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Abstract

The prefrontal cortex exerts top-down influences on several aspects of higher-order cognition by

functioning as a filtering mechanism that biases bottom-up sensory information toward a response

that is optimal in context. However, research also indicates that not all aspects of complex

cognition benefit from prefrontal regulation. Here we review and synthesize this research with an

emphasis on the domains of learning and creative cognition, and outline how the appropriate level

of cognitive control in a given situation can vary depending on the organism's goals and the

characteristics of the given task. We offer a Matched Filter Hypothesis for cognitive control,

which proposes that the optimal level of cognitive control is task-dependent, with high levels of

cognitive control best suited to tasks that are explicit, rule-based, verbal or abstract, and can be

accomplished given the capacity limits of working memory and with low levels of cognitive

control best suited to tasks that are implicit, reward-based, non-verbal or intuitive, and which can

be accomplished irrespective of working memory limitations. Our approach promotes a view of

cognitive control as a tool adapted to a subset of common challenges, rather than an all-purpose

optimization system suited to every problem the organism might encounter.
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Although our elaborate sensory and motor systems provide detailed information

about the external world and make available a large repertoire of actions, this

introduces greater potential for interference and confusion. (...) To deal with this

multitude of possibilities and to curtail confusion, we have evolved mechanisms

that coordinate lower-level sensory and motor processes along a common theme, an

internal goal. This ability for cognitive control no doubt involves neural circuitry

that extends over much of the brain, but it is commonly held that the prefrontal

cortex (PFC) is particularly important (Miller & Cohen, 2001, pp. 167–168).
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Introduction

The prefrontal cortex (PFC) is commonly believed to underlie the most complex of

cognitive functions, including language, memory, attention, problem solving, and decision-

making. The PFC appears to exert top-down influences on cognition and behavior by

biasing competing representations of bottom-up input from the external environment and

internal states toward the optimal alternative within a given context (Banich, 2009; Miller &

Cohen, 2001; Thompson-Schill, Bedny, & Goldberg, 2005). Over the past two decades,

many studies have implicated this region in shielding working memory from interference

from recently presented information, overriding prepotent responses, following rules,

preventing distraction, and switching attention between cognitively demanding tasks. We

refer to these functions collectively, and not altogether precisely, as “cognitive control.”

Although the prefrontal cortex is unarguably essential for the regulation of complex

behavior, a growing body of research suggests that not all aspects of complex cognition

benefit from cognitive control. Here, we review and synthesize this research with a view

toward characterizing the circumstances under which limited cognitive control is

advantageous, focusing on the domains of learning and creative cognition. In light of this

evidence, we propose that tradeoffs between prefrontal and other brain regions exert the

necessary level of cognitive control over bottom-up, sensory information that is optimal for

performance in common cognitive tasks.

In particular, cognitive control has been described as a process of filtering, in which certain

information—in the best case, useless information—is attenuated or discarded (Shimamura,

2000). In signal processing theory, a matched filter is one that optimally extracts signal from

noise in a given context. By loose analogy, here we combine these two notions to advance a

Matched Filter Hypothesis (MFH) for cognitive control: Task performance is optimized not

simply by the application of high levels of cognitive control, but by a good match between

the level of control exerted and the degree to which the task requires filtering of available

low-level information. Although the precise function of the neural systems supporting this

optimization mechanism exceeds the scope of the current MFH, we postulate that the

organism's attainment of the optimal level of cognitive control is influenced by competitive

interactions between PFC and posterior or subcortical brain systems, and the outcome of

those interactions is influenced by factors including the stage of development of the

organism, the health of its brain, and individual differences in its neurophysiology. In the

next section, we will motivate and articulate the MFH in more detail.

A Matched Filter Hypothesis for Cognitive Control

Cognitive development is marked by remarkable advances in children's mental abilities. For

example, as children grow into adult speakers they become very proficient at extracting

meaning from language in the face of semantically irrelevant phonetic variations such as

accents (Evans & Iverson, 2004; Maye, Aslin, & Tenenhaus, 2008; see Cristia, Seidl,

Vaughn, Schmale, Bradlow, & Foccia, 2012, for a review). On the other hand, these

advances in language comprehension come at a cost for language learning: Infants and

young children are capable of perceiving phonetic distinctions that do not occur as

phonological contrasts in their native language; in contrast, adults have trouble perceiving
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such distinctions (Best, McRoberts, & Goodell, 2001; MacKain, Best, & Strange, 1981;

Trehub, 1976; Werker, Gilbert, Humphrey, & Tees, 1981). Such developmental differences

between children and adults are not limited to language learning. On the contrary, these

tradeoffs might be the rule rather than the exception in cognitive development. Our focus

here is on tradeoffs that accompany the development of cognitive control (Thompson-Schill,

Ramscar, & Chrysikou, 2009; Munakata, Snyder, & Chatham, in press). We aim to

demonstrate that the costs and benefits of cognitive control are recapitulated at many levels

of cognition, from simple cue-outcome associative learning to the unexpected associations

that kindle creativity.

The ability for cognitive control develops incrementally during childhood and young

adulthood, in parallel with the development of the prefrontal cortex (Cragg & Nation, 2010;

Huttenlocher & Dabholkar, 1997; Khanna & Boland, 2010; cf. Davidson et al., 2006).

Because their frontal lobes are not yet fully developed, children may be characterized as

hypofrontal1. The majority of research on the development of cognitive control has focused

on children's cognitive control deficits (e.g., Diamond, 2009; Diamond et al., 2007;

Diamond & Doar, 1989). For example, young children find it hard to swiftly adopt a new

strategy even after the demands of the task have changed, whereas this kind of flexibility

characterizes adult performance in similar tasks (e.g., Kirkham, Cruess, & Diamond, 2003;

Kirham & Diamond, 2003; Zelazo, Frye, & Rapus, 1996). However, there is mounting

evidence that children outperform adults in certain situations. One such situation is a

probabilistic choice task in which one alternative is on average more rewarding than

another. Adults will match (i.e., if the best alternative confers a reward 75% of the time, they

will choose it 75% of the time, leading to an expected success rate of 62.5%), whereas

children employ the superior strategy of maximizing (choosing that same alternative 100%

of the time, once the probabilities are known, leading to an expected success rate of 75%;

Derks & Paclisanu, 1967). Recent research has suggested that certain kinds of probability

matching may involve executive function (e.g., Gaissmaier & Schooler, 2008; Koehler &

James, 2009; Otto, Taylor, & Markman, 2011); thus, in this instance, deploying cognitive

control, perhaps paradoxically, impairs adult performance on this task.

In recognition of the costs of cognitive control, it has been suggested that the benefits of

cognition without control might be rooted in neurocognitive development (Thompson-Schill,

Ramscar, & Chrysikou, 2009; Munakata et al., in press). It is well known that the human

brain develops heterochronously, with prefrontal cortices maturing many years after sensory

cortices (Chugani & Phelps, 1986; Shaw et al., 2008). Thompson-Schill et al. (2009) assert

1PFC is not, of course, the only neural system implicated in cognitive control. It is likely that regions such as the anterior cingulate
cortex (ACC) cooperate with the PFC to modulate filtering depending on the specific demands for conflict resolution (e.g., Botvinick
et al., 2001; Braver, 2012; Friedman & Miyake, 2004; Milham & Banich, et al., 2001; Milham, Banich, Klaus, & Cohen, 2003; Kerns
et al., 2004; Milham & Banich, 2005; Miyake, Friedman, Emerson, Witzki, Howerter, & Wager, 2000; Liu, Banich, Jacobson, &
Tanabe, 2006; van Veen et al., 2001). For example, developmental studies using electroencephalography (EEG) have shown that the
error related negativity (ERN), thought to originate in the ACC, matures relatively late during adolescence and into mid-adulthood
(Davies et al., 2004a, 2004b; Ladouceur et al., 2007). Neuroimaging evidence further suggests that adults demonstrate increased
activation in anterior cingulate gyrus relative to children and adolescents during inhibition failures in an individually adjusted stop task
(Rubia, Smith, Taylor, & Brammer, 2007). Overall, these and other studies (e.g., Bunge et al., 2002; Rubia et al., 2000; Shaw et al.,
2008) suggest that different brain systems that coordinate with PFC to implement cognitive control may show similar developmental
trajectories. Here, in any case, we focus on PFC and use the term ‘hypofrontal’ as shorthand for low function in the various brain
systems that support cognitive control.
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that this pattern of brain maturation plays a critical role in neurocognitive development:

Children's prolonged period of hypofrontality, and the attendant lack of cognitive control,

allows them to master evolutionarily important faculties, such as language, with remarkable

efficacy. In general, during periods in which evolutionary pressures have placed a premium

on learning over task execution, it may be beneficial for the organism to limit the filtering of

information by reducing PFC activity.

The approach offered by Thompson-Schill et al. (2009) emphasizes the advantages of

hypofrontality in light of the evolution of neural development. Beyond the phylogenetic

scale of evolution and the ontogenetic scale of human development, though, periods of

hypofrontality may benefit an organism even on a scale of hours or moments, depending on

the specific characteristics of the task in question. In particular, an extended body of

research supports the involvement of PFC in rule-driven and typically explicit tasks that

require a higher level of abstraction of concepts or rules and can be adequately represented

in working memory (for a compelling computational hypothesis about these features of PFC

function, see O'Reilly, Mozer, Munakata, & Miyake, 1999). In contrast, automatic, habitual,

and largely implicit tasks that do not involve abstraction of information and, thus, exceed the

representational capacity of working memory may benefit from lower PFC activity and

increased involvement of posterior or subcortical networks (e.g., sensorimotor cortex, basal

ganglia). Not only do these tasks not require cognitive control, but in fact, we argue that the

deployment of PFC-mediated cognitive control will indeed hurt performance when posterior

or subcortical brain systems are best suited to the task.

Here, we combine these two accounts of organism and task influences on complex cognition

to offer the Matched Filter Hypothesis (MFH) for cognitive control. Our approach draws on

the guided activation framework of Miller and Cohen (2001), which argues that the function

of cognitive control is to facilitate the appropriate response in a given task context, whether

that response is dominant or not. We further build on the dynamic filter theory for

prefrontally-mediated cognitive control offered by Shimamura (2000), which proposes that

the PFC supports different aspects of cognitive control (including selecting, maintaining,

updating, and rerouting of information) by acting as a dynamic filtering mechanism that

maintains task-relevant information while gating task-irrelevant information available in

posterior brain regions. The MFH extends these proposals by suggesting that the

intervention of PFC-mediated regulatory filtering mechanisms comes at a cost of certain

functions of posterior and subcortical brain systems. Whether this cost yields a net benefit in

performance depends on individual objectives and task demands. Specifically, in the face of

a wealth of low-level information available to the organism from the external environment

or internal states, the MFH proposes that optimal performance is determined by whether the

degree, scope, and type of regulatory filtering of this information matches the organism's

current goals, as well as the requirements of the task at hand. For present purposes, we set

aside the trenchant question of how the organism might determine a situationally appropriate

level of cognitive control, a function likely influenced by the locus coeruleus and the

norepinephrine system (cf. Aston-Jones & Cohen, 2005; see also O'Reilly et al., 1999;

Shenhav, Botvinick, & Cohen, 2013). Instead, we focus on how task factors influence the
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need for cognitive control, and how competitive interactions between PFC and posterior and

subcortical brain systems enable the brain to meet, or prevent it from meeting, that need.

Specifically, the MFH predicts that PFC-mediated cognitive control improves performance

through extensive filtering of raw input to the extent that the task is top-down, rule-based or

goal-directed, requires an abstract understanding of concepts and rules, and can be

accomplished by maintenance and manipulation of explicit representations; such tasks are

not well suited to hypofrontal brain states. In contrast, hypofrontality improves performance

by limiting regulatory filtering of information when the task is bottom-up or stimulus-

driven, not amenable to abstraction, and the complexity of the necessary representations

exceeds the capacity of working memory; such tasks are not well suited to brain states

marked by strong prefrontal regulation. A summary of the MFH model of cognitive control

along these (and other) dimensions is provided in Figure 1. Critically, the degree of

matching between organism- and task-specific factors may be influenced by individual

variation including developmental stage, genotype, disruption in brain function (either long-

term, as a result of brain damage or psychopathology, or short-term, as a result of dual-task

conditions or noninvasive brain stimulation), and other factors.

In other words, under certain circumstances and within the context of a given task, an

organism's filter may dynamically match task requirements for optimal performance,

whereas at other times it may not; moreover, successful matching may occur at different

rates across different organisms and different tasks. Although, in some cases, negotiating

optimal levels of regulatory filtering is restricted by biological constraints (e.g., PFC

maturation, brain damage), in others it might be possible for the organism to adjust

dynamically its filtering mechanisms to meet task requirements, by increasing or decreasing

cognitive control—for example, as a result of training, neural stimulation, pharmacological

agents, and so on.

We first proceed to situate our approach in the context of other influential models of

cognitive control. Thereafter, we adduce evidence for the MFH in the domains of learning

and creative cognition.

Relationship to Earlier Work

The MFH shares some similarities with the influential Supervisory Attentional System

(SAS) model of goal-driven action proposed by Norman and Shallice (1986; see also Cooper

& Shallice, 2000), which offers a distinction between automatically-performed actions that

may occur outside of awareness and actions that require cognitive control. According to this

framework, information about familiar actions is stored in a hierarchy of abstract scripts and

more specific object-based schemas (e.g., how to use a fork, how to drive a car, etc.), which

can be activated by the environment or the organism's current goals. A contention

scheduling mechanism selects which schema will be implemented based on the relative

strength of activation among several competing schemas, thus allowing for the control of

action depending on context. Under this model, familiar actions are performed automatically

with limited SAS involvement, whereas novel actions require significantly more

intervention from SAS mechanisms, presumed to be supported by PFC. Subsequent

iterations of the model (e.g., Shallice & Burgess, 1996) included additional modules
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focusing on goal maintenance, performance monitoring, and evaluation, each assumed to be

supported by distinct regions within PFC. Similar to the SAS model, our account discusses a

balance between bottom-up and top-down influences in the control of behavior. However,

the SAS model emphasizes the need for cognitive control in novel behavior. This need is

unarguable when the behavior in question is well specified—for example, in the Stroop task,

where cognitive control must override a well-learned schema for interaction with words in

order to support the relatively novel task of color naming. However, it is not clear that

cognitive control is always useful when the organism does not know what to do—for

example, in insight problems, where the required behavior often hinges on exploiting a

feature of an object unrelated to its function; or in complex categorization tasks, where the

categorization rule is initially unknown and difficult to specify explicitly. As we show later,

cognitive control often poses an active impediment to these tasks, although it can come in

useful later in evaluating performance (Goldman-Rakic, 1996; Miller & Cohen, 2001). In

this sense, the MFH extends the SAS model by proposing that the execution of unfamiliar

actions can benefit from both unfiltered information to support novel solutions, and top-

down PFC guidance to evaluate their effectiveness.

Our account is further compatible with certain models of attention, which we consider

broadly as the process of orienting selectively toward an endogenous state or an exogenous

perceptual stimulus. Of particular relevance to the MFH is the framework proposed by

Corbetta and Shulman (2002), who discuss two interactive systems for top-down (cognitive)

and bottom-up (sensory) attentional control: a bilateral dorsal system (intraparietal sulcus

and dorsal frontal cortex [frontal eye fields]) implicated in the endogenous or voluntary

guidance of attention toward an anticipated stimulus, and a right-hemisphere ventral system

(temporoparietal and inferior frontal cortex) that acts as a “circuit breaker” for the dorsal

system, implicated in the exogenous or bottom-up guidance of attention towards salient,

unanticipated stimuli. In parallel with the MFH, Corbetta and Shulman suggest that dorsal

frontal regions support preparatory signals toward a particular task goal, whereas left dorsal

posterior parietal cortex is involved in the selection of appropriate stimulus-response

associations, with a special role of this region in humans for simple or well-learned tasks.

The MFH affords a slightly different view of these interactions. Although the dorsal system

is described as “top-down” and the ventral as “bottom-up,” both systems incorporate

actively maintained representations: The frontal eye fields are responsible for orienting

attention consistent with a goal, whereas the inferior frontal cortex is responsible for

orienting attention to stimuli that are relevant or unusual in context. Consistent with the

MFH, either frontal region may interfere with the operations of the intraparietal sulcus,

which allocates attention as a learned response to stimuli, without recourse to actively

maintained representations such as goals and expectations.

In the following sections we review research from the domains of learning and creative

cognition that offers support for the MFH. The work we discuss underscores the tradeoffs

between PFC-mediated cognitive control and hypofrontality for different aspects of complex

cognition, as well as highlights the significance of individual differences in determining the

organism's ability to match the level of cognitive control demanded by the task.
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MFH and Learning

As discussed in the previous section, the MFH predicts that hypofrontality will limit input

filtering and improve learning in some circumstances, notably when the domain cannot be

learned well by explicit strategies, when the rules governing the domain exceed working

memory capacity, or when to-be-tested information is attended away from or otherwise

suppressed. Direct support for this prediction in adults is sparse but intriguing. Dual-task

conditions help subjects learn nonverbalizable morphological rules, motor sequences,

probabilistic classification rules, and decision boundaries (Brown & Robertson, 2007;

Cochran et al., 1999; Foerde et al., 2007; Filoteo et al., 2010); and, disruption of activity in

the dorsolateral prefrontal cortex via transcranial magnetic stimulation has been linked to

improvements in implicit motor learning (Galea et al., 2010). A similar dynamic arises in

retrieval-induced forgetting (RIF), in which participants are trained on a set of category-

exemplar pairs (e.g., Fruit-Orange, Fruit-Banana, Fish-Catfish, Fish-Herring), and then

tested on their memory of half the pairs in half the categories via stem-completion (e.g.,

complete Fruit-Or__, but not the other three). In a subsequent recall test, recall of the

untested pairs in tested categories is reduced relative to the control pairs in untested

categories, suggesting that those items have been suppressed in support of recalling the

tested pairs (Anderson et al., 1994; Table 1). However, this forgetting effect is diminished

when prefrontal resources are taxed with a secondary task (Roman et al., 2009). Overall,

these studies suggest that hypofrontality benefits learning when the domain is procedural or

implicit, or when the task invites suppression of information that will later become relevant.

The above examples concern hypofrontality induced by dual-task manipulations or

noninvasive brain stimulation, but variation in PFC function can also result from

endogenous influences, including genetic variation. Indeed, some studies of individual

differences in genetic regulation of prefrontal dopamine (DA) report improved learning in

populations with reduced PFC DA. However, a broader view of this literature emphasizes

the importance of understanding the relationship between brain systems, cognitive function,

and task demands. In general, PFC-mediated cognitive control seems to be governed by a

balance between activation of D1 and D2 DA receptors: D1 activation promotes stability

(e.g., maintenance of working memory representations over distraction), but also

perseveration, and D2 activation promotes flexibility (e.g., low task-switching costs), but

also distractibility (Durstewitz & Seamans, 2008). The D1 receptor seems to have greater

affinity for DA, meaning that populations with higher PFC DA have more D1 activation and

thus greater cognitive stability (Slifstein et al., 2008; Farrell, Tunbridge, Braeutigam, &

Harrison, 2012; Nolan, Bilder, Lachman, & Volavka, 2004; Colzato, Waszak, Nieuwenhuis,

Posthuma, & Hommel, 2010). These variations are consequential for learning. Consistent

with PFC DA promoting cognitive stability, subjects with a genetic polymorphism that

increases PFC DA are outperformed by their lower-DA counterparts on reversal learning

tasks (Krugel et al., 2009). However, subjects with higher PFC DA are more likely to use

lose-shift strategies during learning (Frank et al., 2007) and explore response options with

highly uncertain outcomes (Frank et al., 2009). These behaviors involve both maintenance

and flexibility, making the effect of changes in PFC DA difficult to predict. In general,

understanding the effect of PFC DA on a task requires understanding the degree to which
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the task in question relies on the cognitive functions (maintenance and switching) supported

by different, and antagonistic, DA receptor pathways in the PFC.

Individual differences in age and executive function have also shown some advantages for

hypofrontal learners. Aslan and Bäuml (2011) showed that RIF is positively correlated with

working memory capacity, such that greater working memory is associated with greater

inhibition of non-practiced pairs in practiced categories relative to control categories. In line

with this finding, RIF is also reduced in children, who have underdeveloped working

memory (Aslan & Bäuml, 2010). Additionally, Campbell and colleagues (2012) showed that

older adults, whose prefrontal function is diminished, can learn the statistical structure of a

stream of unattended images, whereas previous work shows that college students do not

(Toro et al., 2005; Turk-Browne et al., 2005; Gallistel, 2009). In the absence of more

precisely targeted experiments, juvenile advantages in learning cannot be uniquely attributed

to juvenile hypofrontality; it is important to consider other differences between children and

adults, such as knowledge, learned strategies, and the maturity of brain regions other than

the PFC. However, these results nonetheless raise the possibility that limited filtering

through reduced cognitive control might be advantageous for learning when initially

irrelevant information (e.g., non-practiced pairs, unattended images) later becomes relevant.

How exactly hypofrontality and the consequent lack of input filtering might improve

learning remains an open question. Here we consider the issue in several domains. First we

turn to the attentional phenomena of blocking and highlighting, both cases in which

regulatory filtering rapidly reduces errors at the cost of distorting the learner's

representations of information in the environment. Next, we examine the role of cognitive

control in language learning. Finally, we sketch an account of competition between learning

systems embodied in different corticostriatal loops. A common theme in these three sections

will be tradeoffs—between different learning systems, between learning and performance,

and between immediate and long-term performance. Throughout, we emphasize the simple

insight that the system best adapted for learning a domain might not be the system best

adapted for putting that learning into practice, and that evolutionary success might hinge on

an organism's ability to implement either system at different developmental stages or within

the context of different tasks.

Attention and learning

Thompson-Schill et al. (2009) frame the tension between learning and cognitive control as a

conceptual tradeoff: The suppression of competitive interactions by cognitive control is

helpful for performance but detrimental to learning (see also Ramscar & Gitcho, 2007).

Several computational models of memory and language leverage cue competition to

improve learning (e.g., Norman et al., 2005; Ramscar & Yarlett, 2007; Ramscar et al.,

2010), and in each case it is plausible that the attenuation of competition through

prefrontally mediated processes might impair learning (Ramscar & McClure, 2011). One

direct and detailed investigation of this possibility is provided by Kruschke and colleagues

in several behavioral and computational studies of attentional learning, which demonstrate

that various associative learning phenomena are best explained by subjects learning to orient

their attention differentially to different stimuli in order to reduce errors quickly; this
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redistribution of attention then gates cue-response learning (see Kruschke, 2003, for a partial

review and synthesis).

Specifically, Kruschke and colleagues have investigated the attentional basis of learning

phenomena such as blocking and highlighting (Table 2). In blocking, an earlier-learned

association prevents learning of one presented later (Kamin, 1969). In an example paradigm,

a subject might learn that stimulus A predicts outcome X (A.X), then learn that cues A and

B presented simultaneously predict outcome X (AB.X), and likewise CD.Y. Although AB.X

and CD.Y are presented equally often, preconditioning with A.X leads subjects to choose

response Y over X when confronted with the new compounds BC and BD—that is, it limits

the strength of the association between B and X, or blocks B. In highlighting, a later-learned

association is learned more strongly. For example, subjects might first learn AB.X and then

learn AC.Y; although B and C both perfectly cue their respective responses, subjects

confronted with the new compound BC, again, overwhelmingly choose Y over X. These

effects are not explained by differences in the frequency or reliability of the earlier- and

later-learned associations (Kruschke, 2001, 2003; Denton & Kruschke, 2006), hence our use

of Kruschke's term ‘highlighting’ rather than the earlier ‘inverse base rate effect’ (Medin &

Edelson, 1988). Rather, the effects are explained by changes in the allocation of attention:

Subjects learn to attend away from blocked cues (in blocking) and the shared cue (in

highlighting). This redistribution of attention helps subjects respond quickly and accurately

by diverting attention from an uninformative cue (in the case of blocking) or a cue

associated with the wrong response (in highlighting); however, it also attenuates learning

about that cue, leading to the observed distortion in association strengths. Eye movement

data are consistent with this attentional account of cue competition, with subjects selectively

looking away from blocked cues and toward highlighted cues (Kruschke, Kappenman, &

Hetrick, 2005); additionally, learning about blocked cues, and even new cues that share

features with blocked cues, is attenuated, suggesting a learned redistribution of attention

away from blocked cues and their features (Kruschke & Blair, 2000; Kruschke, 2005;

Kaminski, Heckler, & Sloutsky, 2008). These attentional dynamics preserve already-learned

associations while responding accurately to new ones, a strategy well motivated by the goal

of rapid error reduction (Kruschke & Blair, 2000; Kruschke, 2003).

One consequence of hypofrontality is difficulty controlling the allocation of attention. For

example, monkeys with unilateral PFC lesions are impaired in attentionally demanding

visual search tasks, but not in undemanding pop-out tasks, when the cue changes frequently

(Rossi et al., 2007), and patients with unilateral PFC lesions show attentional deficits

selective to the contralesional visual field (Voytek & Knight, 2010). Children also have

difficulty allocating their attention (Hanania & Smith, 2010). Kruschke and colleagues’

framework of attentional learning thus fits well with the MFH: Mature learners apply

cognitive control to reduce errors quickly but at the cost of distorting their representations of

association strengths, whereas immature learners without cognitive control make graver

errors for a longer time but ultimately learn the domain veridically. Developmental evidence

is consistent with this view: 3-year-olds are less prone to blocking than 4-year-olds, and 8-

and 9-year-olds show less highlighting than adults (Sobel et al., 2004; Winman et al., 2005).

Corbetta and Shulman (2002) assign the ventral PFC a “circuit-breaking” response to novel
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stimuli, which may be at work here: When hypofrontal subjects are confronted with new cue

combinations, attenuated signals from ventral PFC lead to weaker reorienting, less error

reduction, and ultimately less distortion in the association strengths. The right middle and

inferior frontal gyri respond to prediction errors in a manner that could serve to signal

novelty. Activation in these regions corresponds well to the prediction error signal generated

by the learning rule of Rescorla and Wagner (1972), and is evoked in proportion to

prediction error by various learning manipulations, including backward blocking (Fletcher et

al., 2001; Turner et al., 2004; Corlett et al., 2001). However, direct evidence of the role of

prefrontal activation in cue competition is limited; further investigation will be required to

cement this hypothesis.

A similar argument can be sketched in other domains of learning where attention is relevant.

In the case of retrieval-induced forgetting, discussed earlier, performance on the retrieval

test can be improved by suppressing the competing untested associations, but that

suppression impairs long-term learning of the complete stimulus set. Likewise, in the visual

statistical learning study by Campbell and colleagues (2012), subjects were familiarized

with the input through a one-back task incorporating a stream of red images interleaved with

a stream of green; subjects monitored one color for repeated images while ignoring the

other. This selective attention comes at the cost of learning the statistical structure in those

stimuli. In other words, when voluntary, top-down attentional systems (which typically

engage prefrontal cortex) are involved in the task, learning of unattended information (that is

implicit and secondary to the main task) is impaired, providing support for possible

competitive interactions between these systems.

Based on these results, we suggest that in the cases of cue competition, retrieval-induced

forgetting, and visual statistical learning, the application of cognitive control produces a

short-term benefit to accuracy at a long-term cost—respectively, to the veridicality of

learned association strengths, the ability to remember unretrieved competitors to retrieved

items, or the implicit learning of statistical structure.

Language learning

The inability to filter input has the consequence of rendering learning more homogeneous

across learners—a learner with fully developed cognitive control functions may direct its

attention where it chooses, but a learner with reduced cognitive control will have difficulty

attending away from the most salient aspects of the stimulus. This means that learning in the

absence of cognitive control may be especially well adapted for domains that benefit from

being learned the same way by different learners, such as language. Specifically, limited

filtering of linguistic input may allow children to learn the most frequent patterns they hear

instead of deliberating about probabilistic rules (Chrysikou, Novick, Trueswell, &

Thompson-Schill, 2011; Singleton & Newport, 2004). For example, when adults learn an

artificial language from sparse and inconsistent input, their language production reflects the

noise of the input; in contrast, children only produce the most frequent form, insulating their

linguistic output from their teachers’ errors, thus outperforming adults on this task (Hudson

Kam & Newport, 2005, 2009). Consistent with this view, young children are more hesitant

than older children and adults to generalize rules to new lexical items, which may help them
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learn linguistic conventions like irregular verbs and plurals (Boyd & Goldberg, 2011). In

contrast, adult language learning is characterized by top-down probabilistic rules, which

tend to vary across learners, potentially undermining learning of linguistic conventions

(Ramscar & Yarlett, 2007; Ramscar et al., 2010).

For similar reasons, limitations in working memory may promote language learning in

young children by forcing them to focus on the components of larger structures—words

rather than phrases, or morphemes rather than whole words. Indeed, adults’ superior

working memory capacity may allow them to learn morphologically complex words as

independent wholes, rather than focusing on the words’ internal structure. As a result, adult

second-language learners often show “frozen” language, failing to adjust the morphology of

a complex word to the syntactic context (Newport, 1988, 1990; Singleton & Newport,

2004). This tendency is ameliorated when adults learn morphologically complex words

during a concurrent task that taxes working memory capacity (Cochran et al., 1999).

Likewise, young children regularize noisy linguistic input by producing only the most

frequent forms emitted by their teachers (Newport, 1999; Singleton & Newport, 2004).

However, adults do so only when the inconsistencies are highly complex—for example,

when a language contains one dominant form of a determiner and 16 less frequent forms,

but not one dominant and 8 less frequent forms (Hudson Kam & Newport, 2005, 2009). In

other words, adults’ superior memory for the infrequent variants may lead them to regularize

only under circumstances of extreme variability. These results suggest that the ability to

keep large linguistic structures in mind may impair learning by offering the learner an

intractably large inventory of items. Thus, adult language learners may benefit from

focusing on the components of language more than complex linguistic structures (Newport,

1988; Elman, 1993; Ramey, Chrysikou, & Reilly, 2013; but see Rohde & Plaut, 1999). In

support of this conjecture, languages spoken by large communities, and thus by large

proportions of adult learners, have simpler inflectional morphology than those spoken by

small communities, and thus principally by young learners (Lupyan & Dale, 2010).

Learning and inference

Categorizing objects is useful for at least two reasons: It supports generalization to new

exemplars, and it supports cognitive economy for tasks made on the category level, because

the only features that demand attention are the features relevant to categorization (e.g., fur

color can be ignored in determining whether a given animal barks, but not whether a given

dog is your neighbor's). However, that cognitive economy is achieved at the cost of the

categorization-irrelevant information, which may not be irrelevant in other contexts

(Hoffman & Rehder, 2010; Yim, Best, & Sloutsky, 2011). This tension is elucidated in the

work of Sloutsky and Fisher (2004), who compared children and adults’ memory for

exemplars after different preconditioning procedures. When children and adults were simply

directed to remember a set of pictures of cats, bears, and birds, adults outperformed children

substantially on the memory test. However, when both adults and children were

preconditioned with a category-based induction task, where they were required to learn that

cats but not bears and birds had “beta cells” in their bodies, children lost no accuracy, but

adults’ memory for the pictures plummeted to chance levels. Sloutsky and Fisher (2004)

further report that explicitly training children to do category-based induction like adults
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reduced their performance to chance levels after the induction preconditioning, confirming

the relevance of the categorization process in generating the disadvantage for induction.

In general, adults’ focus on category labels appears to be a learned disposition; children tend

to treat category labels as a feature. This makes it difficult for children to attend away from

features that are salient but category-irrelevant (Yao & Sloutsky, 2010; Deng & Sloutsky

2010, 2012), and reveals a disposition to perform induction on the basis of similarity rather

than category membership (Sloutsky & Fisher, 2004; Sheya & Smith, 2006). This is not to

say that children are insensitive to labels; on the contrary, even very young children are

quite capable of using labels to guide and enhance learning (Smith et al., 2002; Xu, 2002;

Yoshida & Smith, 2005; Rakison & Lupyan, 2008). However, category labels do not enjoy

the same privileged influence on attention and inference in children that they do in adults—

likely due to children's difficulty in suppressing perceptual information that competes with

categorization rules.

There is reason to believe that the capacity for categorization relies, at least in part, on the

PFC. Miller and colleagues have repeatedly demonstrated that neurons in the PFC of the

macaque code category identity, even over changes in the categorization rule and the

behavioral relevance of the categorization (Freedman, Riesenhuber, Poggio, & Miller, 2001,

2002, 2003; Meyers, Freedman, Kreiman, Miller, & Poggio, 2008; Roy, Riesenhuber,

Poggio, & Miller, 2010). The lateral PFC may also support generalization of learned

information to unseen category members, a key function of categorization (Pan, Sawa,

Tsuda, Tsukada, & Sakagami, 2008). In humans, rule-based categorization engages the

caudate during early learning, then the ventrolateral PFC, and finally premotor cortex (Hélie,

Roeder, & Ashby, 2011; Soto, Waldschmidt, Hélie, & Ashby, 2013). Computational

modeling suggests that, with experience, the PFC can self-organize connections to stimulus

and task representations that support rule-based categorization and generalization (Rougier

& O'Reilly, 2002; Rougier, Noelle, Braver, Cohen, & O'Reilly, 2005). The lack of a strong

PFC signal and well-organized connections to bias representations of the stimulus and task

context may lead children to default to similarity-based categorization.

Independent of categorization, hypofrontality may also increase sensitivity to correlations.

The sampling distribution of correlations is negatively skewed when the true correlation is

positive, and the skewness increases with sample size, such that very small samples are

likely to exhibit a correlation much higher than the true correlation (Kareev, 1995; Kareev,

Lieberman, & Lev, 1997; Kareev, 2000). Limited working memory capacity may allow

children to consider fewer items at once, inflating the strength of positive correlations and

thus, presumably, making them more salient to the learner.

Learning in competing corticostriatal loops

The work reviewed in the previous subsections elucidates influences of cognitive control on

learning that are essentially computational: Learning is impaired by cognitive control

processes that suppress or extinguish aspects of the input information (as in cue competition,

retrieval-induced forgetting, and attentional suppression of statistical learning), that allow

the learner to try to fit noise (as in frozen language and underregularization), or that rectify

noisy input based on possibly deficient knowledge (as in mediated priming). However, there
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is a wealth of evidence for multiple learning systems in the brain, the gist of which is that

prefrontal cortex is involved in declarative learning, as of explicitly defined rules or

categories, whereas the striatum supports procedural learning (Ashby et al., 1998; Cohen &

Eichenbaum, 1993; Daw et al., 2005; Shohamy et al., 2008). In fact, the striatum is

functionally divided in this respect, with neuroanatomical (Alexander et al., 1986; Joel &

Weiner, 2000), neuropsychological (Ashby et al., 2003; Filoteo et al., 2004; Reber & Squire,

1999), and neuroimaging (Filoteo et al., 2005; Di Martino et al., 2008; Seger & Cincotta,

2005; Cincotta & Seger, 2007) evidence implicating the caudate nucleus, or at least its head,

in the declarative system.

Work by Yin and colleagues (Yin et al., 2005; Yin & Knowlton, 2006; Yin et al., 2009) has

shown a different but plausibly related dissociation in the functions of rodent striatal

substructures, with the dorsomedial striatum (the rat homologue to the caudate) encoding

action-outcome associations (goal-oriented learning; Dickinson, 1985) and the dorsolateral

striatum or putamen encoding stimulus-response associations (habitual learning; ibid.).

Goal-oriented learning occurs early in the learning process and is sensitive to variation in the

value of the action, as well as the contingency of the outcome on the action; habitual

learning occurs with overtraining and is insensitive to such variation. This pattern suggests a

relationship to the declarative-procedural divide: Declarative knowledge is flexibly deployed

in pursuit of explicitly represented goals, whereas procedural knowledge is bound strongly

to the learning context (Foerde et al., 2006).

There is evidence that these dissociable learning systems are also competitive. The results of

Yin and colleagues suggest competition between caudate- and putamen-based learning

systems, as activity in the caudate falls during learning even as activity in the putamen rises.

Daw and colleagues (2005) advance a model for uncertainty-based competition between

prefrontal/caudate and dorsolateral striatal (i.e., putamen) reinforcement learning, with the

former implementing a model-based learning system reliant on working memory and the

latter implementing a model-free system with minimal memory demands; likewise, the

COVIS category learning model of Ashby et al. (1998, inter alia) incorporates competition

between a prefrontal hypothesis-testing system and a striatal procedural system. Consistent

with such an architecture, learners with low working memory capacity are superior to their

high-capacity counterparts at learning nonverbalizable decision boundaries (DeCaro,

Thomas, & Beilock, 2008). Additionally, Ashby and Crossley (2010) have shown that

humans cannot learn “hybrid” decision boundaries where one part of the boundary is

verbalizable and another part is not, suggesting that either declarative or procedural learning

systems are active at any given time. Work on declarative and procedural memory in

probabilistic learning offers a similar distinction. Declarative memory relying on the medial

temporal lobes appears to compete with procedural memory relying on the striatum

(Poldrack, Prabhakaran, Seger, & Gabrieli, 1999; Seger, Prabhakaran, Poldrack, & Gabrieli,

2000; see Poldrack & Packard, 2003, for a review). These studies do not distinguish the

contributions of the caudate and the putamen to striatal activation, but later work implicates

the head of the caudate in the declarative rather than the procedural system, as described

earlier.
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But why should these systems be competitive, and why should children and adults be biased

to use different systems? Yin and colleagues’ work on outcome devaluation and contingency

degradation in goal-oriented and habitual learning may shed some light on the first matter.

Habitual (stimulus-response) learning is only useful given a reliable reinforcement history

for the response; thus, it would make sense for goal-directed learning mechanisms to

suppress habitual learning mechanisms early in learning, in order to avoid creating a

habitual association to a stimulus whose value is unreliable. Considerations of cognitive

economy might also suggest mutual exclusion of declarative and procedural learning

systems; for example, there is little point in exercising the declarative system to learn a set

of rules that is difficult to represent explicitly or too complex to hold in working memory.

The question of why children and adults might be biased to use different systems is harder to

answer, but it is interesting to speculate on the relative distribution of learning problems

across the lifespan. Adults, who were once required to range across their environment

frequently in search of food, may have encountered more varied and volatile situations in

which new associations had to be quickly learned and then unlearned, with considerable

stakes. Children, by comparison, stayed close to home and devoted their efforts to learning

domains such as language and social conventions, which require extensive training and

could be expected to remain invariant for their whole lives. Thus, the PFC's trajectory of

maturation might be adapted to support the kinds of learning and behavior that are most

beneficial to humans at different points throughout the lifespan.

The idea of opposing prefrontal and striatal learning systems is foreshadowed by, and

related to, the complementary learning systems (CLS) framework for hippocampus and

neocortex advanced by McClelland, McNaughton, and O'Reilly (1995; see also O'Reilly &

Norman, 2002; Norman & O'Reilly, 2003). The main argument of the CLS framework for

learning and memory is that the cortex (generally described in terms that characterize

sensorimotor cortex, although PFC is not explicitly excluded) learns slowly, making it well-

suited to discovering persistent structure in the environment but ill-suited to rapid

adjustment of behavior by swiftly learning new associations. In contrast, the hippocampus

can rapidly bind arbitrary elements of the environment together into new associations, but

those associations decay rapidly without repetition. There is, thus, a schematic relationship

between the CLS and MFH frameworks, with the hippocampal system of the CLS similar to

our prefrontal system in its ability to encode arbitrary associations rapidly, and the

neocortical system of the CLS similar to our posterior/subcortical system in its ability to

absorb enormous amounts of information about the persistent structure of the environment.

However, the computational concerns motivating the two frameworks are somewhat

different. The CLS framework aims to describe the computational factors that underlie when

and whether information is stored in memory. The MFH, in contrast, is primarily interested

in what information is processed and what suppressed (although this can manifest in timing

effects, as in cue competition and RIF). Further theoretical work will require integration of

these concerns. A naïve approach would be to view the prefrontal/posterior interactions of

the MFH as prior to the hippocampal/neocortical interactions described by the CLS

framework; regulatory filtering reshapes the information that enters the system, and the

interactions between the hippocampal and neocortical systems determine the fate of that

reshaped information. This is likely a useful start, but at a minimum, the striatum's known
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role in memory encoding is sure to complicate the story (e.g., Ashby & Crossley, 2011;

Crossley, Ashby, & Maddox, 2012).

In summary, the mature prefrontal cortex may bias learners toward the use of a declarative,

goal-oriented learning system, even when that system is not well adapted to the problem at

hand; this tendency is well documented by Ashby and colleagues (Filoteo et al., 2010;

Ashby & Crossley, 2010, inter alia). There is evidence for competition between brain

systems for declarative and procedural learning, implying that prefrontal influence tends to

take the procedural, habitual learning system offline by default. The balance of competition

between declarative/goal-oriented and procedural/habitual systems may reflect the goals of

the learner at its particular stage in development: Children may benefit more from having

the procedural/habitual system released from inhibition, whereas adults may find more use

for declarative/goal-oriented learning and cognitive control.

MFH and Creative Cognition

The review of the literature on learning discussed above reveals complex tradeoffs among

PFC and striatal subregions that allow for different types of learning depending on context

and task goals. Critically, not all aspects of learning benefit similarly from PFC regulation:

instead, a careful match between the degree of filtering of perceptual input and individual

aims within a given learning context determines successful outcomes for different learner

profiles (e.g., children vs. adults). Beyond learning, similar competitive interactions between

PFC and sensorimotor brain regions may determine other domains of cognitive

performance, for example, tasks involving creative thinking. Specifically, the MFH proposes

that a hypofrontal cognitive state may prove advantageous for certain aspects of creative

cognition to the extent that optimal performance in some creativity tasks requires

availability of unfiltered low-level perceptual input. Conversely, for such tasks the

application of prefrontally-mediated regulatory filtering of perceptual data will be associated

with performance costs, as important information present in the low-level input is inhibited

and discarded.

What types of creativity tasks would benefit from increased or decreased availability of raw

perceptual information? An extended body of research supports the notion that a particular

region of the PFC, the left ventrolateral prefrontal cortex, is implicated in tasks that require

participants to tap their memory about the world (e.g., retrieving a verb associated with an

object [e.g., dog-bark] or performing similarity judgments among items based on a particular

property, like an object's color or function [e.g., is a hammer more similar to a hairdryer or a

wrench?]; Thompson-Schill, et al., 2005; Thompson-Schill, D'Esposito, Aguirre, & Farah,

1997). A distinctive feature of all such tasks is that they are guided by a set of explicit rules

and that they require one correct response, the form of which is typically known to the

participants. To be able to identify that response, an individual would have to evaluate

critically and select from among the available data the optimal alternative, while suppressing

all irrelevant information. As discussed above, this process is possible through the

involvement of the PFC and it is critical for some aspects of everyday problem solving. For

example, if one needs to insert a nail to the wall one needs to succinctly represent this goal

as well as attend to an abstract understanding of nails and hammers and the relationship
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between them to identify the right tool for the task. At the same time, low-level information

that is irrelevant to the goals of the task will be filtered to optimize performance (e.g., the

color of the nail, its material and consistency, etc. will be suppressed).

On the other hand, for some aspects of everyday problem solving that are frequently

associated with the generation of novel ideas there is no obvious single response and the

tasks seem to have multiple, equally likely solutions (e.g., writing an essay, sketching a

drawing, finding alternative uses for old kitchen utensils, or inserting a nail into the wall in

an emergency when a hammer is unavailable). In particular, such tasks are not guided by the

implementation of an explicit rule, but rather they may require access to low-level

perceptual data (e.g., shapes, sounds, materials) to dictate performance. In such data-driven

tasks, the MFH proposes that a reduction in PFC-guided thought will limit input filtering

which might facilitate the initiation of alternative possibilities prior to the identification of

the optimal solution2.

Possible competitive interactions between two distinct brain systems would further suggest

that, in contrast to goal-driven tasks, certain aspects of data-driven tasks might benefit from

limited involvement of regions implicated in rule-based processing (i.e., prefrontal cortex)

and the increased contribution of regions involved in object processing, particularly

processing of object attributes or features (e.g., visual cortex; Dietrich, 2004; Thompson-

Schill et al., 2009). As mentioned earlier, activity in these distinct brain regions may be

associated with different types of thought, namely rule-driven or goal-driven (top-down)

thinking and stimulus-driven or data-driven (bottom-up) thinking, respectively. Specifically,

the prefrontal cortex may support the construction of rules and regularities about the world,

abstracting away from low-level, ‘raw’ environmental data (e.g., learning that hammers are

used for hammering regardless of their particular shape, size, or color; Wolford, Miller, &

Gazzaniga, 2000). In contrast, focusing on low-level, ‘raw’ perceptual information in the

environment (e.g., sounds, shapes, colors, materials) may involve increased activity in

sensorimotor brain regions (e.g., occipitotemporal cortex). According to the MFH,

depending on whether the task at hand (or a task subcomponent) requires access to low-level

perceptual data, an individual may benefit from either top-down or bottom-up thinking for

optimal performance, as supported by relative activity in these distinct brain regions.

In support of this prediction, recent work has suggested that hypofrontal cognitive states are

associated with enhanced perceptual processing. For example, children with autism exhibit

reduced sensitivity in discrimination between color categories, but better memory for

unlabeled color stimuli relative to typically developing children (Heaton, Ludlow, &

Roberson, 2008; see also Franklin et al., 2010). Indeed, the suboptimal prefrontal

functioning in autism may increase the availability of bottom-up, environmentally-driven

information in these individuals, which may allow some of them to become musical,

mathematical, or artistic savants (Snyder, 2009). Finally, similar effects of hypofrontality on

perceptual processing have also been observed in neuro-typical subjects: temporarily

2We note that filtering can apply to various task-relevant attributes. For example, when looking for an object to insert a nail into a
wall when a hammer is not available, reduced filtering can promote accessibility of low-level perceptual attributes of other items
within the same class (e.g., other heavy tools in one's toolbox) or even items outside of that class (e.g., a sturdy shoe).
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disrupting left prefrontal cortex activity using rapid transcranial magnetic stimulation

(rTMS) can improve absolute pitch perception and number estimation in normal subjects

(Snyder et al., 2003, 2006). These findings are in line with reports of preferential processing

of absolute pitch patterns in continuous tone sequences in infants; interestingly, 8-month

olds recognize and remember absolute pitch better than adults, who are only able to attend to

the relationships between the notes (e.g., Saffran, 2003; Saffran et al., 2005). Although the

tasks employed in these studies are not creative production tasks and should not be

interpreted as reflective of superior creative production in these populations, the findings,

overall, strongly support the increased availability of perceptual, bottom-up information in

the context of diminished PFC function.

Accordingly, the MFH proposes that the generation of ideas within the context of a data-

driven task (e.g., a creative design task) might involve a temporary distancing from

knowledge-driven (top-down) thought—as guided by the prefrontal cortex—and a focus,

instead, on data-driven (bottom-up) thought, as supported by sensorimotor brain regions (for

a related model see Hélie & Sun, 2010). Indeed, evidence from studies with

neuropsychological patients would support this hypothesis. Recent research has suggested

that a hypofrontal state resulting from disease or injury may enhance one's ability for

bottom-up cognitive processing in the context of complex data-driven tasks. For instance,

patients with progressive aphasia, a neurodegenerative disease that targets selectively the

patient's left frontal and temporal cortices, have been reported to exhibit increased levels of

visual ability in spontaneous drawing or painting that they did not possess prior to their

disease (Miller et al., 2000; Seeley et al., 2008; Shamay-Tsoory, Adler, Aharon-Peretz,

Perry, Mayseless, 2011), although this tendency is not uniform across patients (Palmiero, Di

Giacomo, & Passafiume, 2012). Likewise, patients with focal strokes in the left prefrontal

cortex have been shown to outperform normal participants in creative problem solving tasks

that require breaking away from rule-based thinking (Reverberi et al., 2005), although the

results of these investigations are not consistent (see de Souza et al., 2010).

Specifically with regards to certain aspects of creative thinking such as idea generation,

tasks that require broad conceptual associations have been linked to highly complex

electroencephalogram (EEG) patterns across the entire brain but also reduced activity in

frontal brain areas (Mölle et al., 1999), though these patterns may depend on the exact

nature and duration of the creative task (see Fink et al., 2009, 2011). A study that employed

functional magnetic resonance imaging (fMRI) has shown hypofrontal neural profiles in

professional musicians during jazz improvisation, but not during the reproduction of well-

practiced musical sequences (Limb & Brown, 2008; see also Liu et al., 2012). Similarly, in a

recent fMRI experiment healthy adults appeared to benefit from a tradeoff between

perceptually-based and rule-based thought for optimal performance: When generating

creative uses for common objects (e.g., using a belt as a tourniquet), participants exhibited

lower PFC activity, reflecting reduced cognitive control or filtering of low-level data (e.g.,

the shape or materials of the objects that would support a novel use), and increased activity

in perceptual (visual object processing) regions, compared to participants who generated

typical uses for the objects (Chrysikou & Thompson-Schill, 2011). Moreover, inhibitory

transcranial direct current stimulation (tDCS) over left PFC, relative to inhibitory tDCS over

right PFC or sham stimulation, increased the speed in which participants generated creative
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uses for common objects as well as the number of responses generated, an effect which was

specific to creative use generation and not other control tasks (Chrysikou, Hamilton, Coslett,

Datta, Bikson, & Thompson-Schill, 2013). Thus, under the demands of a data-driven

creative thinking task, during which regulatory filtering of perceptual information would be

associated with performance costs, healthy adults may benefit from a state of lower

cognitive control.

Further support for this idea comes from observed differences between children and adults

in tasks that may lead to functional fixedness. Functional fixedness is an example wherein

adult participants are excessively inflexible; for example, when challenged to mount a

candle on a wall given a book of matches and a box of tacks, they think of the box as a

container for the tacks, thus failing to use it as a platform for the candle (Duncker, 1945). In

contrast, under similar conditions, children appear resistant to functional fixedness effects

and solve these sorts of problems more readily than adults (German & Defeyter, 2000;

Defeyter & German, 2003). Under functional fixedness, it is likely that adult participants

generate the intended use for the materials based on an abstract understanding of function in

the context of artifact use and constrain their search for a solution based on that intended

use; in contrast, young children do not generate the intended use as strongly and, thus, are

able to organize their search around physical features of the materials rather than intended

uses (Defeyter & German, 2003). These findings are in line with the MFH, although no

current research has linked these changes directly to the development of PFC.

Beyond the influences exerted by specific task characteristics that require the use of low-

level perceptual data in various degrees, the effects of cognitive control on creative thought

may also be determined by trait-level variation. In particular, de Manzano and colleagues

(2010) have recently shown that healthy individuals with decreased thalamic D2 densities

(as measured by PET) had higher scores in a battery of data-driven creativity tasks. The

authors propose that decreased D2 receptor densities in the thalamus may increase the flow

of information in corticothalamic circuits by lowering thalamic gating thresholds, thus

leading to advantages for data-driven tasks. On the other hand, Takeuchi and colleagues

(2010) employed voxel-based morphometry to demonstrate that performance in a set of

similar data-driven tests was associated with increased regional gray matter volumes in

cortico-striatal dopaminergic regions, including the DLPFC and bilateral basal ganglia.

Critically, Chermahini and Hommel (2010) demonstrated that spontaneous eyeblink rate

(EBR), a clinical marker of striatal dopaminergic production, differentially predicted

participants’ performance in data-driven and rule-driven tasks (the alternative uses task and

the remote associates task, respectively), both of which are assumed to capture different

aspects of creative thought. Specifically, EBRs and data-driven, bottom-up thinking were

related in a non-linear fashion, such that individuals with medium EBRs (i.e., medium

striatal dopamine levels) showed the greatest cognitive flexibility in the data-driven task. In

contrast, a linear relationship between EBRs and rule-driven, top-down thinking revealed

that individuals with low EBRs (i.e., decreased striatal dopamine levels) showed the best

performance in the rule-driven task. Taken together, the above results reveal a possible

sensitive balance between the amount of prefrontally mediated cognitive control (as directed

by thalamic and striatal dopaminergic systems) for optimal performance in different
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components of creativity (e.g., data- vs. rule-driven thinking), although much future work is

required to identify the exact nature of these relationships.

Overall, these findings offer support for the MFH according to which reduced prefrontal

cortex activity limits filtering of low-level perceptual data and may facilitate certain aspects

of perceptual processing by shifting the individual's focus from abstract, knowledge-based

thinking to bottom-up, data-driven thinking. Although the effects of hypofrontality may

promote the generation of novel solutions in an open-ended task, other aspects of creative

thought likely depend on the involvement of rule-based prefrontal regulatory circuits. For

example, the evaluation of the appropriateness and projected effectiveness of a generated

solution for the achievement of a given goal likely involves a rapid reversal from a

hypofrontal to a frontally-guided cognitive state, with the cycle repeating many times until

the optimal solution is achieved. As an example of this process, in their computational

model Hélie and Sun (2010) describe such an iterative (and possibly bidirectional)

processing involving both explicit and implicit knowledge, which is hypothesized to be

implicated simultaneously in the majority of problem solving and other cognitive tasks.

Thus, creativity might be best viewed as the result of multiple cognitive processes (see

Dietrich & Kanso, 2010), some of which may benefit whereas others might be compromised

by a hypofrontal state. In consequence, among the challenges for the MFH is to determine

the exact circumstances under which hypofrontality promotes creativity, as well as to

identify the brain mechanisms allowing for the rapid transitions between hypofrontal and

rule-based thinking during creative production.

Challenges and Future Directions

Scholars of cognitive control sometimes forget how capable an organism can be without

much, or any, prefrontal cortex (for welcome exceptions, see, e.g., Shimamura, Gershberg,

Jurica, Mangels, & Knight, 1992; Sylvester & Shimamura, 2002; Uretzky & Gilboa, 2010).

Although it is our prefrontally-mediated cognitive functions that allow us to excel in many

aspects of higher-order cognitive tasks, here we have proposed that tradeoffs between PFC-

mediated regulatory mechanisms and the function of sensorimotor and subcortical brain

systems may promote performance depending on individual objectives, evolutionary and

developmental priorities, and specific task demands. We have offered a Matched Filter

Hypothesis for cognitive control, which predicts that PFC-mediated regulatory filtering of

low-level sensory information improves performance for top-down, rule-based, or goal-

directed tasks that depend on the maintenance and manipulation of explicit representations.

In contrast, hypofrontal states that restrict filtering of sensory input improve performance for

bottom-up or stimulus-driven tasks for which the complexity of the necessary

representations exceeds working memory limits3.

3Although it is commonly held that all aspects of complex behavior demand prefrontally-guided regulatory mechanisms, the reviewed
literature brings attention to the fact that the notion of task complexity is multifaceted and can take on different meanings depending
on the circumstances. For instance, a task can be complex due to its increased requirements for abstraction or its high demands on
working memory; at the same time, task complexity can be determined by the need to represent large amounts of unfiltered low-level
information that exceed the capacity of working memory and consideration of which is necessary for optimal performance in certain
domains.
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This proposal extends prior frameworks (e.g., Banich, 2009; Miller & Cohen, 2001;

Shimamura, 2000) by suggesting not only that the function of cognitive control is to

facilitate the appropriate response in a given task context, but also that a lack of cognitive

control may be advantageous for data-driven tasks optimally supported by sensorimotor and

subcortical brain systems, the activity of which is typically biased and reshaped by PFC-

mediated interventions. We have presented evidence from the domains of learning and

creative cognition that offers support for this proposal, as well as emphasized the central role

of individual differences (e.g., age, genetic variation, brain damage) that can moderate the

relationships between organism- and task-specific factors. Although we have hinted at the

possible brain systems likely involved in this dynamic filtering process, a major challenge

for the MFH is to specify the exact neural mechanisms under which cognitive control

matches the type of filter applied to low-level data to the aims of the organism and the

requirements of the task in question.

For example, it is clear that release from prefrontal regulation sometimes improves learning.

A challenge for the MFH is to elucidate the circumstances under which this is true and the

neurobiological mechanisms by which it occurs. For example, some level of prefrontal

function is critical for reversal learning, as testified by neuroimaging (Cools et al., 2002,

2007b; Clark, Cools, & Robbins, 2004) and neuropsychology (Iversen & Mishkin, 1970;

Dias, Robbins, & Roberts, 1996; Fellows & Farah, 2005), suggesting that reduction in

prefrontal function does not linearly improve reversal learning—a finding recapitulated in

studies of COMT and PFC DA, which generally find an inverted-U-shaped relationship

between DA levels and task performance. Additionally, the relationship between declarative

and goal-oriented learning is not logically necessary and has yet to be confirmed. Likewise,

although a few studies have examined the relationship between hypofrontality and

declarative learning (Filoteo et al., 2010; Foerde et al., 2006), it is not clear whether

hypofrontality biases the brain toward habitual learning, as we hypothesize it does.

Additionally, the relationship between hypofrontality and attentional learning is suggested

by child studies (Sobel et al., 2004; Winman et al., 2005) but requires confirmation in adults.

Computational modeling can support refining and testing hypotheses about the interaction

between learning and cognitive control.

Convergent investigations of hypofrontality and learning via brain stimulation, functional

neuroimaging, and genotyping will speak more clearly to questions of mechanism and

provide a finer-grained perspective on the roles of different prefrontal subregions—for

example, are the benefits of hypofrontality to procedural learning driven principally by the

inactivity of regions supporting maintenance and conflict resolution, such as the

ventrolateral PFC; of those supporting working memory, such as the dorsolateral PFC; or of

those underlying attentional allocation, such as the frontal and supplementary eye fields?

What are the roles of orbitofrontal cortex, which is richly connected to the ventral striatum,

and posterior parietal cortex, which is functionally connected to PFC and whose role in the

allocation of attention is well documented? Although extant work on cognitive control and

learning has provided grist for interesting suppositions on these questions, concerted

application of behavioral, computational, and cognitive neuroscience approaches is required

to verify those conjectures. The MFH provides a conceptual framework for such

investigations.
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Overall, a high level of cognitive control provides obvious benefits for learning. It is very

useful to be able to select, maintain, and manipulate information, amplify relevant

differences, and abstract away from irrelevant ones. What unifies the results on learning

discussed here is the simple insight that transforming the input comes at a cost: A particular

transformation may be useful given one set of reinforcement contingencies and harmful

given another. At least in some contexts, learning strategies that prize rapid error reduction

pay for it over the long term in the fidelity and completeness of the learned information. The

MFH can help generate hypotheses to guide multi-level methodological approaches

incorporating neuroimaging, behavioral, computational, and individual differences (due to

genetic variation, psychopathology, brain damage, or other factors) assessments to explore

tradeoffs between PFC-mediated mechanisms and subcortical systems in different types of

learning tasks.

Relative to the work in learning, studies of creative cognition are admittedly few in number,

but nonetheless there are some intriguing findings indicating that aspects of creative thought

that depend on bottom-up, stimulus driven idea generation may benefit from hypofrontal

cognitive states. On the other hand, PFC-mediated cognitive control might be required for

the evaluation of the appropriateness of these ideas in a given task context. Further

experimental examinations of performance under these distinct task circumstances in

individuals that exhibit different hypofrontality profiles due to age, brain damage, genetic

variation, behavioral, non-invasive brain stimulation, or other interventions (both in terms of

independent and compound influences of these factors) is required to further substantiate the

predictions of the MFH. Moreover, research has suggested that different components of

creative thought may depend on complex interhemispheric interactions particularly within

lateral PFC, in addition to possible differential contributions of medial PFC regions

bilaterally (e.g., Shamay-Tsoory et al., 2011). Whether a hypofrontal profile in all or a

selective subset of these regions is beneficial or detrimental to different components of

creative thought, in line with the predictions of the MFH, requires extensive additional

empirical work. Importantly, successful performance in complex creative thinking tasks

depends on the combined influences of both top-down (possibly mediated by PFC

regulatory systems) and bottom-up (possibly mediated by sensorimotor cortical areas)

processes (see Chrysikou, in press). It is important for future research using multi-method

approaches to identify individual neurobiological factors that determine one's ability to

increase or decrease intentionally the regulatory contributions of PFC-mediated cognitive

control depending on the requirements of the task in hand, as such differences may account

for the extent of individual variability in performance in creative cognition tasks (e.g.,

Akinola & Mendes, 2008; Cools, Roberts, & Robbins, 2007; Cools, Sheridan, Jacobs, &

D'Esposito, 2007).

Even though our examples were heavily drawn from these two research areas, the main

suppositions of the MFH pertain to numerous other domains beyond learning and creative

thinking. For example, children's limited ability to filter random input and their bias toward

most salient responses paradoxically benefits performance in probabilistic reinforcement

tasks (Derks & Paclisanu, 1967; Estes, 1964, 1976). Furthermore, in line with the

predictions of the MFH— and contrary to common assumptions—recent research in

decision making has shown that working memory capacity limits the utility of conscious
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deliberation in complex, multidimensional domains: Although conscious deliberation is

beneficial for relatively simple decisions, unconscious processing leads to better decisions

when the number of relevant features far exceeds working memory capacity (e.g.,

Dijksterhuis, Bos, Nordgren, & Van Baaren, 2006a, 2006b; Dijksterhuis & Nordgren, 2006).

The predictions of the MFH are also strongly relevant to research on emotion regulation

(e.g., Bartz, Zaki, Bolger, & Ochsner, 2011; Gross, 2013; McRae et al., 2012; Ochsner,

Silvers, & Buhle, 2012). Although we have largely examined bottom-up, data-driven

responses in the context of sensorimotor systems, optimal regulatory filtering of low-level

emotional responses as subserved by PFC mechanisms and for specific tasks may also

subscribe to the principles outlined in the MFH.

Conclusion

Overall, the Matched Filter Hypothesis for cognitive control embraces a view of cognitive

control as a complex and powerful system for fitting behavior to the situation, capable of

producing dramatically different behaviors in subtly different contexts. Our goal is to respect

that complexity and power while advancing a mechanistic understanding of cognitive

control, specifically by exposing the advantageous consequences of its failure in the

domains of learning and creative cognition. We hope this approach will foster an

appreciation for cognitive control as a tool adapted to a subset of common challenges, rather

than an all-purpose optimization system suited to every problem the organism might

encounter.
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Figure 1.
Dimensions of the Matched Filter Hypothesis model for cognitive control.

Chrysikou et al. Page 33

Neuropsychologia. Author manuscript; available in PMC 2014 September 18.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Chrysikou et al. Page 34

Table 1

Structure and results of retrieval-induced forgetting experiment

Acquisition Retrieval test Delayed recall Recall result

Fruit-Orange Fruit-Or___? Fruit-? Better than control pairs (Fish-*)

Fruit-Banana No practice Fruit-? Worse than control pairs (Fish-*)

Fish-Catfish No practice Fish-?

Fish-Herring No practice Fish-?

Note: In retrieval-induced forgetting, subjects learn category-exemplar pairs and are then administered a retrieval test on half the exemplars from
half the categories. Relative to exemplars of untested categories, the retrieval test improves subsequent recall for tested exemplars of tested
categories, but reduces recall for untested exemplars of tested categories.
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Table 2

Structure of blocking and highlighting experiments

Blocking Highlighting

Phase Cues Response Cues Response

Early A X AB X

Late AB X AC Y

CD Y

Test BD ? A ?

BC ?

Observed BD Y A X

BC Y

Note: Blocking and highlighting are response biases caused by learning associations that are unevenly distributed in time. One plausible account of
these phenomena appeals to selective attention in the service of error reduction.
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