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Abstract

Screening of small molecule libraries is an important aspect of probe and drug discovery science. 

Numerous authors have suggested that bioactive natural products are attractive starting points for 

such libraries, due to their structural complexity and sp3-rich character. Here, we describe the 

construction of a screening library based on representative members of four families of 

biologically active alkaloids (Stemonaceae, the structurally related cyclindricine and 

lepadiformine families, lupin, and Amaryllidaceae). In each case, scaffolds were based on 

structures of the naturally occurring compounds or a close derivative. Scaffold preparation was 

pursued following the development of appropriate enabling chemical methods. Diversification 

provided 686 new compounds suitable for screening. The libraries thus prepared had structural 

characteristics, including sp3 content, comparable to a basis set of representative natural products 

and were highly rule-of-five compliant.

Natural products (NPs) have played a central role in medicine for as long as humans have 

sought to cure and ameliorate disease1,2. Many have been fine-tuned by evolution for 

purposes that bear a mechanistic relationship to a given therapeutic need3. NPs are often 

potent, selective, and able to cross biological membranes although many do not adhere to 

common paradigms for oral absorption4 (it is worth recalling that NPs were specifically 

excluded from Lipinski's guidelines of drug-like properties5). For these reasons, NPs 

continue to inspire creativity in both medicinal chemistry and chemical synthesis.

As screening of small molecule libraries remains an important aspect of early stage drug and 

probe discovery, there has been interest in increasing the representation of NPs and related 

structures in libraries6-10. Approaches include the straightforward approach of collecting 

NPs or NP extracts from their natural sources, which requires access to libraries obtained 

from bioprospecting and, for extracts, a downstream deconvolution step. To supplement 

such sources, synthetic chemists have co-opted NP structures for construction of NP-like 

libraries. More often than not these efforts provide purpose-built libraries for biological 
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indications closely related to known bioactivities of the NP itself11-13. Diversityoriented 

synthesis (DOS) has also been used to create NP-inspired libraries9,14,15. Some authors 

suggested that the higher sp3/sp2 content and rich stereochemistry typical of NPs and, by 

extension, libraries derived from them is correlated with suitability as drug candidates16-20. 

In all of these approaches, the complexity of NPs presents synthetic challenges that must be 

surmounted to provide screening libraries that contain chemotypes that can be modified in 

the case of attractive hits21,22.

We sought an approach to NP-like screening libraries that would balance the likelihood of 

finding molecules useful in the pursuit of new biology with synthetic tractability. We chose 

to focus on selected families of alkaloids, preferring those with established biological 

activity at multiple targets, hypothesizing that such families might embody a “privileged 

structure”23-28 that could be optimized for new biological properties following suitable 

modification. Thus, we created a nested set of synthetically derived cores that represented 

salient structural features of the NP starting point. These were further modified to produce 

“secondary scaffolds” that differ more substantially from the original structure but retain 

attractive elements of scaffold design. In previous work, we used these tenets to create a 

library based on Stemonaceae alkaloids that ultimately led to potent Sigma–1 ligands, an 

activity not known to be associated with this family of NPs29.

Here, we generalize this concept to structurally diverse alkaloids of the cylindricine, 

Amaryllidaceae, and lupin families. We sought to address the synthetic challenges presented 

by these families by repurposing a suite of thematically related chemical reactions to library 

construction, most of which were developed in the context of total synthesis. Additional 

method development ultimately allowed us to obtain diversifiable scaffolds unavailable 

directly from NP starting materials. Overall, we synthesized a total of 686 new compounds, 

of which >90% were prepared in >20 mg quantities and all in >90% purity.

Figure 1 depicts scaffolds inspired by the architecture of four biologically active alkaloid 

families: (1) Stemonaceae alkaloids (exemplified by neostenine)30,31 (2) the structurally 

related cylindricine, lepadiformine, and fascicularine families of marine alkaloids (here, 

collectively called the cylindricine series)32, (3) the Amaryllidaceae alkaloid mesembrine33, 

and (4) sparteine, a lupin alkaloid34,35. Structurally, each starting alkaloid contains at least 

one fused pair of rings, but one spiro and one bridged ring system are also represented. 

Biologically, these classes represent a variety of reported activities, ranging from those 

described in traditional medicine for the NP source to pharmacologically verified and 

clinically used agents (Supplementary Table 1). According to the approach outlined above, 

each polycyclic alkaloid was simplified to the primary and secondary scaffolds indicated 

(Fig. 1). The secondary scaffolds contain the same number of rings as the central scaffold, 

but with different ring sizes and/or connectivities.

RESULTS

Synthesis of scaffolds

To make libraries containing 40–320 members each, it was necessary to develop enabling 

chemistries that would permit practical access to the desired chemotypes (Fig. 2). This was 
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pursued using the azido-Schmidt conversion of keto azides to lactams as the primary 

unifying technology36. Four variations of this reaction were used to create the desired 

scaffolds: (1) the combined Diels–Alder/Schmidt reaction between a silyloxy diene and an 

azide-containing dienophile37 (Stemonaceae alkaloid series and one scaffold for the 

mesembrine series; Fig. 2a, d), (2) the reaction of a ketone with a hydroxylalkyl azide38 

(cylindricine series; Fig. 2b), (3) the intramolecular Schmidt reaction of a ketone tethered to 

an azide39 (sparteine series; Fig. 2c), and (4) another combined Diels–Alder/Schmidt 

reaction, but this time one in which the azide is attached to the diene (the second 

mesembrine scaffold; Fig 2d).

The Diels–Alder/Schmidt sequence is particularly powerful as it extends the applicability of 

the ubiquitous Diels–Alder reaction by tying it to the in situ conversion of the new ring into 

a heterocycle. The other sequences rely in one case (Fig. 2b) on a spiroannulation step to 

afford a cyclobutanone (itself pressed into service as a scaffold; see below) that can be 

converted into the desired spirocyclic intermediates. Finally, the route in Fig. 2c parlays an 

advanced total synthesis intermediate into the scaffold 16. To use the Diels–Alder/Schmidt 

chemistry in panels a and d, we needed to explore new variations using highly substituted 

dienes. Schmidt reactions related to those shown in panels b and c were first developed 

during total synthesis efforts toward lepadiformine and cylindricine alkaloids39,40. The azido 

alcohol-mediated Schmidt reaction has been previously used for building a library of γ-turn 

mimetics41. We prepared most of the scaffolds in racemic form as there was no reason to 

favor a particular enantiomer for broad screening, often in straightforward biochemical 

assays (in a few cases, we did make scaffolds from L-configured amino-acid derivatives).

The Lewis acid-promoted reaction of unsubstituted diene 1a with 2 was previously 

reported37 but dienes 1b-d, which contain an additional element of diversity and are readily 

prepared in ≤3 steps from commercially available starting material, were unknown to engage 

in Diels–Alder/Schmidt chemistry prior to this work. All four dienes underwent the desired 

conversions, which were reproducible and scalable to provide up to 12 g of lactam with no 

loss of efficiency. Mechanistically, such reactions are believed to proceed by a Diels–Alder 

reaction, from which the product stereochemistry arises, followed by an intramolecular 

Schmidt reaction37. The relative stereochemistries of lactams 3b-d were confirmed by X-ray 

crystallography. Reductive amination with ammonium acetate provided amines 4a-d in good 

yield in 2–6:1 dr; the diastereomers of amines 4b-d were separated by reverse phase 

chromatography (the isomers of 4a were inseparable and not used for library synthesis). The 

relative stereochemistry of 4b and 4c was confirmed by X-ray crystallography of 

sulfonamide derivatives (Supplementary Information) and amine 4d was assigned by 

analogy.

Trost spiroannulation was used to create spirocyclic ketones 6a-h (Fig. 2b)42. Once in hand, 

these ketones were used as the basis of one sublibrary but our main objective was to convert 

them to the cylindricine-inspired substructures 8 and 9. This was accomplished by 

previously unexamined Schmidt reactions of 6a-h with hydroxyalkyl azides 7a-d. This led 

to a mixture of readily separable lactam regioisomers 8 and 9, thus affording a pair of useful 

scaffolds from ketones 6. The use of a two-carbon hydroxyalkyl azide led predominantly to 
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formation of scaffolds 8, whereas three-carbon homologues afforded ca. 1:1 mixtures of 

constitutional isomers. Previous work has shown the selectivity of such reactions to be 

highly substrate-dependent; a discussion of the relevant topics has been published38. 

Additionally, lactams 8 and 9 were reduced to afford tertiary amine cores 10 and 11.

The tricyclic lactam core of the sparteine–inspired scaffolds (Fig. 2c) was prepared by 

intramolecular Schmidt reaction of azide 12, an intermediate in the total synthesis of 

sparteine39. Scale-up to 4.5 g quantities was possible by optimizing the previous route to 

compound 12. The multistep reduction shown in the scheme afforded amines 15a-c as single 

diastereomers, and further reduction with NaBH4 similarly led to isomerically pure alcohols 

16a-c. The stereochemistry of the endo–selective Grignard addition and ketone reduction 

was confirmed by X-ray crystallography of a derived carbamate (see Supplementary 
Information).

The primary scaffold of the mesembrine series 18 was prepared in moderate yield and 3:1 to 

4:1 dr by reacting previously unknown dienes 17 with methylvinylketone. These isomers 

proved inseparable and were not subjected to additional diversification. We similarly 

prepared secondary scaffold 21 by a modification of the previously reported Diels-Alder/

Schmidt reaction of diene 20 and azide-tethered enone 19 (Fig. 2d)37. Attaching the azide to 

either the diene or dienophile allows access to either the cis or trans fused scaffold, (cf. 

routes to 18 vs. 21). Hypothesizing that greater selectivity might be obtained with a more 

biased ring system we reacted 17 with the unusual dienophile cyclobutenone (introduced to 

the Diels–Alder reaction by Danishefsky43), but a complex mixture of products was 

obtained, with no desired lactam evident. For comparison, we prepared azide-less 

silyloxydiene 22 and submitted it to the Diels-Alder reaction conditions with cyclobutenone. 

In this case, the cycloaddition proceeded smoothly to afford bicyclic ketone 23 but 

surprisingly treatment with trifluoromethanesulfonic acid resulted in the formation of the 

previously unknown isochromenones 24 as single diastereomers. This reaction is previously 

unknown and could proceed via a retro-Michael reaction from the intermediate shown (an 

alternative enolization/electrocyclic ring-opening sequence is also possible but available 

evidence does not currently allow us to differentiate between the possibilities).

Library construction

We took three main tacks toward diversifying our scaffolds: direct conversion of ketones to 

additionally fused heterocycles or amines, conversion of alcohols to carbamates, or 

decoration of amines as amides, sulfonamides, or ureas. These methods were chosen 

because they increase structural diversity, provide various degrees of hydrogen-bonding 

capabilities, and yield functional groups consistent with probe or drug development.

For the Stemonaceae-derived library, scaffold 3a gave quinolines 25 by a modified 

Friedländer reaction and secondary amines 26 by reductive amination with various 

benzylamines (Fig. 3a). The analogous reactions with scaffolds 3b-d resulted in an 

inseparable mixture of diastereomers, which were not pursued. Further diversification was 

achieved by reducing ketones 3a-d with L-Selectride→ to generate the corresponding 

alcohols with excellent diastereoselectivity (relative stereochemistry of the major product 
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was determined by X-ray crystallography); these were used to prepare a library of 

carbamates 27. Direct reaction of the alcohol with isocyanates resulted in the formation of 

an unidentified by-product that co-eluted with the carbamate product upon purification. 

However, by first converting the alcohol to the corresponding para-nitrobenzyl carbonate, 

subsequent reaction with a wide range of amines resulted in a much cleaner and more 

effective preparation of library members. Amine scaffolds 4b-d were used to synthesize 

sublibraries of amides 28, sulfonamides 29, ureas 30 and secondary amines 26, while 

tertiary amine libraries were obtained either by reductive amination of secondary amines 26 
with formaldehyde, or by Eschweiler-Clarke reaction of primary amines 4b-d.

Spirocyclic ketone scaffolds 6 were converted into libraries of amines 33 by microwave-

assisted reductive amination, and libraries of carbamates 34 by reduction with NaBH4 

followed by reaction with isocyanates (Fig. 3b). Similarly, the alcohol moiety of lactams 8 
and 9 and cyclic amines 10 and 11 were reacted with isocyanates and isothiocyanates to 

produce libraries of carbamates 35 and 36 and thiocarbamates 37 and 38, respectively.

The ketone of scaffold 13 was stereoselectively reduced to afford the corresponding endo 

alcohol (Fig. 4a), the structure of which was determined by X-ray of the corresponding 

para-bromobenzoyl ester (see Supplementary Information). The alcohol was converted 

into a library of carbamates 40 by carbonate formation and subsequent reaction with a range 

of amines. The corresponding library containing a basic amine in the ring system was 

prepared by double reduction with LiAlH4 in THF, giving 41, which was further diversified 

into carbamates 42 by microwave-promoted reaction with isocyanates. Similar treatment of 

16a-c led to libraries exemplified by 43.

Reductive amination of mesembrine-inspired scaffold 19 provided the corresponding 

secondary amines 44 in 2:1 to 1:1 dr (Fig. 4b). We ascribe the poor stereoselectivity to the 

relatively flat nature of the trans ring-fused system inherent in 19. In this case, the amine 

diastereomers were separable by reverse phase chromatography, which allowed us to 

incorporate a modest number of amines containing this scaffold into our library (relative 

stereochemistries were determined by 2D NMR). The use of anilines in the reductive 

amination resulted in inseparable mixtures of diastereomeric products, which were 

unsuitable for our screening requirements. A library of quinolines 45 was also synthesized 

by reacting scaffold 19 with either substituted 2-aminobenzaldehydes or 2-

aminobenzophenones or acetophenones.

Cheminformatic analysis

The chemical properties of our alkaloid-inspired libraries were analyzed using principal 

component analysis (PCA), a statistical tool to condense multi dimensional chemical 

properties (e.g., MW, logP, ring complexity) into single dimensional numerical values 

(principal components), allowing greater ease of comparison with different sets of 

compounds44. This analysis was performed on a representative sample of scaffolds and 

library members summarized in Fig. 5 (full list in Supplementary Figs. 3 and 4), which 

compared them to a selection of alkaloid NPs and a reference set of drugs, NPs, and 

commercial drug-like compounds using the protocols employed by Tan45. The parameters 
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that have the greatest influence on principal component 1 (PC1) are molecular weight, 

number of oxygen atoms, number of hydrogen bond acceptors, and topological polar surface 

area (tPSA). Together, these parameters have the effect of moving compounds to the right in 

plots PC1 v PC2 and PC1 v PC3. The descriptors with the largest loading on PC2 are the 

number of nitrogen atoms, number of aromatic rings, and the number of ring systems, which 

shift compounds upward in plots PC1 v PC2 and PC2 v PC3. In contrast, the nStMW 

parameter (defined as the number of R – S stereocenters, this may be viewed as a rough 

descriptor of stereochemical complexity), shifts compounds downward in these plots. 

Finally, PC3 is affected to the greatest degree by XLogP (calculated octanol/water partition 

coefficient), number of rings, and ALOGPs (an alternative logP calculation), which together 

shift compounds in a negative direction along the PC3 axis in plots PC1 v PC3 and PC2 v 

PC3, and ALOGpS (calculated aqueous solubility), which shifts compounds in a positive 

direction in these plots.

In two of the three variations, the data show significant overlap between our alkaloid-

inspired library compounds with both drug and NP regions (Fig. 6a,b). In the PC2 vs. PC3 

plot, there is less overlap between our library compounds and commercial drug space, but 

the compounds still overlap considerably with natural alkaloid space and abuts drug space 

(Fig 6c). This might be expected to naturally arise from the combination of two different 

modes of synthetic chemistry: the natural-product inspired routes that led to the key 

scaffolds vs. the diversity generating steps that followed in the library expansion phase.

Principal moment of inertia (PMI) analysis46 was also used to compare the 3-dimensional 

shapes of the lowest energy conformations of our scaffolds and library members with the 

above reference sets45. Our compounds were found to lie along the roddisc side of the 

triangle, with a preference for the rod vertex (Fig. 6d). We note that drugs and the 

commercially screening libraries represented in the reference sets also reside in this region 

of the plot46.

These analyses suggest that our scaffolds and library compounds are similar to NPs, 

particularly alkaloid NPs, while also sharing attractive properties of drugs believed to be 

compatible with bioavailability. We note that the fraction of carbon atoms with an sp3 center 

(Fsp3) in our scaffolds (0.77) and library compounds (0.66) is very similar to the values 

obtained for our reference NPs (0.64) and alkaloids (0.65), and substantially higher than that 

for drugs (0.41) (Supplementary Table 2). Alkaloids (average MW 319, rotatable bonds 

2.8) are generally smaller and more rigid than non-alkaloid NPs (629, 9.7), and more closely 

resemble our library compounds (355, 4.1). Although we did not particularly set out to 

adhere to any filters for drug-likeness in our design, we point out that 72% of our library 

compounds satisfied each of Lipinski's rules of 5, with 100% meeting 3 out of 4 of the 

criteria. Moreover, all library members fulfilled Veber's requirements for good oral 

bioavailability (≤10 rotatable bonds; ≤140 Å2 total polar surface area)47.

DISCUSSION

We have described one approach to balancing two concerns that arise in the development of 

libraries for biological screening: (1) the desire to provide compound collections that are 

different enough from existing libraries to inform interesting new biology while (2) dealing 
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with the sheer vastness of chemical space, which makes it hard to create useful new 

bioactive molecules that are strikingly different from typical drug-like libraries. Using four 

alkaloids as inspiration agents, we used straightforward reaction sequences and moderately 

advanced synthetic intermediates to generate scaffold structures that were easily converted 

to libraries using parallel synthesis technology. The particular routes combine azide-

mediated methods for the incorporation of nitrogen into organic frameworks with 

established ketone syntheses. Regarding the latter, we used one very well known reaction for 

the generation of fused ring systems (the Diels–Alder) and a powerful but somewhat 

underutilized method for generating spirocycles (the Trost spiroannulation). Overall, a total 

of 686 previously unknown structures were synthesized, comprising 55 separate scaffolds 

and 631 analogues. Of these, 266 (39%) of the compounds contained a basic nitrogen atom 

(ranges: 21% for the Stemonaceae alkaloid libraries to 68% of those derived from 

mesembrine). Overall, >90% of the library members were obtained in the 20 mg quantities 

and 90% purities that we had initially targeted (with the remainder achieving the purity goal 

but only being obtained in 10–20 mg quantities), with all of the compounds being >90% 

diastereomerically pure. The synthetic routes developed are amenable with both hit re-

synthesis and downstream structure–activity relationships studies, both critical for real-

world applications of small-molecule libraries.

The computational assessment of our libraries shows that the new compounds have many of 

the attributes that some authors have proposed to arise from using NPs in the first place, 

notably high sp3 counts relative to commercial libraries and comparable to those in a 

previously used NP set48. This feature naturally arose from the selection of alkaloid-based 

scaffolds and reflects the choice of targets in the first place. In fact, the slight drop in 

average sp3 content in the libraries made vs. the scaffolds themselves can be attributed to 

our selection of common “medicinal chemistry” subunits (e.g., aromatics) for our specific 

diversification efforts. On the other hand, the observation that the libraries were highly 

Lipinski- and Veber-compliant may be viewed as a surprise, given the conventional 

viewpoint that NPs have very different chemical properties from synthetically derived drug 

scaffolds. Overall, the PCA and PMI analysis support that the primary goal of this project 

was achieved insofar as we created libraries different enough from highly occupied drug 

discovery space to be interesting (and thus addressing our mission of “probing chemical 

space”), but not so different as to lack potential in screens. The ultimate determination of 

this potential through screening against a variety of targets (e.g., by submission into the 

Small Molecule Repository of the US National Institutes of Health) and the extension of the 

concept to other libraries are currently being pursued.

METHODS

General procedures for the key Schmidt reactions employed in the syntheses of scaffolds 3, 
8, 9, 13, 18 and 21 are described below. All reactions were performed using flame-dried 

glassware under an argon atmosphere. Additional experimental details and analytical data 

for scaffold synthesis and library preparation are in the Supplementary Methods, along with 

full details of the cheminformatic analysis. CAUTION: The authors remind all 

experimentalists contemplating use of these methods to follow established safety protocols 

in the use of alkyl azides and their precursors.
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General procedure for Diels-Alder/Schmidt reaction for preparation of scaffolds 3 
(Stemonaceae alkaloid series)

Titanium tetrachloride (1 M solution in dichloromethane, 2.5 equiv.) was added dropwise to 

a solution of azide 2 (1 equiv.) and silyloxydiene 1a-d (2.5 equiv.) in anhydrous 

dichloromethane (0.06 M w.r.t. azide) at 0 °C under argon. The resulting red/brown solution 

was stirred at 0 °C for 2 h, then allowed to warm slowly to room temperature overnight. The 

reaction mixture was then quenched with water and stirred at room temperature for 1 h. The 

organic layer was removed, and the aqueous extracted with dichloromethane (×3). The 

combined organics were dried (Na2SO4) and concentrated to afford a brown oil. The crude 

product was purified by chromatography (silica gel, 95:5 ethyl acetate: methanol) to afford 

lactams 3a-d.

General procedure for azido-alcohol Schmidt reaction for preparation of scaffolds 8 and 9 
(cylindricine series)

Boron trifluoride diethyl etherate (5 equiv.) was added dropwise to a solution of 

spiro[3.5]nonan-1-one 6a-h (1 equiv.) in anhydrous dichloromethane (0.15 M w.r.t. 

spirononanone) at −78 °C under argon. The reaction mixture was stirred for 30 min at −78 

°C, then a solution of hydroxyalkyl azide (3 equiv.) in dichloromethane (1.5 M) was added. 

The reaction mixture was stirred at −78 °C for 3 h, then allowed to warm slowly to room 

temperature overnight. The reaction mixture was then concentrated under reduced pressure 

and the resulting oil was dissolved in 15% aqueous potassium hydroxide solution and stirred 

for 30 min. The reaction mixture was then extracted with dichloromethane (×3). The 

combined organics were washed with water, dried (MgSO4) and concentrated. The crude 

product was purified by automated chromatography (silica column, 0–100% ethyl acetate in 

hexanes) to afford lactams 8 and 9.

Alkyl azide Schmidt reaction for preparation of scaffold 13 (sparteine series)

Titanium tetrachloride (20.7 mL, 188.5 mmol, 5 equiv.) was added dropwise to a solution of 

azide 12 (10 g, 37.7 mmol, 1.0 equiv.) in anhydrous dichloromethane (350 mL) at 0 °C 

under argon. A yellow precipitate was formed. The reaction mixture was allowed to warm to 

room temperature and stirred for 24 h, and then quenched with water. The aqueous layer was 

extracted with dichloromethane. The organic layer was dried (Na2SO4) and concentrated to 

give an oil. The crude product was purified by chromatography (silica gel, 100% ethyl 

acetate) to afford lactam 13 (4.5 g, 62%) as a colorless solid.

General procedure for Diels-Alder/Schmidt reaction for preparation of scaffolds 18 
(mesembrine series)

Methyl vinyl ketone (1 equiv.) was added to a solution of silyloxydiene 20 (1.5 equiv.) in 

anhydrous dichloromethane (0.4 M w.r.t. diene) and the reaction mixture cooled to −78 °C. 

Boron trifluoride diethyl etherate (1.5 equiv.) was then added and the reaction mixture 

stirred at –78 °C for 4 h then warmed to room temperature. A further aliquot of boron 

trifluoride diethyl etherate (2 equiv.) was then added and the reaction mixture stirred at room 

temperature for an additional 16 h. The reaction mixture was diluted with dichloromethane 

and quenched with saturated aqueous NaHCO3. The organic layer was washed with 
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saturated aqueous NH4Cl, water and brine, dried (MgSO4) and concentrated. The crude 

product was purified by automated column chromatography (silica column, 0 to 100% ethyl 

acetate in hexanes, then 90:10 dichloromethane:methanol) to afford lactams 18.

Diels-Alder/Schmidt reaction for preparation of scaffold 21 (mesembrine series)

Ethylaluminium dichloride (1 M solution in hexane, 25 ml, 1 equiv.) was added dropwise to 

a solution of trimethylsilyloxy butadiene 20 (3.5 g, 25 mmol, 2.5 equiv.) and azide 19 (1.4 g, 

10 mmol, 1 equiv.) in anhydrous dichloromethane (15 mL) under argon at −78 °C. After the 

addition was complete, the reaction mixture was stirred at −78 °C for 2 h then gradually 

warmed to room temperature and stirred for a further 16 h, then quenched with water and 

diluted with dichloromethane (100 mL). The combined organics were washed with saturated 

aqueous NaHCO3 (50 mL) and brine (50 mL), dried (Na2SO4) and concentrated. The crude 

product was purified by chromatography (silica column, 100% ethyl acetate) to afford 

lactam 19 (800 mg, 45%) as a light yellow oil.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Strategic overview of NP families selected for library expansion and corresponding 
scaffold selection
Each family of NPs is exemplified by 2–3 members and the biological activities cited are 

representative of each family as a whole. The reviews30-35 provide overviews of the 

biological landscape, with additional references provided in Supplementary Table 1. In 

each case, a primary scaffold embodies the minimal structural aspects of the NP family that 

were pursued. These involved removal of some features to enhance both versatility and 

synthetic accessibility. Secondary scaffolds (far right) represent more substantially modified 

variants of the primary scaffold, either through functional group or substitution changes or 

modification of ring structures.
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Figure 2. Construction of primary and secondary scaffolds
In each section, colored boxes indicate enabling chemistry developed for scaffold syntheses. 

(a) Synthesis of Stemonaceae alkaloid scaffolds using a Diels-Alder/Schmidt reaction. (b) 

Cylindricine scaffolds were prepared by sulfur ylide-mediated spiroannulation followed by 

ring expansion using an azido alcohol variant of the Schmidt reaction. (c) Azide 12 was 

prepared from a previously reported C2-symmetrical diketone39 using an improved method 

(Supplementary Information) and converted to the tricyclic sparteine scaffolds using the 

intramolecular Schmidt reaction. (d) Two different variations of bicyclic analogs of 

mesembrine were prepared using a Diels-Alder/Schmidt reaction. In addition, reaction of 22 
with the interesting dienophile cyclobutenone43 followed by rearrangement afforded a non-

nitrogenous scaffold 24. Full synthetic schemes, including experimental details and 

characterization data of representative compounds, are available in the Supplementary 

Information accompanying this paper.
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Figure 3. Library construction from Stemonaceae and cylindricine alkaloidinspired scaffolds
(a) Ketone scaffolds 3a-d and amines 4b-d were converted into libraries of quinolines, 

amines, amides, sulfonamides, ureas and carbamates; the key scaffolds are indicated by 

boxes. (b) Ketone scaffolds 6, lactams 8 and 9, and amines 10 and 11 were converted into a 

series of libraries of amines, carbamates and thiocarbamates. A total of 499 unique 

structures, each obtained in >90% purity (HPLC, UV detector at 214 nm) and >20 mg 

quantities were obtained. Scaffold (number of final products obtained): 3a-d (131), 4c-d 
(191), 6 (112), 8 (19), 9 (12), 10 (32), 11 (2). (i) 2-Nitrobenzaldehyde, Fe0, 0.1 M aq HCl, 

EtOH, 85 °C; then 3a-d, KOH, 85 °C; (ii) amine, AcOH, Na(OAc)3BH, CH2Cl2, rt; (iii) a) 

L-Selectride, THF, −78 °C to rt, 90–95%, 9:1– ≥19:1 dr, (b) 4-nitrophenylchloroformate, 

pyridine, rt, 55–76%, (c) R2NH2, CH2Cl2, rt; (iv) R2CHO, AcOH, Na(OAc)3BH, CH2Cl2, 

rt; (v) R2CO2H, EDC, DMAP, CH2Cl2, rt; (vi) R2SO2Cl, Et3N, CH2Cl2, rt; (vii) R2N=C=O, 

PhMe, rt; (viii) H2C=O, HCO2H, 95 °C; (ix) H2C=O, AcOH, Na(OAc)3BH, CH2Cl2, rt; (x) 

R2NH2, DCE, microwave, 150 °C; (xi) a) NaBH4, THF, MeOH, rt, 94–97%, (b) R2N=C=O, 

Et3N, THF, rt; (xii) R2N=C=O, Et3N, THF, rt; (xiii) R2N=C=S, NaH, THF, rt.
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Figure 4. Library construction from sparteine and mesembrine-inspired scaffolds
(a) Library construction from sparteine-inspired scaffolds led to carbamates generated both 

from lactam 13 directly or by first converting it to the amine-containing scaffold 41. Similar 

chemistry could be used on the additional alkyl-group-containing scaffolds 16a–c. (b) 

Amide scaffold 19 was converted into amine and quinoline libraries. A total of 132 unique 

structures, each obtained in >90% purity (HPLC, UV detector at 214 nm) and >10 mg 

quantities were obtained. Scaffold (number of final products obtained): 13 (44), 16a-c (52), 

19 (36). (i) a) NaBH4, MeOH, rt, 88%, >19:1 dr, (b) 4-nitrophenyl chloroformate, pyridine, 

THF, rt, 95%; (ii) R2NH2, DCE, rt; (iii) LiAlH4, THF, reflux, 80%; (iv) R2N=C=O, MeCN, 

microwave, 110 °C; (v) R2N=C=O, THF, rt; (vi) RNH2, AcOH, Na(OAc)3BH, THF; (vii) 2-

nitrobenzaldehyde, Fe0, 0.1M HCl, EtOH, 85 °C; then 19, KOH, 85 °C.

McLeod et al. Page 15

Nat Chem. Author manuscript; available in PMC 2014 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Representative selection of library compounds used in cheminformatic analyses.
For a full list of scaffold and library compounds used in this analysis, see Supplementary 
Figs. 3 and 4.
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Figure 6. Cheminformatic analysis of alkaloid-inspired scaffolds and library members.
Structural and physiochemical properties of a representative selection of synthesized 

scaffolds (14 compounds, yellow diamonds) and library members (29 compounds, red 

diamonds) were compared with those of alkaloid NPs (20 compounds, green squares) and an 

established reference set48 of drugs (40 compounds, blue triangles), commercially available 

drug-like molecules (20 compounds, purple crosses) and NPs (60 compounds, green circles) 

using principal component analysis (PCA) and principal moment of inertia (PMI) analysis. 

The hypothetical average (mean) structure for each series is also plotted (AVG-). (a) PCA 

plot of PC1 v PC2. (b) PCA plot of PC1 v PC3. (c) PCA plot of PC2 v PC3. (d) PMI plot 

showing the 3-dimensional shape of the lowest energy conformer of each compound. The 
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shaded red, green, and blue areas outline the regions of the plot where the majority of our 

alkaloid inspired libraries, alkaloid NPs, and drugs, respectively, are located.
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