greater mechanical integrity was observed for scaffolds sintered at 25 bar when compared to 

15 and 20 bar pressure. The scaffolds fabricated at 25 bar exhibited 78.8% and 50% higher 

elastic moduli than at 15 bar and 20 bar, respectively (p < 0.05). In contrast, for scaffolds 

sintered at 15 bar, the elastic modulus was lower than other groups (p < 0.05).

Figure 5 shows the elastic moduli of scaffolds having different lactic and glycolic acid ratios 

with the same sintering treatment. With respect to the PLGA composition, the 50:50 PLGA 
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group was 25% stiffer than the 75:25 group (p < 0.05) and 3.5 times stiffer than the 85:15 

group.

Figure 6 shows the elastic moduli of scaffolds with different weight fractions of NaCl and 

sintered at 25 bar. It was observed that scaffolds with 12.5, 25, and 50 wt % NaCl particles 

had significantly lower elastic moduli (90, 72, and 31%, respectively) (p < 0.05) than 

scaffolds without salt particles.

The porosities of scaffolds obtained at different sintering pressures and with various NaCl 

concentrations are shown in Table I. When the applied pressure was increased from 15 to 20 

bar or 25 bar, there were no statistically significant differences in porosity (mean porosity 

values were 38–41% for all three pressures). There were also no statistically significant 

changes in porosity with the use of differing PLGA ratios (50:50, 75:25, 85:15) sintered at 

15 bar. At a constant applied pressure of 15 bar, blending an additional 12.5 wt % of the 

porogen resulted in a higher mean porosity value, although it was not statistically 

significant. However, at salt concentrations of 25% and 50%, the porosities after sintering at 

15 bar were 30.3% (p < 0.005) and 58.4% (p < 0.001) larger than they were without salt, 

respectively.

hUCMSCs were seeded and cultured on the scaffolds for 1 week to determine the viability 

of the scaffolds. The majority of the cell population was identified as viable on the surface 

and inside of the scaffolds after 1 week of culture (Figure 7). Figure 8 shows the hUCMSC 

morphology on the scaffolds as exhibited by SEM after 1 week of culture. Cells (inside red 

circles) were seen attached to the scaffold surface.

DISCUSSION

The present study demonstrated that subcritical CO2 is an effective plasticizer for the 

sintering process of microsphere-based tissue-engineered scaffolds, and provided general 

guidelines for the selection of sintering conditions for PLGA microsphere-based scaffolds 

under various conditions. High pressure CO2 swells and plasticizes glassy polymers.23 

During plasticization, the distance between the polymer interchains increases, resulting in an 

increase in the free volume of the polymer, which consequently enhances the mobility of the 

polymer segments. This phenomenon is similar to the plasticizing effect achieved during 

scaffold fabrication using organic solvents.23–25 The traditional gas-foaming method to 

make porous scaffolds is a saturation of the polymer with CO2 at supercritical pressures with 

equilibration periods of 2 h, or at subcritical pressures with equilibration periods of more 

than 24 h. Rapid degassing then leads to the nucleation of the gas and forms pores in the 

polymer, and the decreased glass transition temperature is restored.26–28 This gas-foaming 

method is not suitable for the microsphere sintering method because the microspheres would 

all lose their structural integrity to form a single liquid-like state. The subcritical, or dense-

phase CO2 sintering method for manufacturing microsphere-based scaffolds is entirely 

different from the gas-foaming technique, using significantly lower CO2 pressures and 

exposure times. When PLGA microspheres are exposed to subcritical CO2 for a shorter 

period of time, the swollen and plasticized state is limited to the surface of the microspheres. 

This leads to retention of the entire morphology of the microspheres and sintering of the 
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adjoining microspheres. The scaffolds prepared by this method have an interconnected pore 

structure, which is essential for the supply of nutrients and circulation of metabolic waste.

The applied CO2 pressure is one of the primary factors for controlling the mechanical 

properties of the scaffolds. We applied various subcritical CO2 pressures (10, 14, 15, 20, 25, 

30, and 50 bar) while fabricating the scaffolds in our preliminary studies, with only the 

sintering effects of the subcritical CO2 at 15, 20, and 25 bar being adequate for further 

evaluation. Scaffolds made below 15 bar showed insufficient mechanical strength to 

maintain their shape in an aqueous environment (data not shown) because lower CO2 

pressure and concentration may not have sufficiently increased the mobility of the polymer 

interchains under the time of CO2 exposure. Other groups prepared above 25 bar showed a 

foamy and glassy state on visual inspection of the scaffold because high concentrations of 

CO2 dissolved the microspheres and produced closed and regionally localized foams in the 

scaffolds (data not shown). In contrast, the scaffolds exposed to 25 bar for 1 h showed a 

higher degree of sintering between adjoining microspheres (Figure 2) and the highest elastic 

modulus compared to other groups (Figure 4) because within the efficacious range of 15–25 

bar, the 25 bar pressure provided a higher degree of sintering between adjoining 

microspheres without leading to pore collapse.

Generally, the scaffold groups with higher lactic acid ratios (85:15 and 75:25) in PLGA 

were less stiff compared to the lower lactic acid ratio (50:50) group. However, these results 

were for the CO2 parameters selected for the 50:50 group, and perhaps with additional 

optimization, perhaps with longer sintering times, that the moduli of the higher lactic acid 

groups could be increased. Overall, the moduli observed in the current study with CO2 

sintering were on the same order of magnitude as those we observed previously with ethanol 

sintering,5 and in particular the previous ethanol sintering for 1 h with 50:50 PLGA 

(intrinsic viscosity = 0.41 dL/g) and the current CO2 sintering at 20 bar for 1 h with 50:50 

PLGA (intrinsic viscosity = 0.35 dL/g) were both approximately 0.3 MPa (both tested under 

compression in phosphate buffered saline). There were slight variations between the 

materials (intrinsic viscosity) and compression method (strain rate, height:diameter ratio), 

but altogether this comparison provides evidence of comparable moduli achieved with the 

two different sintering methods for PLGA microsphere-based scaffolds.

The data indicated an inverse relationship between scaffold stiffness and salt content (Figure 

6). The groups with higher NaCl content in the scaffold provided fewer sintering sites 

between adjoining microspheres, which resulted in a lack of scaffold stiffness.

In comparison with the higher applied CO2 pressures (20 and 25 bar), 15 bar of applied 

pressure showed the least degree of sintering (Figure 2) and most of the microspheres 

retained their spherical morphology. Therefore, the mean porosity (40%) of the scaffold at 

15 bar was larger than those of 20 (38.3%) and 25 bar (37.9%). To enhance porosity, a 

porogen was introduced to generate pores. However, although porosity increased through 

the inclusion of additional porogen, adding NaCl granules decreased the stiffness of the 

structures. The porosity and mechanical properties thus exhibited an inverse relationship, as 

also supported by a very recent related study.11 Overall, it is unknown whether 

incorporation of NaCl granules in scaffold fabrication with microspheres will ultimately 
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better promote tissue in-growth in vivo, although we do now have a better understanding of 

how NaCl can be leveraged to shift the balance of mechanical performance and porosity 

with the use of the current materials and CO2 sintering conditions. Moreover, the use of 

NaCl as a porogen opens up questions for new research directions, including the effects of 

porogen size, as well as the use of other porogens, and their incorporation at different steps 

in the fabrication process.

One limitation of this study was that application of our samples was limited to in vitro 

evaluation. For some specific preclinical or clinical trials, the shape and size of the scaffold 

will need to more closely mimic the targeted tissue. Ongoing studies will focus on 

fabricating shape-specific scaffolds, as we have shown previously, and investigating their 

performance in vitro and in vivo. In addition, ongoing studies in our group are focusing on 

controlled release of bioactive signals from microspheres following differing sintering 

conditions, as well as on longer term degradation studies.

CONCLUSION

Scaffolds were fabricated using a subcritical CO2 sintering method. Scaffolds prepared at 25 

bar with a lower lactic acid ratio and without NaCl particles were stiffer, while the 

constructs made at 15 bar with a lower glycolic acid ratio and salt granules had lower elastic 

moduli. The optimum range of applying subcritical fluid CO2 was from 15 to 25 bar for the 

scaffold system investigated, with the ideal pressure depending on the application and 

polymer system. The future applications of this study are very broad, including tissue 

engineering and drug delivery. The key advantages of subcritical fluid CO2 sintering are a 

non-toxic and environmentally friendly approach for scaffold fabrication. A major challenge 

in tailoring sintering conditions using subcritical CO2 will be the encapsulation and release 

of growth factors with minimal damage or denaturing.
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FIGURE 1. 
Custom-made stainless-steel CO2 chamber. Maximum pressure rating: 60 bar. The chamber 

contains Teflon molds inside. [Color figure can be viewed in the online issue, which is 

available at wileyonlinelibrary.com.]
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FIGURE 2. 
SEM images of scaffolds. The appearance and microstructure of scaffolds obtained with 

various CO2 pressures are represented: 15 bar (a, d), 20 bar (b, e), and 25 bar (c, f). Higher 

sintering effect was observed in scaffolds sintered at 25 bar than that sintered at 15 and 20 

bar. Scale bars = 3 mm for a–c and 200 μm for d–f. CO2 exposure: 1 h, 50:50 PLGA, 

intrinsic viscosity: 0.34–0.35 dL/g.
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FIGURE 3. 
SEM images of scaffolds with different salt concentrations (0, 12.5, 25, and 50% NaCl) and 

different lactic/glycolic acid ratios (50:50, 72:25, and 85:15 PLGA). Although differences in 

degree of sintering were difficult to discern among the PLGA ratios at a given salt 

concentration, it was readily apparent that there were more void spaces present with the 

higher salt concentration groups. It is noteworthy that the sizes of the salt particles and the 

microspheres were very similar. Scale bars = 100 μm. CO2 exposure: 1 h, applied pressure: 

15 bar, intrinsic viscosity: 0.34–0.35 dL/g.
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FIGURE 4. 
Compressive elastic moduli of scaffolds prepared under different pressures (15, 20, and 25 

bar); CO2 exposure time: 1 h, 50:50 PLGA, intrinsic viscosity: 0.34–0.35 dL/g. Greater 

moduli were observed for scaffolds sintered at 25 bar. Values are reported as mean ± 

standard deviation, n = 6. Statistically significant difference between groups *p < 0.01 and 

**p < 0.05.
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FIGURE 5. 
Compressive elasticmoduli of scaffolds prepared using different lactide/glycolide ratios in 

PLGA (50:50, 75:25, and 85:15); CO2 exposure time: 1 h, intrinsic viscosity: 0.34–0.35 

dL/g, applied pressure: 25 bar. Elastic moduli decreased as the ratio of lactide/glycolide 

content increased. Values are reported as mean ± standard deviation, n = 6. Statistically 

significant difference between groups, *p < 0.005 and **p< 0.05.
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FIGURE 6. 
Compressive elastic moduli of scaffolds prepared by blending different amount of NaCl 

particles (0, 12.5, 25, and 50 wt % of PLGA microspheres); CO2 exposure time: 1 h, 50:50 

PLGA, intrinsic viscosity: 0.34–0.35 dL/g, applied pressure: 25 bar. An inverse relationship 

was observed between elastic moduli and NaCl content. Values are reported as mean ± 

standard deviation, n = 6. Statistically significant difference between groups, *p < 0.001 and 

**p < 0.05.
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FIGURE 7. 
Fluorescent micrographs of live/dead dye-stained hUCMSCs seeded on scaffolds following 

a 1 week cell-culture period: (a) 15, (b) 20, and (c) 25 bar: live (green) and dead (red) cells. 

The majority of the cells were found to be viable for all scaffolds. Note the dark circular 

regions, representing the location of the microspheres, which were surrounded by the cells. 

50:50 PLGA intrinsic viscosity: 0.34–0.35 dL/g, CO2 exposure 1 h, applied pressures 25 

bar; Scale bars: 500 μm. [Color figure can be viewed in the online issue, which is available 

at wileyonlinelibrary.com.]
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FIGURE 8. 
hUCMSC morphology on the scaffolds after 1 week of culture, exhibited by SEM. Cells 

(inside red circles) attached to scaffolds by extending cell processes to the surface: Gross 

morphological state of tissues: (a) 20 and (b) 25 bar: 50:50 PLGA intrinsic viscosity: 0.34–

0.35 dL/g, CO2 exposure 1 h; Scale bars: 500 μm. [Color figure can be viewed in the online 

issue, which is available at wileyonlinelibrary.com.]
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TABLE I

Comparison of the Porosities of the Scaffolds

Applied pressure (bar) Porogena content (wt %) PLGA ratio Porosity (%)

15 0 50:50 40.2 ± 7.0

20 0 50:50 38.3 ± 3.4

25 0 50:50 38 ± 16

15 12.5 50:50 44.9 ± 4.7*

15 25 50:50 52.4 ± 5.1*

15 50 50:50 63.7 ± 5.2*

15 0 75:25 42.2 ± 7.1**

15 0 85:15 42.2 ± 8.1**

a
NaCl (200–250 μm).

0.35 dL/g, CO2 exposure 1 h. At 15 bar, a statistically significant increase in porosity when compared to the 0% NaCl group was observed in the 

25% (p < 0.005) and 50% (p < 0.001) groups. n = 6, except for

*
n = 5 and

**
n = 10.
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