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Abstract
Adenomatous Polyposis Coli (APC) is best known for its crucial role in colorectal cancer
suppression. Rodent models with various Apc mutations have enabled experimental validation of
different Apc functions in tumors and normal tissues. Since the development of the first mouse
model with a germline Apc mutation in the early 1990s, twenty other Apc mouse and rat models
have been generated. This article compares and contrasts currently available Apc rodent models
with particular emphasis on providing potential explanations for their reported variation in three
areas: 1) intestinal polyp multiplicity, 2) intestinal polyp distribution, and 3) extra intestinal
phenotypes.

Introduction
Tumor suppressor Adenomatous polyposis coli (APC) is critical for maintaining cellular
homeostasis in the intestine (1, 2). APC is a large (2843 amino acids), multi-domain protein
that has been implicated in many cellular functions including cellular proliferation,
differentiation, cytoskeleton regulation, migration and apoptosis (3). Mechanistically, APC
is best known for its ability to antagonize Wnt signaling by targeting the oncoprotein β-
catenin for proteasomal degradation (4).

Acquiring a somatic APC mutation is an early, if not initiating event in the great majority of
colorectal tumors (5). Inheriting a germline APC mutation results in the development of
hundreds to thousands of colonic polyps, a condition termed familial adenomatous polyposis
(FAP). These precancerous polyps are thought to initiate following a somatic mutation in the
wild-type APC allele (6, 7). To avoid the progression of these polyps into invasive
carcinoma, prophylactic colon removal is recommended for FAP (8). There are no reports of
humans with germline mutation of both APC alleles, consistent with early developmental
lethality associated with complete loss of APC function (9–11). Germline and somatic APC
mutations typically result in premature APC protein truncation and group between codons
1250 and 1464, a region termed the “mutation cluster region”, MCR (12).

A meta-analysis of genotype-phenotype correlation in FAP patients showed that germline
mutations in the MCR result in the most severe intestinal polyposis phenotype, with up to
5000 polyps (13). Mutations on either side of the MCR are associated with an intermediate
intestinal polyposis phenotype, while mutations that result in a truncation in APC after
amino acid (a.a.) 1595 or before a.a. 157 are associated with an attenuated phenotype
(AFAP), characterized by development of only a few polyps (13). Complete deletion of
APC has been reported only rarely and results in an intermediate phenotype (14, 15).
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Over two-thirds of FAP patients also have extra-colonic manifestations (13). Chronic
hypertrophy of retinal pigment epithelium (CHRPE) is the most frequent phenotype,
associated with APC truncation between a.a. 311–1446. Desmoid tumors, on the other hand,
are associated with APC truncations 3′ to the MCR, after a.a. 1400. Duodenal and gastric
tumors have been associated with APC mutations in two different regions, downstream of
codon 1395 and between codons 564–1465 (13). It is important to note that these genotype-
phenotype correlations are not rigid or complete, suggesting roles for other genetic and
environmental factors in tumor development (13, 16).

For the past two decades, rodent models have been valuable for analysis of APC functions in
intestinal homeostasis and tumor suppression (17, 18). APC is well-conserved between
human and rodent, with 92% similarity at the amino acid level (9, 19). Furthermore, some
rodent models with germline Apc mutations that result in Apc protein truncation develop
intestinal polyposis similar to that seen in FAP patients (18). A brief summary of all
published rodent models with germline Apc mutations appears in Tables 1–3, with a
schematic provided in figure 1.

Characterization of the many available Apc mouse and rat models has aided in discovery of
various pathways important in colon carcinogenesis. Apc rodent models were also useful for
elucidating the effect of various environmental and genetic factors on intestinal
tumorigenesis, and for testing potential chemoprevention and therapeutic agents. The many
positive contributions of Apc mouse models have been reviewed previously (20, 21). As
with most experimental systems, studies of the Apc models have also led to unanswered
questions, particularly regarding phenotypic variation among the different models. Here we
review some of these variations, provide potential explanations, and pose challenges for
future investigation.

I- Variation in intestinal polyp multiplicity
As shown in table 1, the average number of polyps varies greatly between different mouse
models with germline Apc mutations. In addition, the number of polyps also varies in the
same Apc mouse model maintained in different laboratories (17). These variations in
intestinal polyp number in different models likely stem from the nature of the Apc mutations
as well as environmental and genetic factors (17, 18). We propose that the number of
intestinal tumors that develop in different Apc models and in the same model analyzed by
different laboratories is influenced by one or more of the following factors:

1- Different rates and mechanisms of wildtype Apc allele loss (e.g. LOH,
mutation of wildtype Apc, gene silencing)—In both FAP patients and rodent models
with germline Apc mutations, loss or inactivation of the wildtype APC/Apc allele is required
for polyp formation (22, 23). The mechanism by which the second wildtype Apc allele is
lost appears to depend on the Apc mouse model (24). Because this second Apc “hit” is
essential for polyp initiation (10, 22, 25), the rate at which second “hit” occurs will directly
affect the number of intestinal polyps. Increasing the expected rate of these second “hits”
through introduction of genomic instability, X-ray exposure, or injection with a mutagen
significantly increases the number of polyps in ApcMin/+ and Apc1638N mice (26–30). It has
been suggested that certain Apc mutations might lead to chromosomal instability, which
could affect the rate of wildtype Apc loss (31).

Apc1638N/+ mice develop relatively few intestinal polyps and the second Apc “hit” is usually
inactivation of the wildtype Apc allele, predicted to be a rare event (24). On the other hand,
ApcMin/+ mice, where the wildtype Apc allele is lost by means of a more frequent LOH
event, develop considerably more polyps (24). Loss of the wildtype Apc allele in both
ApcMin/+ and Apc1322T/+ mice, however, is reported to occur via LOH, yet these two mouse
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models have widely different polyp numbers (32). Although the rate and underlying
mechanism of wildtype Apc allele loss might contribute to intestinal polyp numbers in Apc
mouse models, it is unlikely that these are sole defining parameters.

2- Different rates of polyp growth due to differences in Wnt signaling—Polyps
must reach a certain size to be detectable. If two polyps are initiated at the same time, a
more rapidly growing polyp should be detectable earlier than a slower growing polyp. The
most recognized function of Apc is to antagonize the Wnt signaling pathway through
inhibition of β-catenin’s activity as a transcription co-factor (4). As Wnt signaling can drive
cellular proliferation, we might expect that different Apc mutations would lead to different
levels of Wnt signal activation and different corresponding changes in cellular proliferation.
In FAP patients, mutations in the MCR are associated with the most severe intestinal
phenotypes while mutations outside the MCR lead to reduced polyp multiplicity (13).
Notably, APC mutations 5′ and 3′ to the MCR result in higher and lower activation of Wnt
signaling, respectively (33). This observation has led to the proposal that submaximal
upregulation of Wnt signaling promotes more polyp growth than higher or lower elevation
of Wnt signaling; the “just right” hypothesis (34, 35).

Wnt signaling has been assessed in many Apc mouse models. Some models have high polyp
multiplicity and show elevated Wnt signaling in these polyps (ApcMin/+, Apc Δ716/+,
Apc1322T/+ and ApcΔe1-15/+) (10, 34, 35). Wnt signaling is also elevated in the few polyps
that develop in ApcNeoR/+ and ApcNeoF/+ mice (36, 37). ApcmNLS/mNLS mice have elevated
Wnt signaling in intestinal epithelial cells (38, 39). Apc1572T/1572T embryonic stem cells
also have elevated Wnt signaling (38, 39). Neither ApcmNLS/mNLS nor Apc1572T/+ mice
develop intestinal polyps (38, 39).

The “just right” hypothesis is supported by reports of increased polyp multiplicity in
Apc1322T/+ and ApcΔe1-15/+ mice relative to ApcMin/+ mice (34, 35). Compared to ApcMin,
Apc1322T protein retains one 20 a.a. repeat which can bind to β-catenin and decrease Wnt
signaling (34, 35). The ApcΔe1-15 allele results in complete deletion of Apc and polyps in
ApcΔe1-15/+ mice also display less Wnt signaling than polyps in ApcMin/+ mice (34).
However, the “just right” hypothesis does not readily explain why Apc Δ716/+ mice show
higher activation of Wnt signaling and more polyps than ApcMin/+ mice (40). In addition,
several groups have reported that although loss of both Apc alleles is required to activate
Wnt signaling (as assessed by nuclear translocation of β-catenin), this Apc loss is not
sufficient for full Wnt signal activation (11, 41, 42). To establish the extent to which Wnt
signaling and polyp growth contribute to phenotypic variation, Wnt signaling activities and
proliferation rates must be directly compared in different Apc mouse models.

3- Different abilities to evade growth inhibitory effects—Another explanation of
variation in polyp number among different Apc mouse models is negative selection of
particular Apc genotypes. This negative selection could contribute to the “Just right”
hypothesis. Support for negative selection contributing to polyp phenotypes is provided by
the observation that addition of Cdx2 or BubR1 mutations to ApcΔ716/+ or ApcMin/+ mice,
respectively, results in reduced polyp multiplicity and increased apoptotic indices in the
small intestines, despite the increased proliferation index in these cells (43, 44). Similarly,
induction of a conditional Apc mutation in hematopoietic stem cells results in upregulation
of Wnt signaling and increased stem cell proliferation with increased apoptosis and eventual
exhaustion of the stem cell population (45). If this phenotype holds true for intestinal tissues,
the “just right” hypothesis might explain the increased stem cell number in polyps from
Apc1322T/+ mice relative to those from ApcMin/+, despite lower Wnt signaling in polyps
from the former model relative to those from ApcMin/+ mice.
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4- Distinctive effects on differentiation—It is possible that the effect of Apc
genotypes on enterocyte differentiation contributes to differences in intestinal polyp number.
For instance, compared to ApcMin/+ mice, Apc1322T/+ mice have a higher proportion of
Paneth cells and cells that express stem cell markers (Lgr5, Bmi1, Msi1 and CD44), not only
in adenomas but also in apparently normal intestinal epithelial cells (35). Cell fates that
result from different Apc genotypes might alter tumor initiation or growth. Again, Wnt
signaling is one of several factors proposed to affect differentiation.

5- Contributions of genetic modifiers or environmental factors—It is well
established that genetic and environmental factors affect intestinal polyp multiplicity in Apc
mouse models. Polyp multiplicity in ApcMin/+ mice varies greatly between laboratories (20–
100/mouse) (17, 18). This inconsistency might result from variations in diet, emergence of
genetic modifiers, and even from different methods of polyp detection. A genetic modifier is
a genetic locus that modifies the effect produced by a non-allelic locus. Modifier genes are
present in different mouse strains and can even emerge in what is considered a congenic
strain (46). Several modifier loci have been found to affect intestinal polyposis in ApcMin/+

mice and are named modifier of min (Mom) (reviewed in (18)). Some modifiers are single
genes, others are thought to represent contiguous genes, and some remain less well-defined
(47). The modifiers appear to function as recessive, dominant or semi-dominant loci (17).
The first identified modifier gene, Mom-1 (Pla2g2a), works in a cell-non-autonomous
manner, possibly by reducing inflammatory response in the gut (48–50). The Mom-2
(Atp5a1) allele is on the same chromosome as Apc (chromosome 18) and appears to inhibit
loss of the wild-type Apc allele (48, 51). The mechanisms of action of other modifiers such
as Mom-3, Mom-7, Mom-12 and Mom-13 are not understood (52–54).

Though identified in ApcMin/+ mice, Mom genes likely also affect phenotypes of other Apc
mouse models. For instance, the C3H/HeJ mouse strain carries at least one Mom allele that
is absent from the C57BL/6 strain, Mom-1 (48). Both ApcMin/+ and ApcΔ242/+ mice show
reduced polyp multiplicity in the first generation mixed C57BL/6: C3H/HeJ mice compared
to in C57BL/6 mice (55). At present, there appears to be no direct examination of the effect
of specific modifiers of Min on different Apc mouse models.

Environmental factors, such as intestinal flora, might also contribute to phenotypic variation
(56). While intestinal flora appear to increase the number of polyps in ApcMin/+ mice (57),
ApcΔ14/+ mice raised in pathogen-free conditions showed significant increases in intestinal
polyp number (58).

Diet is another major environmental factor that clearly impacts the mouse phenotype (59–
61). Although typically defined, the concentration of various vitamins, fiber, and total fat
varies greatly between laboratory mouse diets. In our own experience, switching the mouse
diet had a dramatic effect on polyp multiplicity in our ApcMin/+ mouse colony. We found
that the polyp burden per mouse significantly increased from 45.9±4.5 in 10 ApcMin/+ mice
on Lab diet 5001 (Purina) to 81±9.3 in 25 age-matched ApcMin/+ mice on Harlan 2018 diet
(p= 0.0006). Notably, the new diet (Harlan 2018) has a 24% increase in fat and decreased
fiber, vitamin D, and folic acid by 42%, 67%, and 44%, respectively. Unfortunately, these
inter-laboratory variables such as diet confound direct comparison of the phenotypes of Apc
mouse models studied in different laboratories.

6- Differences in cellular migration and adhesion—APC interaction with
cytoskeletal components, including actin filaments and microtubules, is thought to affect cell
adhesion and migration (62, 63). Decreased cellular adhesion and migration in cells with
APC mutations is expected to contribute to tumor formation (64). APC interacts with
cytoskeletal proteins through its C-terminal region, which is absent in Apc from most mouse
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models (figure 1). Adding the C-terminal Apc region to Apc1322T (as in ApcΔSAMP mice)
did not change the phenotype (65). However, it is possible that cytoskeletal alterations affect
later stages of tumor progression such as invasion and metastasis, which do not occur in
most Apc mouse models (66). Currently, evidence supporting a direct role of the Apc C-
terminus in intestinal phenotype variation among different Apc mouse models is lacking.

7-Differences in technologies used to generate the mouse model—Apc rodent
models have been generated using 3 different technologies; chemical mutagenesis screen,
insertion of an antibiotic-resistance gene and Cre-lox induced DNA excision. The ApcMin/+

mouse, PIRC rat and KAD rat were generated by chemical mutagenesis which resulted in a
single base-pair change in the Apc gene (9, 67, 68). Many other models, such as Apc1309,
Apc1638N and Apc1638T, were generated through insertion of an antibiotic-resistance gene
into the Apc gene, thus introducing a nonsense mutation (69–71). In ApcneoF and ApcneoR

alleles, the antibiotic-resistance gene disrupts an enhancer sequence in intron 13 (36, 37).
Other mouse models with Apc truncation including Apc1322T/+ and ApcΔe1-15 were
generated using Cre-lox mediated-deletion of specific Apc regions. The later technology
allowed removal of most exogenous DNA sequences originating from the targeting vector
including the antibiotic-resistance gene. The ApcmNLS model contains mutations “knocked
into” the Apc gene, with the antibiotic-resistance gene subsequently removed by Cre-Lox-
mediated deletion (39).

The Apc1638N/+ and Apc1638T/+ models, which differ only by orientation of the inserted
neomycin-resistance gene, provide clear evidence for the contribution of extraneous DNA to
phenotypic variation (69). Apc1638N/+ mice express so little truncated Apc protein that they
might be considered virtually null (69, 72); yet the described phenotype of Apc1638N/+ mice
is not similar to that of the ApcΔe1-15 model, which has a complete deletion of the Apc gene
(34, 72). The neomycin-resistance gene clearly affects the phenotypes of these mice and if
inserted in reverse orientation, might affect not only Apc expression, but also expression of
genes upstream of Apc. It is possible that the 6-fold difference in intestinal polyp number
between Apc1322T/+ and Apc1309/+ mice, which differ by only 13 amino acids, stems from
the different technology used in their generation; Cre-lox-mediated deletion in Apc1322T/+

versus insertion of an antibiotic resistance cassette in Apc1309/+. However, other genetic and
environmental factors may contribute to the variation between these two mouse models as
well (32, 70). A final illustration of the challenges in generation of Apc mouse models is the
ApcΔ474/+ mice, which have a duplication of Apc exons 7–10. This feature complicates
dissection of the contribution of exon duplication to the phenotype (73).

8-Differences in expression of the mutant allele—When analyzing the phenotypes
of different Apc mouse models, another consideration is the level of expression of the
mutant allele. Apc is a large multi-domain protein. Truncations of Apc in most FAP patients
and rodent models leave N-terminal domains intact, figure 1. Although normal expression
levels of truncated Apc protein have been verified in ApcΔ716, ApcMin/+, Apc1322T, and
Apc1638T mice, this is not universally the case (32, 69, 74). In Apc580D, ApcΔ14, ApcΔ474,
and ApcΔ242 models, the truncating mutation occurs before the final exon (15), and thus
there is the possibility of a nonsense-mediated RNA decay. Truncated Apc was not detected
in intestinal polyps from ApcΔ580/+ mice or ES cells from ApcΔ15/+ mice (75, 76), which
suggests that these alleles might also be virtually null. A related consideration is the effect of
the introduced mutation (and possibly the antibiotic selection cassette) on Apc folding.
Although most of Apc is thought to be natively unfolded (77), the effects of mutations on
inherently folded domains of Apc, and the consequences of potential folding defects in
relation to phenotype, are not understood.
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II- Variation in polyp distribution
Tumors in most Apc mouse models occur mainly in the small intestine, while germline
mutations of APC in humans result in tumors predominantly in the large intestine (21, 78).
The PIRC Apc rat model has tumors in both small and large intestines (9, 13, 79). A pig
model with germline Apc mutations was recently reported to develop polyps in the colon
(80). In addition to this inter-species variation, mouse models with different germline Apc
mutations show different distributions of intestinal polyps. Analysis of ApcMin/+ mice with
different genetic backgrounds has led to the hypothesis that polyp distribution is somehow
linked to the mechanism by which the wildtype Apc allele is lost (24). Haigis et al. showed
that in a B6 background, ApcMin/+ mice develop polyps mainly in the distal half of the small
intestine, and loss of the wildtype Apc allele occurs by means of LOH. In an AKR
background, ApcMin/+ mice develop polyps predominantly at the ileo-cecal junction, and
inactivation of the wildtype Apc allele is achieved through allelic silencing. In the B6
background, ApcMin/+ mice with additional mutations that inactivate the mismatch repair
gene Mlh develop polyps all over the small intestine, and loss of the wildtype Apc allele is
achieved through a point mutation. Apc1638N/+ mice develop polyps in a similar distribution,
and appear to retain the wildtype Apc allele (24).

Mechanistically, two models have been proposed to explain the connection between polyp
distribution and loss of the wildtype Apc allele. In the first model, the molecular machinery
in different intestinal regions determines the mechanism of the second Apc “hit” and hence
the distribution of polyps. This model is supported by the finding that mice in which the
wildtype Apc allele is inactivated by the same mechanism (eg. ApcMin/+/Mlh−/−, and
Apc1638N/+) have similar polyp distributions (24). However, the finding that both Apc1322T/+

and ApcMin/+ mice lose the wildtype Apc allele through LOH, yet have different polyp
distributions, does not support this model. A second model proposes that polyp growth is
dictated by the Apc status but also by the particular environment of the different intestinal
regions, independent of the mechanism of the second Apc mutation. Supporting this
hypothesis, ApcΔ716/+ mice with an additional mutation of Cdx2 exhibit more colonic and
fewer small intestinal polyps. Yet, loss of the wildtype Apc allele occurs via LOH regardless
of Cdx2 status (44). Similarly, a colonic shift of polyps has been described in ApcMin/+ mice
with an additional BubR1 mutation, although the mechanism of loss of the wildtype Apc
allele in these mice was not reported (43). Mutation of both Cdx2 and BubR1 increases
chromosomal instability and changes the proliferation and apoptotic indices in intestines of
ApcΔ714/+ and ApcMin/+ mice, respectively (43, 44). Further support for the second model
comes from ApcMin/+ mice in a 129/Sv background, where additional mutations that
inactivate Smad3 result in increased colonic tumors; yet in both cases, loss of the wildtype
Apc allele is achieved through LOH (81). Finally, PPARγ agonists increase colonic but not
small intestinal tumors in ApcMin/+ mice (82, 83). PPARγ is expressed in higher quantities
in the colon and cecum relative to the small intestine, that might account for this differential
effect (83).

An expansion of the “just right” hypothesis has been proposed to explain the variation in
polyp distribution among FAP patients, ApcMin/+ and Apc1322T/+ mice. The basal level of
Wnt signaling is not the same in different intestinal regions. It was proposed that changes in
Wnt signaling that result from specific Apc mutations cause optimal Wnt signaling for polyp
growth only in certain intestinal regions. On the other hand, in other intestinal regions, these
same Apc mutations will result in a higher or lower Wnt signaling level than what is optimal
for tumor growth (84).

Perhaps some of these mechanisms can be clarified by studying ApcMin-FCCC mice which
were generated by mating C57Bl/6J ApcMin/+ males with Apc+/+ females from an
independent colony of C57Bl/6 mice maintained at Fox Chase Cancer Center.
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ApcMin-FCCC/+ mice develop more colon polyps than do ApcMin/+ mice, but the molecular
basis behind this polyp shift has not been determined (85). Further clarification of the
underlying mechanisms that control polyp distribution might also be achieved through
careful analysis of ApcΔ14/+ and Apc580D/+ mice, which carry similar mutations (truncating
the Apc protein at amino acid 580) but appear to have different polyp distributions.
ApcΔ14/+ mice develop more colonic polyps than do ApcMin/+ mice. Apc580D/+ mice
develop a similar number of colonic polyps as ApcMin/+ mice, although direct comparison of
Apc580D/+ and either ApcΔ14/+ or ApcMin/+ mice has not been reported (75, 86).

III- Variation in extra-intestinal phenotypes
Although best known for its role to suppress colorectal tumorigenesis, APC mutations have
been seen in other tumors including breast and liver carcinomas (4). In addition, both FAP
patients and rodent models with germline Apc mutations develop extra-intestinal phenotypes
(see table 1). As with the intestinal phenotype, the underlying mechanism for variation in
extra-intestinal phenotypes between FAP patients and Apc rodent models as well as among
different Apc rodent models is not completely understood. FAP patients have increased
susceptibility to hepatic, pancreatic, thyroid and brain tumors. They also develop desmoid
tumors, dental anomalies, and congenital hypertrophy of retinal pigment epithelium. It is
important to note that the penetrance of these extra-intestinal phenotypes is variable in FAP
patients (16, 87). The basis behind this variation is not completely understood, although it
seems to correlate with the APC germline as well as the acquired somatic mutations. (16,
33).

Apc rodent models also develop some of these extra-intestinal manifestations, for example,
Apc1638N/+ mice develop desmoid tumors (72) and PIRC rats show mandibular osteoma (9).
Other phenotypes described in FAP patients have not been reported for Apc rodent models.
The short life span of most Apc rodent models could prevent the full expression of some of
these phenotypes. On the other hand, Apc rodent models manifest some other extra-
intestinal phenotypes that have not been described in FAP patients (table 1). For example,
many mouse models with germline Apc mutations develop mammary tumors. Although
APC mutations and promoter methylation have been found in up to 70% of sporadic human
breast cancers, FAP patients do not appear at an increased risk for breast tumors (88–90). In
addition, adenoacanthoma is a common type of mammary tumor that develops in Apc
mouse models but it has not been reported in humans (91). Other extra-intestinal phenotypes
described in Apc rodent models include; splenomegaly, abnormal hematopoiesis, changes in
the serum lipid profile, gonadal changes, cutaneous cysts, and thyroid abnormalities.
Differences in physiology, life span and genetic content between human, mouse and rat
could be underlying causes.

Among different Apc mouse models, some extra-intestinal phenotypes, such as anemia and
splenomegaly, seem to correlate with the severity of intestinal polyposis. In contrast,
mammary gland tumors in Apc mouse models appear to correlate with the severity of
polyposis in only a few cases, such as in the ApcMin/+ and ApcΔ474/+ models. Very few
ApcMin/+ mice develop mammary tumors, whereas ApcΔ474/+ mice develop mammary
tumors at a rate that is almost double that seen in ApcMin/+ mice (73, 91).. In contrast, there
are no reports of mammary tumor development in Apc mouse models with the most severe
intestinal polyposis (ApcΔ714, Apc1322T, and ApcΔSAMP) (32, 40, 65). Perhaps mice with
severe polyposis die too early, before mammary tumors have a chance to develop.
Apc1572T/+ mice, which develop no intestinal polyps, have a fully-penetrant mammary
tumor phenotype in females. K14-cre-ApcCKO/+ mice are a conditional model in which the
ApcΔ580 allele is expressed only in ectoderm-derived tissues including the mammary gland
(75, 92). Mammary tumors from these mice have mutations in the wildtype Apc allele that
cluster around codon 1530 consistent with the requirement of an optimal level of Wnt
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signaling for mammary tumorigenesis (38). It is likely that some of the genetic and
environmental factors previously described also account for the variability in extra-intestinal
phenotypes among different Apc rodent models.

Conclusions and future directions
APC research has benefitted greatly from different rodent models with germline Apc
mutations. However genotype/phenotype correlation of these different models is confounded
by many genetic and environmental factors. Use of standardized genetic backgrounds and
environmental conditions in different laboratories should enable reliable genotype/
phenotype analysis of these animals. This standardization will also shed light on the role of
different Apc mutations in tumorigenesis. When possible, a direct comparative analysis of
different models in the same laboratory will illuminate the contribution of many factors
described in this review to phenotypic variation in rodent models with germline Apc
mutations.
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Figure 1. Sites of Apc mutations in different Apc mouse models relative to Apc domains
Domains of Apc are indicated as follows: Hom = homodimerization, Arm = Armadillo
repeats, 15 aa = 15 amino acid repeats, 20 aa = 20 amino acid repeats, Serine-Alanine-
Methionine-Proline (SAMP)= axin binding, NLS=nuclear localization signals, and C-
terminal includes microtubule, EB1 and PDZ binding domains. The Mutation Cluster
Region (MCR) is between codons 1250 and 1464.
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Table 1

Summary of rodent models with germline Apc mutations before MCR *#

Model (Ref) Apc mutation Intestinal phenotype Polyp distribution Extra-intestinal phenotype

ApcΔe1-15/+ (34) • Complete
deletion
of entire
Apc gene

• ~160/male, ~190/
female

• Benign adenoma

• Polyps show
similar
histopathology to
those in ApcMin/+

mice

• Similar
distribution as
in ApcMin/+

mice

• Anemia

ApcΔ242/+ (55) • β-geo
gene trap
cassette
inserted
between
exons 7
and 8
leads to
stop after
codon
242

• 177 polyps

• Benign adenoma

• Polyps show
similar
histopathology as
those in ApcMin/+

mice

• Similar
distribution as
in ApcMin/+

mice

• NR

ApcΔ474/+ (86) • Insert of
duplicated
exons 7–
10 leads
to
frameshift
and stop
after
codon
474

• 122 polyps

• Benign adenoma

• Mainly small
intestine (SI)

• Some in
colon and
stomach

• Mammary tumors in
18.5% females at 3 – 5
months
(adenoacanthoma)

ApcΔ580/+ (75) • Exon 14
deletion
leads to
frameshift
and stop
after
codon
580

• 120 polyps

• Adenomas

• Mainly SI • Anemia

ApcΔ14/+ (86) • Exon 14
deletion
leads to
frameshift
and stop
after
codon
580

• 36 polyps

• Benign adenoma to
invasive carcinoma

• More polyps in
germ-free
environment

• Rectal prolapse
(61%)

• SI

• More colonic
tumors than
ApcMin/+ mice

• Mammary tumors (9%)

• Anemia

Apc580D/+ (93) • Exon 14
deletion
leads to
frameshift
and stop
after
codon
580

• Intestinal polyposis • NR • NR
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Model (Ref) Apc mutation Intestinal phenotype Polyp distribution Extra-intestinal phenotype

ApcΔ15/+ (76) • Deletion
of the last
exon
(exon 15)
including
3′UTR

• 185 polyps

• Adenoma

• Few
adenocarcinoma

• Normal crypt
maturation
gradient lost

• Mostly SI

• 77% in Ileum

• Cutaneous cysts

• Desmoid tumors

• Anemia

ApcΔ716/+ (10, 40) • Inserted
NeoR and
diphtheria
toxin α-
subunit
genes in
exon 15
leads to
stop after
codon
716

• 58–256 polyps

• Benign adenomas

• Mainly SI • Anemia

ApcMin/+ (19, 67,
79)

• Generated
by ENU
screen.

• Nonsense
mutation
after
codon
850

• 20–100 polyps

• Benign adenomas

• Malignant
transformation in
old mice in some
genetic
backgrounds

• 60% in distal
1/3 of the SI

• Few in colon

• Very few in
stomach

• Mammary tumors; 5%
old females

• Anemia

• Splenomegaly

• Abnormal
hematopoiesis

• Degeneration of
ovarian follicles

• Underdeveloped
seminiferous tubules

• Abnormal serum lipid
profile

PIRC rat (9, 94) • Nonsense
mutation
after
codon
1137

• 36 polyps and 178
microadenoma
(less than 0.5mm),
males

• 11 polyps and 35
microadenomas,
females

• Adenoma

• Adenocarcinoma
in older mice

• Tumors are in
both SI and
colon

• Benign epidermoid
cysts

• Jaw osteoma in old
females
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Table 2

Summary of rodent models with germline Apc mutations within or after MCR *#

Model (Ref) Apc mutation Intestinal phenotype Polyp distribution Extra-intestinal phenotype

Apc1309/+ (70, 95, 96) • NeoR gene
inserted

• Truncation
after codon
1309

• 33–37 polyps
on average

• Benign
adenoma

• Mainly SI

• Few, stomach and colon

• SI polyps more proximal
than ApcMin/+; only 1/3
distal

• Centrilobular
cholestasis in
liver

• Microvesicular
fatty liver

• Abnormal
serum lipid
profile

Apc1322T/+ (32, 35) • Deletion
after codon
1322

• 200 polyps

• Benign
adenomas with
severe dysplasia
in large polyps

• Polyps have
less Wnt
signaling but
more stem cells
relative to those
from ApcMin/+

mice

• Most in SI

• Few in colon & stomach

• SI polyps more proximal
(less than 20% in distal 1/3
of SI)

• Anemia

• Splenomegaly

Apc1572T/+ (38) • PGK-
Hygromycin
cassette
inserted in
sense
orientation.

• Stop at
codon 1572

None • N/A • Mammary
invasive
adenocarcinoma
in 100% of
females and
30% of males

Apc1638T/1638T (69, 97) • PGK-
Hygromycin
cassette
inserted in
sense
orientation.

• Stop at
codon 1638

None N/A • Viable
homozygous
mutant

• Post-natal
growth
retardation

• Cutaneous cysts
in nipples

• Absent preputial
glands

• Aberrant
response of
thyroid gland to
thyroid
stimulating
hormone

Apc1638N/+ (71) • NeoR gene
inserted in
antisense
orientation.

• Stop after
codon 1638

• <10 polyps

• Benign
adenoma and
adenocarcinoma

• Aberrant crypt
foci

• SI, colon and stomach

• Uniformly distributed along
SI

• Desmoid tumors

• Cutaneous cysts
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Model (Ref) Apc mutation Intestinal phenotype Polyp distribution Extra-intestinal phenotype

• Liver metastasis
in one mouse

KAD rat (68) • A non-sense
mutation in
Apc codon
2523

• No spontaneous
intestinal
tumors

• Homozygous
mutant rats
have increased
incidence and
multiplicity of
colonic tumors
when treated
with AOM-DSS
relative to
treated wildtype
rats

• Colon (AOM-DSS-induced) • Homozygous
mutant animals
are viable

*
Apc mouse models reported in this table are on C57Bl/6 background however, with different backcross isogenicity from N2 to > N20

#
 Apc rat models reported in the table are on F344 background

Apc models are mouse models unless otherwise noted

NR: not reported

NeoR: Neomycin resistance gene
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Table 3

Summary of mouse models with other germline Apc mutations *

Model (Ref) Apc mutation Intestinal phenotype Polyp distribution Extra-intestinal phenotype

ApcmNLS/mNLS (39) • Inactivating
mutations in
the two
nuclear
localization
signals (NLS)

• Increased cellular
proliferation in
intestinal epithelial
cells

• Few spontaneous
intestinal polyps

• Enhanced polyposis
in ApcmNLS/Min mice

N/A NR

ApcΔSAMP (65) • Deletion of
codons
between 1322
to 2006

• Similar to Apc1322T/+ • Similar to Apc1322T/+ • Similar to Apc1322T/+

ApcNeoR and
ApcNeoF (36, 37)

• NeoR gene in
intron 13 in
reverse
(ApcNeoR)
and forward
(ApcNeoF)
direction.

• Reduced Apc
level to 10%
and 20%,
respectively

• 0.2 polyps in
ApcNeoR

• 1 polyp in ApcNeoF

• Dysplastic
adenomas

• SI • ApcNeoR/NeoR embryos
show severe
developmental
abnormalities and die
in-utero

ApcΔ716/+/+ (98) • Mutant Apc
allele
truncated
after codon
716 inserted
as transgene
in mouse
with two
wild-type
Apc alleles

• None NR • Abdominal
hamartoma in one
mouse

ApcΔ716/Δ716/+ (98) • Mutant Apc
truncated
after codon
716 inserted
as transgene
in ApcΔ716/+

• Similar to ApcΔ716/+ • Similar to ApcΔ716/+ • Similar to ApcΔ716/+

*
Apc mouse models reported in this table are on C57Bl/6 background however, with different backcross isogenicity from N2 to > N20

All models are mouse models

NR: not reported

NeoR: Neomycin resistance gene

Cancer Res. Author manuscript; available in PMC 2014 April 15.


