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Abstract
Traditional drug targets have historically included signaling proteins that respond to small-
molecules and enzymes that use small-molecules as substrates. Increasing attention is now being
directed towards other types of protein targets, in particular those that exert their function by
interacting with nucleic acids or other proteins rather than small-molecule ligands. Here, we
systematically compare existing examples of inhibitors of protein–protein interactions to inhibitors
of traditional drug targets. While both sets of inhibitors bind with similar potency, we find that the
inhibitors of protein–protein interactions typically bury a smaller fraction of their surface area
upon binding to their protein targets. The fact that an average atom is less buried suggests that
more atoms are needed to achieve a given potency, explaining the observation that ligand
efficiency is typically poor for inhibitors of protein– protein interactions. We then carried out a
series of docking experiments, and found a further consequence of these relatively exposed
binding modes is that structure-based virtual screening may be more difficult: such binding modes
do not provide sufficient clues to pick out active compounds from decoy compounds. Collectively,
these results suggest that the challenges associated with such non-traditional drug targets may not
lie with identifying compounds that potently bind to the target protein surface, but rather with
identifying compounds that bind in a sufficiently buried manner to achieve good ligand efficiency,
and thus good oral bioavailability. While the number of available crystal structures of distinct
protein interaction sites bound to small-molecule inhibitors is relatively small at present (only 21
such complexes were included in this study), these are sufficient to draw conclusions based on the
current state of the field; as additional data accumulate it will be exciting to refine the viewpoint
presented here. Even with this limited perspective however, we anticipate that these insights,
together with new methods for exploring protein conformational fluctuations, may prove useful
for identifying the “low-hanging fruit” amongst non-traditional targets for therapeutic
intervention.

Introduction
The majority of modern drugs modulate the function of a relatively small number of protein
targets that include enzymes, G-protein coupled receptors (GPCRs), ion channels,
transporters, and nuclear hormone receptors 1, 2. With the exception of proteases, each of
these broad classes of protein have evolved to bind a cognate small-molecule, and most
therapeutics disrupt activity by competitively binding to the same region of the protein
surface as the natural interaction partner. These surface binding pockets are typically deep
and present a well-defined shape that often complements the natural substrate 3. In such
cases, mimicry of the natural substrate (or transition state) may serve as an attractive starting
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point for designing new inhibitors 4. Given that new inhibitors often have similar chemical
properties as endogenous ligands, identification of one or more natural ligands with drug-
like physicochemical characteristics can also be used to infer the “druggability” of a new
protein target 5.

In contrast to these “traditional” protein targets for therapeutic intervention, there are also a
tantalizing number of well-validated “non-traditional” potential targets. These proteins have
evolved to bind not small-molecules but rather other macromolecules, and include targets
involved in protein–DNA interactions (e.g., 6, 7), protein–RNA interactions (e.g., 8, 9), and
protein–protein interactions (e.g., 10, 11). The interaction surfaces of these proteins are often
large and flat, lacking a deep pocket suitable for small-molecule binding 3. Given the size of
the natural substrate in these cases, examples of mimicry by small molecules leading to
potent inhibitors are few 12-17, and even in these successful cases the resulting inhibitors
tend to be larger than typical orally available drugs 18, 19.

Structure-based virtual screening methods offer a means to directly identify novel inhibitory
compounds that complement the target protein surface 20; these methods are not limited by
the requirement for template compound(s) implicit to ligand-centric (mimicry)
approaches 21. In the simplest terms, virtual screening requires some method for sequentially
positioning each candidate compound from a library at its most likely position on the protein
surface (i.e., “docking”), followed by a subsequent discrimination step (i.e., “scoring”) to
rank each of the resulting complexes based on their likelihood of showing the desired
activity.

The historical focus on inhibiting proteins evolved to bind a cognate small-molecule (both
enzymes and proteins involved in signaling) has led to an understanding of many structural
features exhibited by such complexes 22. These insights have been facilitated in part by
databases such as MOAD 23, 24, which have enabled comparisons to reveal subtle
differences in enzyme versus non-enzyme classes of “traditional” drug targets 25.

The question now arises whether the same structural features apply to inhibitors that bind at
“non-traditional” sites (i.e., those not evolved for small-molecule binding). To identify any
systematic differences between these two broad classes of targets is critical, since structure-
based virtual screening methods absolutely require these insights to appropriately rank
docked complexes and select the most promising compounds for experimental
characterization. Since very few examples of direct inhibitors of nucleic acid binding sites
have been described, here we instead focus on small-molecule inhibitors of protein–protein
interactions. While the widespread impression in the field is that small-molecule inhibitors
of protein–protein interactions tend to be larger and contribute less binding affinity per atom
than inhibitors of traditional drug targets, this viewpoint is predicated largely on a study that
described a relatively small number of examples 26. Here we seek to carry out a more
thorough quantitative evaluation of properties that distinguish each class of inhibitor, then
ask how these differences affect the performance of virtual screening tools when applied to
protein–protein interaction sites.

Results
Extent of ligand burial in inhibitory complexes

For this study we compiled a set of 21 unique protein–protein interaction sites for which a
crystal structure has been solved in complex with a small-molecule inhibitor (Table 1),
which we will refer to as the “PPI set.” We compared properties of these representative
complexes to those of the Astex Diverse Set from Gold 27, which contains crystal structures
of proteins of pharmaceutical or agrochemical interest each bound to a small-molecule
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inhibitor with drug-like chemical properties. The chemical properties of the ligands in the
PPI set are comparable to those of the Astex set (the construction and composition of both
sets are described in the Methods section).

It has been noted anecdotally that inhibitors of protein-protein interactions bind at flatter
regions of the protein surface than do inhibitors of “traditional” drug targets 3,26 To
systematically characterize whether the ligand is less buried upon binding, we defined a
parameter θlig that quantifies the fraction of ligand solvent accessible surface area (SASA)28

that remains exposed upon binding:

(Eqn. 1)

where SASAprotein is the SASA of the protein with the ligand removed, SASAligand is the
SASA of the ligand with the protein removed, and SASAcomplex is the total SASA of the
protein-ligand complex. We note that SASAprotein and SASAligand are each computed
directly from the structures that comprise the complex, and not from other unbound crystal
structures.

We computed θlig for each complex in the Astex set and the PPI set; the results of this
comparison are presented in Figure 1. It is immediately evident that the bound inhibitors at
protein interaction sites retain more exposed surface area than their counterparts which bind
at sites evolved for small-molecule binding (high θlig for traditional targets); this observation
further holds for other analogous sets of druglike complexes (DUD-E 29 and SB2010 30,
Figure S1). Among the members of the Astex set, we find that the class of protein targets
with the highest θlig values is serine proteases (βII tryptase, factor Xa, factor VIIa, thrombin,
urokinase; see Table S1). These enzymes contribute four of the ten highest θlig values in the
Astex set, corresponding to statistically significant enrichment of this target class (p < 0.01).
Although they are enzymes, the natural substrates of serine proteases are proteins rather than
small-molecules; for this reason, it is perhaps unsurprising that θlig values for such
complexes resemble those associated with protein interaction sites more than those
associated with traditional drug targets.

Since the set of physical forces that underlie binding must be the same for both classes of
complexes, we next asked how this difference in exposed surface area influences binding
affinity. We compared the potency of each complex, and found the distributions from the
two sets to be essentially the same (Figure 2a). Due to the larger compound size required to
achieve this potency (Figure S2), however, we find that inhibitors acting at protein
interaction sites bind with less ligand efficiency (binding energy per non-hydrogen atom 31)
than orally active compounds acting on traditional targets (Figure 2b). A single outlier with
high ligand efficiency in the PPI set is evident, corresponding to an inhibitor of calpain
(1alw in Table 1, with ligand efficiency 0.68 kcal/mol per non-hydrogen atom). Further
inspection reveals this to be partially an artifact of the way in that ligand efficiency is
defined, since this inhibitor contains a bromine atom: while the potency of this compound is
high given its size, the ligand efficiency is further exaggerated because it is normalized
using the number of non-hydrogen atoms rather than molecular weight. Excluding this
outlier, we observe a clear relationship between θlig and ligand efficiency in the PPI set
(Figure 2c), but not in the Astex set (Figure S3). Due to the variation in the molecular
weight of the compounds within each set, this relationship is not apparent when simply
examining potency as a function of θlig (Figure S4).
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These results are in agreement with a previous report drawn from a much smaller set of
protein targets 26, and are also consistent with our observation that the bound inhibitors at
protein interaction sites retain more exposed surface area: an average atom buries less
hydrophobic surface area upon binding, so the contribution of an average atom to the
binding energy—the very definition of ligand efficiency—is expected to be lower 31.

Properties of complexes produced by virtual screening
We have shown above that our collection of inhibitors binding at protein interaction sites
have similar potency as a traditional drug-like set, but that affinity is achieved through a
structurally distinct mode of interaction. It is therefore critical to examine how well modern
energy functions perform in these contrasting regimes.

To evaluate the ability of a representative energy function to distinguish known inhibitors
from a large number of “decoy” compounds, we carried out a mock virtual screening
experiment using the FRED software package 32-34. Starting from the ZINC database 35, we
constructed a “decoy library” of 10,000 compounds with chemical properties (molecular
weight and XlogP) matched to the inhibitors in the Astex and PPI sets. To eliminate
potential challenges associated with sampling, we used OMEGA 36-38 to build up to 300
conformers of each compound to be used for docking. We also included the active
conformer of the known inhibitor (taken from the crystal structure of the protein–ligand
complex) in our virtual screen. The exact active conformer of an inhibitor is generally not
present in a screening library, and adding it to the set should, at least in theory, simplify the
screening problem. As an indicator of how favorably a protein's known inhibitor is scored,
we use its rank relative to the members of the decoy library. As an important caveat, we note
that the decoy compounds are not necessarily inactive. Nonetheless, we expect that even if
the decoy library does contain a small fraction of compounds that are active, the known
inhibitor should rank with these among the top scoring compounds.

We carried out this screening experiment for each complex in the Astex set and the PPI set.
Within each set we collected, at increasing values of a rank threshold, the fraction of targets
for which the known inhibitor was ranked better than the threshold (Figure 3). As can be
appreciated from this figure, a perfect method, which would rank the known inhibitor at the
top of the list for every target, would lead to a vertical rise at the very left of the curve. In
contrast, a completely random method would be expected to rank the known inhibitor in the
top 1% for 1% of the targets, in the top 10% for 10% of the targets, etc., leading to a curve
that follows the diagonal of the plot area.

The first notable observation is that FRED performs exceptionally well for traditional targets
(the Astex set) in this intentionally “easy” experiment. Using illustrative thresholds, the
known inhibitor is ranked within the top 2% of the library (within the top 200 of 10,000
compounds) for 80% of the protein targets in the Astex set, suggesting that indeed the
known inhibitor is near optimal given the scoring function. In contrast, the known inhibitor
is ranked in the top 2% of the library for only 50% of the targets in the PPI set. As shown in
Figure 3, this difference in performance holds irrespective of the threshold applied—in other
words, performance on the Astex set is superior regardless of whether one counts
“successes” as protein targets for which the known inhibitor is ranked in the top 5%, top
10%, top 25%, etc. Given the design of this experiment, the dramatically worse performance
for the PPI set points strongly to a deficiency in discrimination of the correctly bound
inhibitor from bound decoy compounds if the known inhibitor retained a large fraction of
exposed surface area upon binding (high θlig).

To eliminate the possibility that this difference in performance originated from a bias in the
composition of our decoy library (e.g., our library could be comprised of decoys that are
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viable inhibitors of protein interaction sites but easy to rule out as enzyme inhibitors), we
carried out an analogous experiment in which we used the DUD-E server 29 to build a
separate set of 50 decoy compounds for each target, matched to the chemical properties of
the known inhibitor. We observe the same performance difference between the Astex set
and the PPI set in this experiment (Figure S5) as in the previous screening experiment. The
observed difference in performance between these two sets of target proteins holds when
another software package, DOCK 6.6 39, is used to carry out the virtual screen (Figure S6),
indicating that particular details specific to FRED are not responsible for the observed
differences.

Since this screening experiment was explicitly designed to be “easy” with respect to
sampling (for example, by including the active conformer taken from the crystal structure),
we expected that the poorer performance on the PPI set stemmed from difficulty assigning
the correctly docked pose a suitably favorable score. To test this, we collected the RMSD of
the top-scoring docked pose of the active compound relative to its position in the crystal
structure. We find the active compounds that (correctly) scored amongst the very top of the
library collection were inevitably correctly docked (low RMSD) (Figure 4a); this is
unsurprising, since one might expect that correctly predicting the pose is usually a pre-
requisite for correctly identifying an active compound. Of the active compounds which did
not score in the top 1% of the library, approximately half were correctly docked (RMSD less
than 2 Å) with the other half dramatically mis-docked (RMSD greater than 5 Å). We then
scored each of the crystal structures of the same complexes, and computed the difference in
score relative to the docked pose. While in a few cases the crystal structures scored slightly
better that nearly-correct docked poses, each of the mis-docked poses scored better than the
crystal structure (Figure 4b, high RMSD points all have positive score differences).
Collectively these results suggest that the screening challenges presented in the PPI set lie
not with sampling, but rather with assigning the correctly docked ligand a suitably favorable
score: relative to decoy compounds, and also relative to mis-docked poses of the ligand.

We then selected the top-ranked compound from each screen, whether it was the known
inhibitor or a decoy, and evaluated θlig in the docked complex. Intriguingly, the distributions
of these values match the corresponding distributions from complexes solved with the
known inhibitors (Figure 5). In other words, though the known inhibitors from the PPI set
were often not highly ranked in this screening experiment, the highly ranked decoys
nonetheless retained a large fraction of exposed surface area upon binding (high θlig). Thus,
the discrimination problem in the PPI set is not a bias in favor of low θlig complexes over
high θlig complexes, but rather a failure to discriminate the known (high θlig) inhibitor from
decoy compounds that also have high θlig values. In contrast, the more extensive burial of
compounds in the Astex set may lend additional clues for correctly identifying the cognate
inhibitor, explaining the relative ease in correctly identifying inhibitors for these targets.
These observations further suggest that the protein conformation itself is the primary
determinant of θlig values in inhibitory complexes: unless a pocket suitable for extensive
ligand burial is present on the protein surface, it is simply not possible to have an inhibitor
with low θlig. This constraint, together with the poor ligand efficiency associated with high
θlig values, suggests limited druggability of these particular protein conformations.

We next sought to determine whether this conclusion applies to alternate conformations of
these particular protein interaction sites. We have recently described an approach for
exploring protein fluctuations enriched in conformations containing surface pockets suitable
for small molecule binding 40. We therefore carried out the same experiment described
above, this time screening against either the unbound protein structure, the structure of the
protein in complex with its protein partner, or a structure generated via biased simulations.
We find similar distributions of θlig for the top-scoring complex when screening against
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these conformations as well (Figure 6), suggesting that these too lack pockets suitable for
extensive ligand burial that are required for complexes with low θlig. On the basis of this
result, computational screening against these alternate protein conformations is unlikely to
yield inhibitors with dramatically higher ligand efficiency.

Discussion
Previous analyses have shown that known to be inhibitors of protein–protein interactions
can be systematically distinguished from drug-like compounds on the basis of size and
shape 41, 42, and also that the deep pockets present on traditional drug targets (sites evolved
for small-molecule binding) are typically absent at protein interaction sites 3, 43. Here, we
demonstrate the differences in the components of the inhibitory complexes—the compound
and the protein target—are manifest in the structural features of the complexes themselves.

Our results further demonstrate that modern virtual screening methods typically are less
suited for identifying inhibitors of protein interactions than for identifying inhibitors of
traditional drug targets. The difficulty in discriminating active compounds from decoy
compounds may be due to an incomplete representation of the underlying physical forces
that govern binding in this alternate structural regime; or, more simply, these methods may
have been parameterized for optimal performance when applied to traditional drug targets at
the expense of performance on non-traditional targets.

Nonetheless, the results from the virtual screening experiments described here demonstrate
that the protein conformations tested can only harbor a relatively exposed ligand, because
they present relatively flat surface pockets. This feature of bound complexes does not
preclude identification of potently binding compounds; rather, it simply implies that such
compounds will require many atoms to achieve this potency, and therefore may violate
Lipinski's “rule-of-five” criteria for oral availability 18, 19. For enzymes, the rule-of-five
compliance of the natural endogenous substrate has been shown to be a good predictor of
druggability 5, since inhibitors may occupy similar chemical space. For protein targets not
naturally evolved to bind small-molecules, the natural binding partner cannot be used to
draw such inferences. Collectively, our results do not suggest that protein interaction sites
are necessarily less “bindable” than traditional drug targets, but rather that the size of
compounds required for the desired potency may make protein interaction sites intrinsically
less “druggable.”

Our conclusions are also highly complementary to those reached in a previous study
comparing inhibitory complexes of enzyme versus non-enzyme drug targets 25 through a
survey of the MOAD database 23. Both types of target are “traditional” by our definition, in
that both have evolved to bind small-molecules. Interestingly, the authors of this study find
higher ligand efficiency in non-enzyme complexes, and propose that the origin of this
difference stems from the fact that non-enzyme ligands (signaling molecules such as
hormones) are typically more “encapsulated” than their enzyme counterparts 25. This
suggestion is in direct agreement with our observations: ligand efficiency of inhibitors
bound at protein interaction sites (median value 0.29 kcal/mol•atom) is lower than that of
inhibitors of these “traditional” enzyme and non-enzyme targets (median 0.36 and 0.41 kcal/
mol•atom, respectively 25), in keeping with the limited degree to which the protein surface
can accommodate these ligands.

While inhibitors bound to the protein interaction sites studied here can only achieve limited
burial (and thus poor ligand efficiency), it is important to note that the protein conformation
was fixed throughout these docking experiments. This restriction of the protein surface, in
turn, may have influenced our observed recapitulation of θlig values. Achieving improved
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ligand efficiency for ligands binding to protein interaction sites is expected to require that
the protein undergo conformational changes to induce formation of alternate pocket shapes,
but it is unclear a priori what range of pocket shapes are available at a given protein surface.
A number of methods have recently been described to preferentially explore alternate
conformations of protein surfaces suitable for small-molecule binding 40, 44, 45. While our
studies presented here did not find that such conformations would be likely to bind a small-
molecule with high ligand efficiency, such an approach may nonetheless prove useful in
rapidly screening protein interaction sites for those targets which are not only “bindable”,
but also “druggable” in this sense. Alternatively, fragment screening approaches 46—rapidly
gaining popularity in campaigns targeting protein interaction sites 47—may also provide a
route for identifying moieties that bind with high ligand efficiency. The existence of such
fragments may imply that the protein surface can provide surface pockets suitable for
extensively burying at least some ligands.

The number of crystal structures of distinct protein interaction sites bound to small-molecule
inhibitors accumulated in the literature to date remains small (Table 1), and thus this study
provides a snapshot of the field at present from these available examples. Accordingly, we
cannot rule out design bias in these set of examples, or insufficient exploration of chemical
space in this relatively new field. It will be interesting to learn, over the upcoming years,
whether the challenges described in this study can be circumvented through new approaches.
Meanwhile, the number of examples of small-molecules directly inhibiting binding at other
types of recognition sites is even fewer. Nonetheless, we anticipate that inhibitors of these
other “challenging” targets, such as protein–nucleic acid interactions, may share the same
poor ligand efficiency—and thus limited druggability—as we describe here for inhibitors of
protein–protein interactions. In order to access these many diverse and biologically critical
targets, then, we may need to carefully select proteins amenable for complexes with low θlig,
target allosteric sites that can accommodate extensively buried ligands, or develop new
approaches to improve the delivery and oral accessibility for compounds outside the “rule-
of-five” chemical space.

Methods
Protein data sets

To build the PPI set, we merged entries from the 2P2I 48 and TIMBAL 49 databases and
then supplemented this collection with additional recent examples from our own curation of
the literature. We eliminated from consideration any complexes with inhibitors of molecular
weight outside the range 200 Da – 675 Da, to discard small fragments and large peptide-like
compounds. We further excluded structures containing proteins with co-factors, proteins
closely related in sequence to other members of our set, and all examples of covalently
bound inhibitors. In cases where more than one suitable inhibitor-bound structure has been
solved, we retained the structure in complex with the most potent ligand; we have carried
out the experiments described here with other complexes as well and find similar results
(data not shown). Our set contains compounds with molecular weight range 279 – 651 Da
(mean: 468, standard deviation: 102 Da) and XlogP range of -4.9 – 6.5 (mean: 2.6, standard
deviation: 2.9). Overall our set contains structures of 21 non-redundant proteins, each in
complex with a unique inhibitor bound at a protein interaction site (Table 1): to our
knowledge this represents the largest such collection reported to date.

The Astex diverse set contains 85 protein–ligand complexes 27, intended as examples of
drug-like complexes (indeed, 23 of the ligands are approved drugs). For appropriate
comparisons to our PPI set, we refined this set by removing examples containing a protein
cofactor or second ligand at the binding site (typically NADPH, FAD, ATP, heme, or metal
ions). We again removed any complexes with inhibitors outside the molecular weight range
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200 Da – 650 Da. Overall the Astex set we used in these studies consisted of 46 binary
protein–ligand complexes (Table S1), with molecular weight range 208 – 576 Da (mean:
362, standard deviation: 89 Da) and XlogP in the range -3.8 – 5.4 (mean: 1.9, standard
deviation: 2.0).

Molecular properties were calculated using the MolProp toolkit version 2.1.5 (OpenEye
Scientific Software, Santa Fe, NM) 50.

Computational screening
Starting from the ZINC database of commercially available compounds 35, we compiled a
set of 10,000 randomly selected compounds with molecular weight between 200 and 750
Da. These compounds served as “decoy” compounds for the screening experiment (Figure
3).

In a separate experiment, we instead used the DUD-E server 29 to generate a set of 50
“decoy” compounds specifically matched to the known inhibitor of the intended target; in
other words, each protein target was screened against a custom compound library built to
match the chemical properties of the known inhibitor of this protein target (Figure S5).

For each decoy compound as well as for the known inhibitor, we used the OMEGA version
2.4.3 software 36-38 to generate up to 300 conformers, using default parameters. Charges
were added using the QuacPac version 1.5.0 toolkit (OpenEye Scientific Software, Santa Fe,
NM) 51. As described earlier, we included the ligand conformation observed in the crystal
structure among the conformers for the known inhibitor.

We carried out computational docking using the FRED version 3.0.0 software 32-34, a part of
the OEDocking suite (OpenEye Scientific Software, Santa Fe, NM). The binding site for
each protein was defined based on the bound ligand in the crystal structure, using the
OEDocking ′receptor_setup′ utility. All FRED docking runs were carried out using the
default parameters and the resulting poses were ranked using the Chemgauss4 score.

Additional docking calculations were carried out using DOCK version 6.6 39. The molecular
surface for each protein target was calculated using the dms program, and spheres were
generated in the active site using the sphgen program (both are available as DOCK utilities).
All spheres within 10 Å of the bound ligand from the crystal structure were retained. A grid
was generated and the ligand was docked using the default parameters; then the grid score
was used to rank each docked complex.

The same set of decoy compounds were used for the experiment using FRED and the
analogous experiment using DOCK.

Alternate protein conformations
Alternate pocket-containing protein conformations were generated via biased simulations as
described elsewhere 40. Briefly, we applied a biasing potential proportional to the size of the
surface pocket, and carried out Monte Carlo simulations adapted from refinement protocols
used in comparative modeling applications. This methodology is implemented in the Rosetta
software suite 52, and is freely available for academic use (www.rosettacommons.org).

Simulations were carried out for the following list of proteins (with PDB code for the
unbound starting structure used in the simulation and the “target” residue at which the
biasing potential was applied): Bcl-xL (1r2d, 141), BRD4 (2oss, 146), FKBP12 (2ppn, 26),
HPV E2 (1r6k, 33), IL-2 (1m47, 42), HIV integrase (3l3u, 178), Mdm2 (1z1m, 61), menin
(4gpq, 278), XIAP-BIR3 (1f9x, 308), ZipA (1f46, 85). In each case 1000 output structures
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were generated, and virtual screening was then performed using the lowest-energy pocket-
containing conformation.

Statistical analysis
Probability densities were estimated using standard kernel techniques in the R statistical
computing environment 53.

The statistical significance of differences in means between distributions was evaluated
using a standard two-tailed nonparametric permutation test. Briefly, this test works by
combining the two data sets in question, D1 and D2 (with n1 and n2 observations,
respectively) into a single data set D (with n = n1 + n2 elements). A pair of data sets, D1′ and
D2′, are then created by random sampling from D. These data sets contain the same number
of elements as the original data sets (i.e., n1 and n2), but are constructed from a random
partitioning of the original observations. For a given randomized pair, we can calculate the
difference in means as tR = | μ(D1′) - μ(D2′) |, where μ(X) is the sample mean of data set X.
This procedure is repeated to generate N randomized replicates, producing a distribution of
tR values. This represents an estimate of the distribution of differences in means, given the
null hypothesis that D1 and D2 are drawn from distributions of the same mean.

This distribution is then compared to the observed difference in means, tobs = | μ(D1) - μ(D2)
|, in order to estimate a p-value of that observed difference. In the set of N random
replicates, we calculate the number of replicates Ngeq where tR ≥ tobs. The p-value is then
defined as p = Ngeq / (N + 1). For all p-values quoted in this work, the test outlined above
was performed using the “twotpermutation” method implemented in the DAAG package in
R 53, with N = 106 replicates.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
(A) Distribution of θlig values in the PPI and Astex data sets. Ligands bound at protein
interaction sites (red, median value 0.45) tend to be more exposed than drug-like compounds
(blue, median value 0.33), with a difference of means that is statistically significant (p <
10-6). As described in the text, proteases are an exception in the latter set. (B) Representative
examples of complexes with low and high θlig (PDB IDs 1s3v and 1tft, respectively).
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Figure 2.
(A) Distribution of potency values in the Astex and PPI sets. Our set of ligands bound at
protein interaction sites (red, median value 1.0 μM) have similar potency to drug-like
compounds (blue, median value 0.07 μM). No statistically significant difference in means is
observed (p = 0.105). (B) Distribution of ligand efficiencies in the Astex and PPI sets. The
ligand efficiency of inhibitors bound at protein interaction sites (red, median value 0.29 kcal/
mol•atom) tends to be lower than the ligand efficiency of drug-like compounds (blue,
median value 0.36 kcal/mol•atom), and the difference in the means is statistically significant
(p < 0.007, or p < 0.0002 upon removal of the single bromine-containing outlier described in
the text). (C) The relationship between θlig and ligand efficiency in the PPI set. As expected,
there is a negative correlation between these properties, with a statistically significant non-
zero Spearman rank correlation coefficient (p < 0.006).
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Figure 3.
To test the ability of virtual screening tools to distinguish known inhibitors for the protein
targets in our test sets, we embedded each inhibitor in a set of 10,000 “decoy” compounds
and screened this library against each protein target. For each target, we sorted the docked
scores for each member of the screening library and determined the rank of the known
inhibitor. In this figure, we plot a cumulative histogram of the percent of protein targets for
which the known inhibitor is ranked better than the threshold value indicated on the x-axis.
Rather than comparing results for individual protein targets, this aggregate representation
allows comparison of performance between the two test sets (Astex and PPI). Here we find
that this virtual screening tool has difficulty identifying known inhibitors that bind at protein
interaction sites (red) relative to its performance in the drug-like set (blue), and that the
difference in the mean rank of the known inhibitor between the two sets is statistically
significant (p < 10-6).
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Figure 4.
(A) For each of the active compounds in the PPI set, the root mean square deviation
(RMSD) of the docked active compound is computed relative to the crystal structure, and
reported as a function of the rank of the active compound in the virtual screening
experiment. Approximately half the compounds that were not ranked highly were mis-
docked (high RMSD), while the other half were correctly docked but still did not rank well
relative to the decoy compounds (low RMSD but high rank). (B) The difference in score
between the docked active compound and the crystal structure is shown as a function of the
RMSD. The mis-docked structures scored better than the crystal structure in all cases
(positive score differences), suggesting that the energy function did not provide the correct
relative ranking of these two poses.
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Figure 5.
The distribution of ligand solvent exposure for the best-scoring compound in each test set is
similar to the analogous distribution for the experimentally-derived complexes of known
inhibitors in the corresponding test set. Within a set distributions are very similar for crystal
structures of known inhibitors, the known inhibitor docked back to the corresponding
protein target, and the top-scoring compound from among 10,000 “decoy” compounds.
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Figure 6.
The distribution for the extent of ligand solvent exposure (θlig) for the best-scoring
compound in a screen against PPI targets is similar regardless of whether the protein
conformation used in docking corresponds to an inhibitor-bound structure (red), the
unbound structure (green), a protein–bound structure (brown), or a structure generated from
simulations biased towards pocket-containing conformations 40 (pink).
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