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Abstract

Hsp90 isoform-selective inhibition is highly desired as it can potentially avoid the toxic side-

effects of pan-inhibition. The current study developed selective inhibitors of one such isoform,

Grp94, predicated on the chimeric and pan-Hsp90 inhibitor, radamide (RDA). Replacement of the

quinone moiety of RDA with a phenyl ring (2) was found to be better suited for Grp94 inhibition

as it can fully interact with a unique hydrophobic pocket present in Grp94. An extensive SAR for

this scaffold showed that substitutions at the 2- and 4-positions (8 and 27, respectively) manifested

excellent Grp94 affinity and selectivity. Introduction of heteroatoms into the ring also proved

beneficial, with a 2-pyridine derivative (38) exhibiting the highest Grp94 affinity (Kd = 820 nM).

Subsequent cell-based assays showed that these Grp94 inhibitors inhibit migration of the

metastatic breast cancer cell line, MDA-MB-231, as well as exhibit an anti-proliferative affect

against the multiple myeloma cell line, RPMI 8226.

Introduction

Heat shock protein 90 (Hsp90) is a molecular chaperone that plays an important role in

cellular activity by maintaining the conformational maturation of approximately 200 client

proteins. In normal cells, Hsp90 is associated with proteins responsible for trafficking, cell

signaling, protein folding, as well as the maintenance and degradation of client proteins.1,2

Hsp90 functions are modulated through three domains; the N- and C-termini and the middle

domain. The N-terminus contains an ATP-binding site which upon binding ATP closes to

induce ATP hydrolysis and provides the chaperone machinery the energy required for

protein folding. The middle domain binds the γ-phosphate of ATP and is responsible for

interactions with client proteins. The C-terminus controls Hsp90 homodimerization and also

contains a nucleotide-binding site that allosterically regulates the N-terminal domain.3–9 In

cancer cells, Hsp90 is overexpressed and involved in numerous pathways required for the

rapid growth and proliferation of cancer cells. As a consequence of its essential role in so

many processes, Hsp90 is a highly sought after therapeutic target, as disruption can

simultaneously affect multiple pathways required for cancer cell growth.10–12, 42–50

*Corresponding author; Phone: (785) 864-2288. Fax: (785) 864-5326. bblagg@ku.edu.

Supplementary Data
Supplementary data associated with this article can be found in the online version at

NIH Public Access
Author Manuscript
Bioorg Med Chem. Author manuscript; available in PMC 2015 August 01.

Published in final edited form as:
Bioorg Med Chem. 2014 August 1; 22(15): 4083–4098. doi:10.1016/j.bmc.2014.05.075.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Hsp90 N-terminal inhibition has been shown to be an effective therapeutic strategy as 17

inhibitors of the ATP-binding site have advanced to clinical trials for the treatment of

various cancers. Despite the number of N-terminal inhibitors in clinical trials, detrimental

activities that include cardiovascular, ocular, and/or hepatotoxicities, amongst others have

been observed for many of these investigational new drugs.13–15 Unfortunately, the N-

terminal ATP-binding site is >85% identical across all four Hsp90 isoforms, which includes

cytosolic Hsp90α and β, the endoplasmic reticulum-localized isoform, Grp94, and the

mitochondrial chaperone, Trap1.16 Since pan-inhibition of all Hsp90 isoforms can result in

the degradation of more than 200 Hsp90-dependent client proteins, it is likely that toxic side

effects cannot be overcome by traditional approaches that focus upon pan-Hsp90 inhibition.

Recently, it was shown that Hsp90α is the isoform responsible for maturation of the hERG

channel, and is therefore more likely responsible for the clinically observed cardiotoxicity.17

Consequently, new approaches toward Hsp90 inhibition are needed in an effort to refine the

number of Hsp90-dependent proteins as well as to escape the deleterious consequences of

pan-Hsp90 inhibition. The development of isoform-selective Hsp90 inhibitors represents an

attractive strategy for the discovery of such attributes.

Compared to cytoplasmic Hsp90 α and β, the biological role manifested by glucose

regulated protein-94 kDa (Grp94) is far less explored.16 Preliminary studies on Grp94

indicate that many of its client proteins are involved in intercellular communication and

adhesion (i.e. Toll-like receptors, myocilin, integrins, immunoglobulins).18 These properties

suggest that Grp94 inhibition may be useful for the treatment of specific disease states. For

example, since Grp94 plays an integral role in the trafficking of integrins to the cell

membrane, it represents a potential target for the development of anti-metastatic agents.19

This is further illustrated by recent work showing that Grp94 inhibition (via siRNA

knockdown) led to inhibition of cell proliferation, migration and metastasis in two

aggressive breast cancer cell lines (MDA-MB-231 cells and reactive oxygen species

resistant (ROS) MCF-7 cells).20 Grp94 has also been ascribed a role in glaucoma due to its

involvement in mutant myocilin clearance.21 In addition, Grp94 was found to be

overexpressed in multiple myeloma as a consequence of endoplasmic reticulum stress,22–24

in fact, Grp94 inhibition was shown to decrease the proliferation rate of multiple myeloma

cells.25

Despite the highly homologous nature of Hsp90 isoforms, Grp94 possesses a five-amino

acid insertion (QEDGQ) between residues 182 and 186, which translates into a small pocket

that can be accessed by Grp94 inhibitors.29 This insertion does not exist in other Hsp90

isoforms, and therefore creates a unique hydrophobic environment within the ATP-binding

domain that can lead to selective inhibition.26–29 In 2009, a novel mode of binding was

identified for the radicicol/geldanamycin chimeric inhibitor, radamide (RDA)30,31,37–40

bound to Grp94 (Figure 1). Co-crystal structures of RDA bound to both Hsp90 and Grp94

(Figure 1)30 indicated two key elements were needed to target the hydrophobic binding

pocket and to selectively bind Grp94. The first proposed modification included replacement

of the quinone ring with a phenyl substituent that interacts favorably with the hydrophobic

pocket exclusive to Grp94. The second requirement for binding to Grp94 was projection of

the phenyl group into this hydrophobic environment. Such observations led to the
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development of BnIm, which demonstrated good Grp94 inhibitory activity in a number of

assays.26 However, little effort towards the development of RDA as a Grp94 inhibitor has

been pursued, until now. Therefore, the goal of this project was to further evaluate RDA as a

Grp94 inhibitor and to establish structure-activity relationships for this class of inhibitors.

Results and Discussion

Optimization of the RDA scaffold required several modifications to access the unique

hydrophobic pocket within Grp94. The first investigation needed to determine the optimal

linker length between the amide and the aromatic ring that projects into the hydrophobic

pocket (compounds 2–5) as suggested by Figure 1. This is necessary to determine how deep

these molecules can project into the pocket and to provide a scaffold upon which

substituents can be readily incorporated for elucidation of structure-activity relationships.

Substitutions around the aryl ring would then probe for beneficial interactions with the

peptide binding pocket as outlined in Scheme 1. These observations led to the design and

synthesis of compounds that would provide an initial set of data to direct subsequent

optimization efforts. Since RDA bound to Grp94 (Scheme 1) indicated an extended π-

stacking environment with Phe199 and Tyr200, naphthyl, indole, and indoline scaffolds

were also pursued to take advantage of potential interactions. These aryl systems could then

be modified to contain additional substitutions about the ring for further access into the A
and B pockets. Due to π-π interactions with Phe199 and Tyr200, probing the electronic

nature of the aryl ring via the addition of heteroatoms that could enhance interactions was

also investigated and led to the identification of additional compounds. Lastly, since the cis-

amide conformation was found important for binding Grp94 (Figure 1), tertiary amides were

prepared to promote the cis-conformation.

Projection of the phenyl ring into the hydrophobic binding region (Scheme 1) required

optimization of the linker length between the amide and phenyl groups, leading to the

synthesis of 2–5 (Figure 2). Molecular modeling studies indicated that phenyl amide 2
would provide the ideal linker for binding Grp94. In an effort to validate this model and to

support this hypothesis, linkers between the amide and the phenyl ring were synthesized and

analyzed for inhibitory activity. In the event, TBS-protected acid 1, was coupled with the

corresponding aniline, benzylamine, phenethylamine, or phenyl hydrazine, utilizing 1-

ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDCI) and pyridine in dichloromethane, to

generate the corresponding amides . These compounds were subsequently treated with

tetrabutylammonium fluoride (TBAF) to unmask the phenols, 2–5, in good yields. These

compounds were evaluated for their ability to bind Grp94 via a competitive binding

fluorescence polarization assay (Figure 2).32,33 As suggested by computational studies,

phenyl amide 2, was found to contain the optimal linker as compared to benzyl amide,

phenethyl amide, and hydrazine amide (3, 4, and 5, respectively). As described earlier, RDA

analogs appear to manifest π-π interactions with Phe199 and Tyr200, therefore, compound

6, containing a cyclohexyl ring in lieu of the phenyl ring, was synthesized and evaluated. As

expected, this compound demonstrated a decrease in binding affinity (compound 2 Grp94

Kd, 20.5 µM, compound 6 Grp94 Kd, 35.2 µM), which was in accord with our predictive

model that supported π-π stacking interactions between Grp94 and compound 2. These
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studies validated compound 2 as our starting point for further development and allowed

further interrogation of this scaffold.

Functionalization of phenyl amide 2 at the 2-, 3-, and 4-positions was pursued to explore the

space surrounding the phenyl ring and to identify key interactions by the inclusion of

electron donating and withdrawing groups. As seen in Scheme 1, there are two main pockets

(A and B) within the hydrophobic binding region. Molecular modeling indicated that the 2-

position of the phenyl ring is directed towards pocket A, whereas the 3- and 4-positions

point at B. Substitutions at these positions could also provide information about the potential

for π-stacking and hydrogen bonding interactions.

Functionalization of 2 at the 2-position on the phenyl ring was pursued with the goal of

projecting substituents into pocket A and/or altering the electronic nature for additional π-π

interactions. EDCI-mediated coupling with the corresponding anilines, 7a–15a, followed by

silyl-deprotection, generated amides 7–15 in good yields. Evaluation of 7–15 by the

fluorescence polarization assay demonstrated enhanced binding affinities for these

compounds (≤20% tracer bound) as compared to the unsubstituted lead compound. These

substitutions illustrated that both electronic and steric effects influence the ability of these

amides to bind Grp94, and the 2-chloro exhibited the highest affinity (8, 0.1% tracer bound).

A trend is observed in Figure 3 which suggests that substituents larger than chlorine (for

example, 2-bromo and 2-trifluoromethyl, compounds 9 and 11, respectively) exhibit a size-

dependent decrease in binding affinity. The 2-fluoro derivative, 7, also exhibited a decrease

in binding affinity, which may result from its inability to fill this hydrophobic environment.

However, this could also be a consequence of the electronic effects manifested by fluorine,

which prevents the amide bond from adopting the cis-conformation.34 Electron donating

groups, hydrogen bond acceptors and hydrogen bond donors all exhibit a decreased affinity

for binding Grp94. Ultimately, it was discovered that a chlorine atom at the 2-position

(compound 8) proved optimal for binding to pocket A.

Additional structure-activity relationships were pursued by the incorporation of substitutions

at the 3-position of the phenyl ring. As shown in Scheme 1, the 3-position of the phenyl ring

provides access to pocket B and therefore, substitutions were incorporated to elucidate the

size of this pocket, the electronic nature that can enhance π-π stacking interactions, and

potentially, hydrogen bonding interactions with Gly196. This led to the synthesis of 3-

substituted amides by an EDCI-mediated coupling of acid 1 with the corresponding anilines,

16a–24a, followed by silyl-deprotection to give the desired amides, 16–24, in good overall

yields. As seen in Figure 4, these substitutions followed a similar trend for Grp94 binding as

observed for the 2-position, as chlorine at the 3-position (17) displayed the highest binding

affinity for Grp94. In comparison, larger (compounds 18–20) and smaller (compound 16)

substituents resulted in diminished binding. In contrast to the 2-position, incorporation of a

hydroxyl or amino group at the 3-position (compounds 21 and 22, respectively) led to

increased affinity for Grp94 (potentially through a gained hydrogen bonding interaction with

Gly196). Both amino and N-acetamides manifested decreased binding affinity as compared

to the phenol, as they are known to form weaker hydrogen bonds. Ultimately, the 3-chloro

derivative proved to bind Grp94 more efficiently than the 3-phenol, indicating a preference

for hydrophobic over hydrogen bonding interactions at this location.
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The 4-position of the phenyl ring was also explored by the introduction of electron donating

and withdrawing groups. As indicated in Scheme 1, the 4-position appears optimal for

directing substituents into pocket B, however, a potential hydrogen bonding interaction with

Gly196 could also be rationalized. Similar to 3-substitutions, the 4-position was investigated

for steric constraints in pocket B, as well as elucidation of the electronic nature for π-π

interactions with Phe199 and Tyr200. Compounds 25–37 were synthesized via EDCI-

mediated coupling of TBS-acid 1 with the corresponding anilines, 25a–37a, followed by

silyl-deprotection to provide amides 25–37 in good overall yields. When evaluated for their

ability to bind Grp94, the 4-position followed a very clear SAR trend with particular

sensitivity to sterics (as shown in Figure 5). In contrast to the 2- and 3-positions, the 4-

position appears to accommodate larger functionalities, as illustrated by the inclusion of

bromine at the 4-position (compound 27), which displayed excellent affinity for Grp94. The

enhanced affinity for 27 was anticipated as the 4-bromine can project well into the

hydrophobic pocket of area B (Scheme 1). A decrease in binding affinity was observed (as

compared to 27) for both smaller substitutions (4-fluoro and 4-chloro, compounds 25 and 26
respectively) and larger substitutions (4-iodo, 4-trifluoromethyl, and 4-isopropyl,

compounds 28, 29, and 37, respectively). Similar to the trends observed for the 2- and 3-

positions, electron withdrawing groups at the 4-position also displayed higher binding

affinity than electron donating groups. A hydrogen bond donor at the 4-position also

displayed good binding affinity (4-hydroxyl, compound 32), and this affinity could be

altered by conversion to the methyl ether (34), which manifested decreased affinity.

Compound 35, containing a nitrile group at the 4-position, also displayed enhanced Grp94

binding, which may be attributed to its electron withdrawing ability as well as its ability to

serve as a hydrogen bond acceptor. As predicted by molecular modeling studies which

clearly outlined the A and B pockets as important for binding, both the 2- and 3-substituted

compounds (8 and 17, respectively) exhibited the greatest influence on Grp94 binding as

compared to the 4-substituted derivatives (27).

Preliminary molecular modeling studies (Scheme 1) indicated that one explanation for the

enhanced activity of the phenyl amide scaffold was due to its potential to π-stack with the

electron-rich rings of Phe199 and Tyr200, suggesting that π-stacking with these residues

could be enhanced by alteration of the electron density on the phenyl ring. Structure-activity

relationships at the 2-, 3-, and 4-positions supported this hypothesis as decreased electron

density (via electron withdrawing groups) led to enhanced binding. Further validation of this

hypothesis prompted the introduction of heteroatoms into the aromatic ring to enhance these

π-stacking interactions.

Investigation of the influence that electron withdrawing groups exhibit led to a series

heterocycles that exhibited decreased electron density within the aromatic ring. Sulfur

containing 5-membered heterocycles (46–48) were synthesized to represent a ring similar in

size as the corresponding 6-membered analogs (38–45), while manifesting some electron

deficiency. As described previously, these analogs were generated by an EDCI-mediated

coupling of TBS-protected acid 1 with corresponding amines 38a–48a, followed by silyl-

deprotection to afford the desired amides, 38–48. Evaluation of the pyridine analogs showed

that a nitrogen atom at the 2-position (38) resulted in the highest binding affinity, followed
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by the 3- (39) and 4-incorporation (40), respectively (as shown in Figure 6). Molecular

modeling studies suggest this trend was due at least in part by the ability of the nitrogen

atom to project towards the open channel, while simultaneously maintaining optimal

orientation for π-stacking with Phe199 and Tyr200. However, when the nitrogen was moved

to the 3-position (40), nitrogen is shifted towards the channel, resulting in less favorable π-

stacking interactions. The 4-pyridine derivative (40) demonstrated the lowest binding

affinity due to its inability to access the open channel, and instead was forced into

unfavorable interactions with the hydrophobic binding pocket of B. Pyridazine 42 was

prepared to determine whether the incorporation of 2- and 3-containing nitrogen atoms

could simultaneously exist while providing π-π interactions. Unfortunately 42 did not

improve binding affinity, suggesting that the inclusion of a nitrogen atom at the meta-

position is not favored. Subsequent analogs that contained the 2-pyridine nitrogen and other

nitrogen locations (41–45, Figure 6) were explored, but unfortunately, did not improve

affinity. In contrast, thiazole 46 and thiadiazoles 47 and 48 displayed good binding affinity

and reinforced the importance of nitrogen incorporation at the 2-position.

An understanding of this scaffold’s ability to selectively bind Grp94 required binding

affinity evaluation to another isoform, Hsp90α. As shown in Figure 8, phenyl amide 2 did

not demonstrate selectivity for Grp94 (~1:1), illustrating the need to optimize this scaffold

for greater selectivity. However, substitution at the 2-, 3-, and 4-positions on the phenyl ring

(compounds 8, 17, and 27 respectively) did enhance selectivity for Grp94. Specifically,

compound 27 showed the greatest selectivity (~27-fold at 25 µM), indicating the importance

of substituents at the 4-position for selective inhibition, while 8 and 17 manifested 8- and

25-fold selectivity, respectively. It was also observed that heterocycles 38, 46 and 47
exhibited selectivity, albeit to a lesser extent than 8, 17, and 27. In an effort to further

improve Grp94-selective binding, tertiary amides 49–53 were developed. These compounds

were designed to enhance isomerization to the cis-amide conformation, by making the cis-

conformation lower in energy, which appears preferred for Grp94-inhibition (Figure 1).

Compounds 49, 50 and 53 were prepared by an EDCI-mediated coupling of TBS-protected

acid 1 with anilines 49a, 50a, and 53a, followed by silyl-deprotection to afford the desired

amides, 49, 50, and 53. 51 and 52 required an alternative method for their preparation.

Compound 51 was generated by conversion of the benzyl-protected acid 1a to the

corresponding acid chloride, followed by coupling with aniline 51a and subsequent

debenzylation to afford desired amide 51 (Figure 7). Compound 52 was prepared by

catalyst-mediated coupling of aldehyde 1b with nitrosobenzene, followed by silyl-

deprotection to afford amide 52 (Figure 7).35 Unfortunately, compounds 49–51 and 53
exhibited little to no improvement in Grp94-selectivity (Figure 8), while simultaneously

manifesting decreased binding affinities (Figures 7 and 8). In contrast, compound 52, which

contains an N-hydroxyl, demonstrated a significant increase in selectivity, however, at the

consequence of lower affinity (Figures 7 and 8).

Further optimization of this scaffold was pursued to develop more potent and selective

Grp94 inhibitors by combining the features identified above to produce 54–65, which

contain the phenyl amide, an ortho-pyridine, a thiazole, or a thiadiazole ring along with

substitution patterns based on earlier studies (Figure 9). These compounds were also
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synthesized by the EDCI-mediated coupling of acid 1 with anilines 54a–65a. Subsequent

silyl-deprotection of the resulting amides afforded 54–65. Unfortunately, 54–58, 60, 61, and

63–65 were unable to exhibit Grp94 binding affinity similar to 8, 17, 27 or 38. Some of the

compounds (60, 61, and 63) exhibited a slight enhancement for Grp94 selectivity, but also

demonstrated lesser affinity. However, 58, 59 and 62 demonstrated a high Grp94 binding

affinity (≤1% tracer bound), while also manifesting good selectivity (4–18% tracer bound

for Hsp90α). Despite these characteristics, compounds 54–65 did not manifest greater

binding affinity or selectivity for Grp94 than previously prepared analogs.

Compounds 8, 17, 27, 38, 46 and 47 were evaluated for determination of their respective Kd

values for Grp94 binding. Kd’s were determined in a manner similar to the 25 µM

fluorescence polarization screen, wherein compounds were incubated with Grp94 and FITC-

GDA for 24 h at increasing concentrations. From the data, the Kd values for 8, 17, 27, 38,
46, and 47 were determined as shown in Table 1. In accord with earlier studies, substitutions

at the 2- and 4-positions (8 and 27, respectively) manifested better activity than the 3-

position (17). The importance of a nitrogen atom at the 2-position was also confirmed as 38
manifested the highest affinity (0.82 µM), while both 46 and 47 also displayed less affinity

(1.08 µM and 1.54 µM, respectively). Compounds 38 and 46 manifested the highest affinity

for Grp94, and therefore were used in subsequent cell-based assays.

Inhibition of Migration and Proliferation of MDA-MB-231 cells

Inhibition of Grp94 has been linked to decreased metastasis, migration and proliferation in

the highly metastatic breast cancer cell lines, MDA-MB-231 and ROS-resistant MCF-7.20

Specifically, silencing Grp94 expression caused almost complete inhibition of migration as

well as a signficant decrease in proliferation of the highly aggressive metastatic breast

cancer cell line, MDA-MB-231.20 While compounds 38 and 46 manifested modest anti-

proliferative activities against MDA-MB-231 cells (38: IC50=12 µM, 46: IC50=16 µM), they

did demonstrate potent anti-migratory properties against the same cell line. This was

determined by employing a wound healing assay where a monolayer of cells was grown in a

12-well plate format. In each well, two wounds were created in which cells can migrate and

heal the wound. Migration was recorded at 0 h, 16 h, and 24 h using a digital camera

mounted microscope. In addition, each compound was tested at 2.5 µM (Figure 10) up to 25

µM (Supporting Information, Figures S1–S2) where they demonstrated no cytotoxicity. The

results at 2.5 µM are shown in Figure 10.

Compounds 38 and 46 were evaluated in this assay as they manifested the most potent (Kd

values, Table 1) Grp94 inhibition while also manifesting good selectivity for Grp94 binding

(Figure 8). As shown in Figure 10, they inhibited cell migration consistent with Grp94

inhibition, which was also in accord with prior studies by Verrax and coworkers20, wherein

they showed that Grp94 knockdown led to migratory inhibition of MDA-MB-231 cells. The

ability of these compounds to inhibit migration mirrored the trend observed in the

fluorescence polarization assay, where compound 38 manifested a greater anti-migratory

effect than compound 46. The anti-migratory effect of these compounds was determined to

be dose-dependent (Supporting Information, Figures S1 and S2). Ultimately, the wound-
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healing assay illustrates the potential for Grp94-inhibitors to be used in the treatment of

highly metastatic breast cancers, while manifesting minimal toxicity.

Compounds 38 and 46 demonstrated the ability to bind Grp94 in MDA-MB-231 cells. The

anti-Grp94 (9G10) antibody recognizes the open conformation of Grp94, and when an

inhibitor is bound to this region, Grp94 switches to the closed conformation. Therefore, the

9G10 antibody does not recognize Grp94 bound to an inhibitor.26,37 Compounds 38 and 46
demonstrated a dose-dependent effect by inducing a conformational change in Grp94, and

thus, prevented the 9G10 antibody from recognizing and immunoprecipitating Grp94 from

MDA-MB-231 cells (as shown in Figure 11). These findings correspond well with the

observed anti-proliferative and anti-migratory concentrations, indicating these effects

parallel Grp94-inhibition.

Previous studies have shown that Grp94-inhibition decreases insulin-like growth factor-II

(IGF-II) secretion, which also plays an important role in the proliferation and migration of

certain cancers.26,51,52 Compounds 38 and 46 decreased secretion of the Grp94-dependent

client protein, IGF-II, as shown in Figure 12. The dramatic decrease in IGF-II secretion was

observed at concentrations that parallel the concentrations needed to exhibit anti-migratory

activity.

Compounds 38 and 46 also demonstrated selective Grp94-inhibition by Western blot

analysis of Hsp90 client proteins Akt and Cyclin D1 from MDA-MB-231 cell lystates

(Figure 13). Degradation of Hsp90-dependent cytosolic clients, Akt and Cyclin D1, was not

observed at a high concentration of compound 38 (60 µM), indicating other Hsp90 isoforms

were not affected at the concentration needed to exhibit anti-migratory activity (2.5–25 µM).

Compound 46 demonstrated modest client-protein degradation at 80 µM, however, this

effect was observed at concentrations significantly higher than the concentration needed for

anti-migratory activity. This finding along with the observed effects of utilizing the 9G10

antibody (Figure 11) and decreased IGF-II secretion (Figure 12) indicate these compounds

inhibit Grp94 at concentrations relevant to the observed anti-migratory activity.

Anti-proliferative effect on RPMI 8226 cells

Recently, elevated levels of Grp94 were linked to the accelerated proliferation of multiple

myeloma cells,22–24 identifying Grp94 as a potential therapeutic target for the treatment of

myeloma.25 The RPMI 8226 multiple myeloma cell line was shown to be particularly

sensitive to Grp94 inhibition, which prompted investigation of compounds 38 and 46 for

their anti-proliferative activity against this cell line.

As anticipated, the two most potent compounds for binding Grp94 (Table 1) also exhibited

potent anti-proliferative properties against the RPMI 8226 cell line (IC50 <10 µM).

Interestingly, 38 displayed a slightly lower anti-proliferative effect (9.12 µM) than 46
despite its superior binding affinity. These compounds were then evaluated for their ability

to selectively inhibit Grp94 in RPMI 8226 cells in a similar fashion seen for MDA-MB-231

cells.
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Compounds 38 and 46 did demonstrate an ability to bind Grp94 in RPMI 8226 cells in a

dose-dependent manner. This was first determined by use of the 9G10 antibody to recognize

Grp94 in immunoprecipitated RPMI8226 cell lysates treated with compounds 38 and 46
(Figure 14). These data indicate that compounds 38 and 46 bind Grp94 at concentrations

needed to inhibit the proliferation of RPMI 8226 cells.

Compounds 38 and 46 also decreased secretion of the Grp94-dependent client protein, IGF-

II; at concentrations similar to the observed anti-proliferative activity manifested by both

compounds (Figure 15). Along with the use of the 9G10 antibody (Figure 14), this data also

suggests that the observed anti-proliferative activity of compounds 38 and 46 against RPMI

8226 cells is attributed to the inhibition of Grp94 in RPMI 8226 cells.

Compounds 38 and 46 also demonstrated that their anti-proliferative activities are likely due

to selective Grp94 inhibition. This was illustrated by the inability of compound 38 to

degrade Hsp90 client-proteins Akt and cyclin D1 (Figure 16) at concentrations above and

below its respective anti-proliferative IC50 value. Compound 46 demonstrated modest

client-protein degradation at concentrations five-fold higher than its IC50, indicating a

slightly lower selectivity for Grp94. However, this data does indicate that compounds 38 and

46 inhibit Grp94 in RPMI 8226 cells, which results in their anti-proliferative activity. The

ability of this scaffold to selectively inhibit Grp94 and manifest anti-proliferative activity

against the RPMI 8226 multiple myeloma cell line demonstrates the therapeutic potential of

Grp94 inhibition for the treatment of these cancers.

Conclusion

Using the previously reported co-crystal structure of RDA bound to Grp94, a series of RDA

analogs were designed, synthesized, and evaluated for their ability to inhibit Grp94. A

comprehensive SAR study of this scaffold indicated several key features necessary for

selective inhibition of Grp94 (Figure 17). Initial optimization of the linker led to the

identification of phenyl amide, 2, manifesting the highest Grp94 affinity (blue, Figure 17).

This finding demonstrated both the importance of a short linker, as well as the presence of

an aromatic ring for π-stacking interactions. Substituents at the 2- and 4-positions (pink and

green, Figure 17) of the phenyl amide demonstrated increased Grp94 binding affinity and

selectivity, with chlorine and bromine substituents identified as optimal (Table 1,

compounds 8 and 27, respectively). Substitution at the 3-position (orange, Figure 17) also

proved important; however, both potency and selectivity were decreased relative to

substitutions at the 2- and 4-positions (Table 1, compound 17). In contrast, modifications to

the 4-position resulted in the greatest effect on selectivity, as most substituents at this

position manifested enhanced selectivity. Decreasing the electron density of the aromatic

ring via the introduction of heteroatoms (38, 46, and 47) not only increased binding affinity,

but also increased selectivity. However, this finding was specific to the incorporation of a

nitrogen atom at the 2-position (Figure 6). The 2-pyridine ring was successfully incorporated

with the 4-bromine or 3-chlorine derivative to provide potent and selective Grp94-inhibitors.

Subsequent in vitro analysis of 38 and 46 further validated the therapeutic potential for

Grp94 inhibitors as well as validated selective Grp94-inhibition. The ability of these

compounds to inhibit Grp94 was correlative with their anti-migratory activity against the
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highly metastatic breast cancer cell line, MDA-MB-231, as well as anti-proliferative activity

against the multiple myeloma cell line, RPMI 8226.

General Experimental Methods

Fluorescence Polarization

Assay buffer (25 µL, 20 mM HEPES pH 7.3, 50 mM KCl, 5 mM MgCl2, 1 mM DTT, 20

mM Na2MoO4, 0.01% NP-40, and 0.5 mg/mL BGG) containing desired compound or GDA

were plated in 96-well plates (black well, black bottom) at the indicated final concentrations

in DMSO (1% DMSO final concentration).32 Recombinant cGrp94 and FITC-GDA were

then added (10 and 6 nM, respectively). Plates were incubated with rocking for 24 h at 4°C.

Fluorescence was read using excitation and emission filters of 485 and 528 nm, respectively.

Percent FITC-GDA bound was determined by using the DMSO millipolarization unit (mP)

as the 100% bound value and the mP value of free FITC-GDA as the 0% bound value. Kd

values were calculated from separate experiments performed in triplicate using GraphPad

Prism.

Anti-proliferation Assays

RPMI 8226 and MDA-MB-231 cells were maintained in RPMI1640 (Cellgro) and DMEM

(Cellgro), respectively, supplemented with nonessential amino acids , L-glutamine (2 mM),

streptomycin (500 µg/mL), penicillin (100 units/mL) and 10% FBS. Cells were grown to

confluence in a humidified atmosphere (37°C, 5% CO2), seeded (2000/well, 100 µL) in 96-

well plates, and allowed to attach overnight. Compound at varying concentrations in DMSO

(1% DMSO final concentration) was added, and cells were returned to the incubator for 72

h. After 72 h, the number of viable cells was determined using an MTS/PMS cell

proliferation kit (Promega) per the manufacturer’s instructions. Cells incubated in 1%

DMSO were use as 100% proliferation, and values were adjusted accordingly. IC50 values

were calculated from separate experiments performed in triplicate using GraphPad Prism.

Wound-Healing Assay

Cells were grown to confluence in a humidified atmosphere (37°C, 5% CO2), seeded

(200000/well, 1 mL) in 12-well plates, and allowed to grow to a confluent monolayer (24 h)

at 37°C and 5% CO2. Each well was then scratched with a 200 µL sterile pipet tip,

photographed with an Olympus IX-71 microscope (60x objective, time=0 h), the respective

compound solutions (2.5 µL, final DMSO concentration is 0.25%) were added, and the

plates were placed back in the incubator. Cell migration was recorded after 16 and 24 h of

incubation with compound via photographs taken by the Olympus IX-71 microscope. All

experiments were run in quadruplicate on two different days.

Western Blotting

MDA-MB-231 and RPMI 8226 cells were plated in 6-well plates and treated with high and

low concentrations of compounds 38 and 46, as well as 15 µM RDC in DMSO (0.25%

DMSO final concentration), or DMSO only for 24 h. Cells were harvested in cold PBS and

lysed in mammalian protein extraction reagent (MPER, Pierce) and protease inhibitors

(Roche) on ice for 15 min. Lysates were clarified at 15,000 rpm for 15 min at 4°C. Protein
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concentrations were determined with the Pierce BCA assay kit per the manufacturer’s

instructions. Equal amounts of protein (20 µg) were electrophoresed under reducing

conditions, transferred to a PVDF membrane, and immunoblotted with the corresponding

specific antibodies. The corresponding amount of media necessary to maintain equal actin

levels was also electrophoresed under reducing conditions, transferred to a PVDF

membrane, and immunoblotted with the IGF-II antibody. Membranes were incubated with

an appropriate horseradish peroxidase-labeled secondary antibody, developed with

chemiluminescent substrate, and visualized.

Grp94 Immunoprecipitation

Detergent lysates of the indicated cells were immunoprecipitated with 9G10 monoclonal

anti-Grp94 (Enzo Life Sciences) followed by protein G-MagBeads (GenScript) as

previously described.37

Molecular Modeling

Surflex-Dock in Sybyl v8.0 was used for molecular modeling and docking studies. The co-

crystal structure of RDA bound to Grp94 was utilized for all docking experiments.30 The

docked molecules were locked into the cis-amide conformation and utilized with 10

different starting conformations while rotation of the rotatable bonds was unrestricted.

Visual interpretation and figure preparation were then carried out in Pymol.

Chemistry General
1H NMR were recorded at 400 or 500 MHz (Bruker DRX-400 Bruker with a H/C/P/F QNP

gradient probe) spectrometer and 13C NMR spectra were recorded at 125 MHz (Bruker

DRX 500 with broadband, inverse triple resonance, and high resolution magic angle

spinning, HR-MA probe spectrometer); chemical shifts are reported in δ (ppm) relative to

the internal chloroform-d (CDCl3, 7.27 ppm). FAB (HRMS) spectra were recorded with a

LCT Premier (Waters Corp., Milford, MA). The purity of all compounds was determined to

be >95% purity as determined by 1H NMR and 13C NMR spectra, unless otherwise noted.

The most active five compounds were verified for >95% purity by HPLC analyses. TLC was

performed on glass backed silica gel plates (Uniplate) with spots visualized by UV light. All

solvents were reagent grade and, when necessary, were purified and dried by standard

methods. Concentration of solutions after reactions and extractions involved the use of a

rotary evaporator operating at reduced pressure.

General Amide Formation for Compounds 2–50 and 53–65

To a solution of acid 1 (0.05 mmol), EDCI·HCl (0.12 mmol), and pyridine (0.13 mmol) in

CH2Cl2 (1 mL) was added the corresponding aniline (0.1 mmol) and stirred at room

temperature under Ar overnight. Upon complete consumption of acid 1, the solvent was

removed in vacuo and redissolved in THF (1 mL). The reaction mixture was then treated

with TBAF (0.2 mmol) and stirred for 30 min, and upon completion saturated aqueous

NH4Cl was added and extracted 3x with EtOAc. The combined organic layers were then

dried over Na2SO4, filtered, and concentrated in vacuo to give a crude oil. The residue was

purified via flash chromatography (SiO2, 49:1, CH2Cl2:MeOH) to afford the desired amide.
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methyl 3-chloro-4,6-dihydroxy-2-(3-oxo-3-(phenylamino)propyl)benzoate (2)—
15 mg, 86% yield, white solid. 1H NMR (400 MHz, CDCl3): δ 11.23 (s, 1 H), 7.53 (d, J =

7.91 Hz, 2 H), 7.34 (t, J = 7.66 Hz, 2 H), 7.12 (t, J = 7.36 Hz, 1 H), 6.59 (s, 1 H), 6.33 (s, 1

H), 3.97 (s, 3 H), 3.50 (dd, J = 5.76, 10.15 Hz, 2 H), 2.66–2.59 (m, 2 H). 13C NMR (125

MHz, CDCl3): δ = 170.43, 169.99, 162.91, 156.28, 141.66, 137.73, 129.10 (2 C), 124.40,

119.72 (2 C), 113.92, 106.81, 102.94, 52.75, 36.73, 28.81. HRMS (FAB) m/z [M+Na+] for

C17H16ClNO5Na: 372.0609, found 372.0609.

methyl 2-(3-(benzylamino)-3-oxopropyl)-3-chloro-4,6-dihydroxybenzoate (3)—
30 mg, 83% yield, white solid. 1H NMR (500 MHz, CDCl3): δ 7.32 – 7.21 (m, 5H), 6.44 (s,

1H), 4.40 (d, J = 4.7 Hz, 2H), 3.86 (s, 3H), 3.44 – 3.29 (m, 2H), 2.50 – 2.33 (m, 2H). 13C

NMR (125 MHz, CDCl3) δ 171.98, 170.68, 162.51, 157.03, 141.87, 138.12, 127.81, 127.60,

114.22, 106.34, 102.63, 52.53, 49.78, 43.73, 35.65, 28.92. HRMS (FAB) m/z [M+Na+] for

C18H18ClNO5Na: 386.0874; found, 386.0877.

methyl 3-chloro-4,6-dihydroxy-2-(3-oxo-3-(phenethylamino)propyl)benzoate
(4)—17 mg, 90% yield, white solid. 1H NMR (400 MHz, CDCl3): δ 11.29 (s, 1 H), 7.32 (dd,

J = 6.63, 8.10 Hz, 2 H), 7.26–7.23 (m, 1 H), 7.22–7.17 (m, 2 H), 6.57 (s, 1 H), 5.48 (t, J =

5.95 Hz, 1 H), 3.91 (s, 3 H), 3.56 (q, J = 6.58 Hz, 2 H), 3.40–3.34 (m, 2 H), 2.84 (t, J = 6.84

Hz, 2 H), 2.41–2.35 (m, 2 H). 13C NMR (125 MHz, CDCl3): δ 171.92, 170.64, 162.90,

156.43, 141.74, 138.72, 128.77, 128.71, 126.63, 113.90, 106.64, 102.80, 52.58, 40.63,

35.81, 35.61, 29.05. HRMS (FAB) m/z [M+Na+] for C19H20ClNO5Na: 400.0922, found

400.0931.

methyl 3-chloro-4,6-dihydroxy-2-(3-oxo-3-(2-phenylhydrazinyl)propyl)benzoate
(5)—17 mg, 94% yield, orange solid. 1H NMR (400 MHz, CD3OD, major conformer): δ

7.23–7.13 (m, 2 H), 6.83–6.74 (m, 3 H), 6.41 (s, 1 H), 3.92 (s, 3 H), 3.36–3.28 (m, 2 H),

2.59–2.53 (m, 2 H); 13C NMR (125 MHz, CD3OD, major conformer): δ 174.8, 171.6, 161.5,

159.0, 150.0, 142.1, 130.2, 130.0, 121.0, 115.0, 114.1, 113.3, 109.5, 103.2, 52.9, 34.3, 29.1.

HRMS (FAB) m/z [M+Na+] for C17H17ClN2O5Na: 387.0724; found, 387.0723.

methyl 3-chloro-2-(3-(cyclohexylamino)-3-oxopropyl)-4,6-dihydroxybenzoate
(6)—33 mg, 88% yield, white solid. 1H NMR (500 MHz, CDCl3) δ 6.41 (s, 1H), 3.89 (s,

3H), 3.68 (s, 1H), 3.40 – 3.24 (m, 2H), 2.40 – 2.26 (m, 2H), 1.91 – 1.76 (m, 2H), 1.64 (dt, J

= 13.8, 3.8 Hz, 2H), 1.61 – 1.52 (m, 1H), 1.39 – 1.25 (m, 2H), 1.07 (ddd, J = 19.2, 9.8, 3.9

Hz, 3H). 13C NMR (125 MHz, CDCl3) δ 171.44, 170.78, 162.49, 157.48, 142.07, 114.43,

106.04, 102.51, 52.46, 49.40, 48.22, 35.90, 33.07, 28.92, 25.46, 24.83. HRMS (FAB) m/z

[M+Na+] for C17H22ClNO5Na: 378.1187; found, 378.1167.

methyl 3-fluoro-2-(3-((2-chlorophenyl)amino)-3-oxopropyl)-4,6-
dihydroxybenzoate (7)—15 mg, 81% yield, white solid. 1H NMR (500 MHz, CDCl3) δ

11.19 (s, 1H), 8.49 – 8.00 (m, 1H), 7.34 (s, 1H), 7.12 – 6.97 (m, 3H), 6.53 (s, 1H), 6.05 (s,

1H), 3.91 (s, 3H), 3.49 – 3.37 (m, 2H), 2.67 – 2.57 (m, 2H).13C NMR (125 MHz, CDCl3) δ

170.45, 169.98, 163.02, 156.23, 141.37, 124.71, 124.68, 124.37, 124.31, 121.60, 114.87,
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114.72, 113.86, 106.81, 102.99, 52.73, 36.80, 28.83. HRMS (FAB) m/z [M+Na+] for

C17H15ClFNO5Na: 390.0521; found, 390.0547.

methyl 3-chloro-2-(3-((2-chlorophenyl)amino)-3-oxopropyl)-4,6-
dihydroxybenzoate (8)—14 mg, 73% yield, white solid. 1H NMR (500 MHz, CDCl3) δ

11.22 (s, 1H), 8.36 (d, J = 8.3 Hz, 1H), 7.61 (s, 1H), 7.31 (dd, J = 8.0, 1.5 Hz, 1H), 7.26 –

7.21 (m, 1H), 7.02 – 6.97 (m, 1H), 6.53 (s, 1H), 3.91 (s, 4H), 3.54 – 3.32 (m, 2H), 2.76 –

2.47 (m, 3H).13C NMR (125 MHz, CDCl3) δ 170.49, 163.08, 156.23, 141.30, 134.49,

129.04, 127.85, 124.68, 121.47, 113.86, 106.83, 103.00, 52.75, 37.03, 28.90. HRMS (FAB)

m/z [M+Na+] for C17H15Cl2NO5Na: 406.0225; found, 406.0246.

methyl 2-(3-((2-bromophenyl)amino)-3-oxopropyl)-3-chloro-4,6-
dihydroxybenzoate (9)—16.3 mg, 76% yield, pale yellow solid. 1H NMR (500 MHz,

CDCl3) δ 11.25 (s, 1H), 8.49 – 7.19 (m, 7H), 6.93 (td, J = 7.7, 1.4 Hz, 1H), 6.53 (s, 1H),

6.13 (s, 1H), 3.91 (s, 3H), 3.53 – 3.36 (m, 2H), 2.64 (t, J = 8.3 Hz, 2H).13C NMR (125 MHz,

CDCl3) δ 170.54, 170.04, 163.07, 156.29, 141.26, 135.54, 132.27, 128.50, 125.26, 121.80,

113.89, 113.18, 106.80, 103.01, 52.79, 37.05, 27.08. HRMS (FAB) m/z [M+Na+] for

C17H15BrClNO5Na: 449.9720; found, 449.9767.

methyl 3-chloro-4,6-dihydroxy-2-(3-((2-iodophenyl)amino)-3-
oxopropyl)benzoate (10)—18.2 mg, 77% yield, pale yellow solid. 1H NMR (500 MHz,

CDCl3) δ 11.27 (s, 1H), 8.21 (d, J = 8.2 Hz, 1H), 7.77 – 7.23 (m, 3H), 6.82 – 6.78 (m, 1H),

6.53 (s, 1H), 6.03 (s, 1H), 3.92 (s, 3H), 3.51 – 3.37 (m, 3H), 2.72 – 2.52 (m, 3H). 13C NMR

(125 MHz, CDCl3) δ 170.58, 163.13, 156.24, 141.26, 138.84, 138.04, 129.38, 126.07,

121.88, 113.88, 106.85, 103.01, 52.84, 37.05, 28.97. HRMS (FAB) m/z [M+Na+] for

C17H15ClINO5Na: 497.9581; found, 497.9593.

methyl 3-chloro-4,6-dihydroxy-2-(3-oxo-3-((2-
(trifluoromethyl)phenyl)amino)propyl)benzoate (11)—33 mg, 79% yield, white

amorphous solid: 1H NMR (400 MHz, CDCl3-MeOD) δ 6.87 (d, J = 1.4 Hz, 1H), 6.84 (d, J

= 1.4 Hz, 1H), 6.41 (s, 1H), 6.08 (d, J = 3.1 Hz, 1H), 5.84 (dd, J = 3.0, 1.3 Hz, 1H), 4.88 (s,

2H), 3.84 (s, 3H), 3.49 – 3.41 (m, 2H), 3.02 – 2.92 (m, 2H); 13C NMR (CDCl3+CH3OH,

125 MHz): δ 171.0, 162.2, 158.3, 153.1, 147.3, 147.1, 141.9, 126.7, 119.7, 114.9, 109.7,

106.5, 102.6, 52.6, 42.7, 30.9, 26.2. (FAB) m/z [M + H+] for C18H16ClF3NO5: 418.0669;

found, 418.0658.

methyl 3-chloro-4,6-dihydroxy-2-(3-((2-hydroxyphenyl)amino)-3-
oxopropyl)benzoate (12)—23 mg, 63% yield, white amorphous solid: 1H NMR (500

MHz, (CD3)2CO) δ 9.21 (br s, 1H), 7.49 (dd, J = 8.1, 1.6 Hz, 1H), 7.03 (td, J = 7.8, 1.6 Hz,

1H), 6.91 (dd, J = 8.1, 1.5 Hz, 1H), 6.82 (td, J = 7.7, 1.5 Hz, 1H), 6.52 (s, 1H), 3.96 (s, 3H),

3.54 – 3.37 (m, 2H), 2.87 – 2.74 (m, 2H); 13C NMR (125 MHz, (CD3)2CO): δ 172.9, 171.3,

162.4, 158.7, 149.1, 142.8, 127.6, 126.5, 122.7, 120.6, 118.7, 114.9, 108.1, 103.2, 53.0,

36.3, 29.4; (FAB) m/z [M + H+] for C17H16ClNO6: 388.0563; found, 388.0563.

methyl 3-chloro-4,6-dihydroxy-2-(3-((2-methoxyphenyl)amino)-3-
oxopropyl)benzoate (13)—14.5 mg, 77% yield, white solid. 1H NMR (500 MHz,
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CDCl3) δ 11.40 (s, 1H), 8.41 (dd, J = 7.9, 1.7 Hz, 1H), 7.77 (s, 1H), 7.10 – 6.85 (m, 3H),

6.59 (s, 1H), 3.96 (s, 3H), 3.87 (s, 3H), 3.56 – 3.46 (m, 2H), 2.71 – 2.62 (m, 2H).13C NMR

(125 MHz, CD3OD) δ 173.39, 171.67, 161.61, 158.99, 151.43, 142.28, 128.21, 126.10,

123.37, 121.46, 114.98, 111.74, 109.46, 103.16, 56.19, 52.83, 37.23, 29.40. HRMS (FAB)

m/z [M+H] for C18H18ClNO6: 380.0901; found, 380.0920.

methyl 2-(3-((2-aminophenyl)amino)-3-oxopropyl)-3-chloro-4,6-
dihydroxybenzoate (14)—7.5 mg, 41% yield, pale yellow solid. 1H NMR (400 MHz,

CD3OD) δ 7.05 – 6.92 (m, 2H), 6.79 – 6.61 (m, 1H), 6.32 (d, J = 4.7 Hz, 1H), 3.84 (d, J =

5.2 Hz, 3H), 3.31 – 3.25 (m, 2H), 2.66 – 2.60 (m, 2H). 13C NMR (125 MHz, CD3OD) δ

173.77, 171.72, 161.58, 159.34, 143.21, 142.29, 128.24, 127.13, 125.21, 119.62, 118.61,

115.21, 109.28, 103.28, 52.91, 36.45, 29.33. HRMS (FAB) m/z [M+Na+] for

C17H17ClN2O5Na: 387.0724; found, 387.0744.

methyl 3-chloro-4,6-dihydroxy-2-(3-oxo-3-(o-tolylamino)propyl)benzoate (15)—
10 mg, 25% yield, white powder. 1H NMR (400 MHz, CDCl3): δ 11.19 (s, 1 H), 7.87 (d, J =

8.0 Hz, 1 H), 7.28–7.19 (m, 2 H), 7.19–7.07 (m, 2 H), 6.67 (bs, 1 H), 6.60 (s, 1 H), 4.00 (s, 3

H), 3.60–3.48 (m, 2 H), 2.78–2.62 (m, 2 H), 2.29 (s, 3 H); 13C NMR (125 MHz, CDCl3 and

CD3OD): δ 170.8, 170.5, 161.9, 157.8, 141.9, 135.3, 130.4, 129.5, 126.6, 125.3, 123.4,

114.6, 106.0, 102.4, 52.4, 36.3, 28.9, 17.6. HRMS (FAB) m/z [M+Na+] for

C18H18ClNO5Na: 386.0771; found, 386.0769.

methyl 3-chloro-2-(3-((3-fluorophenyl)amino)-3-oxopropyl)-4,6-
dihydroxybenzoate (16)—27 mg, 74% yield, white amorphous solid: 1H NMR (500

MHz, (CD3)2CO) δ 9.38 (br s, 1H), 7.86 – 7.64 (m, 1H), 7.37 – 7.22 (m, 2H), 6.81 (ddt, J =

9.1, 6.3, 2.6 Hz, 1H), 6.51 (s, 1H), 3.95 (s, 3H), 3.57 – 3.20 (m, 2H), 2.84 – 2.52 (m,

2H); 13C NMR(125 MHz, (CD3)2CO): δ 171.3, 164.7, 162.8, 162.3, 158.6, 143.0, 142.1,

131.0, 130.9, 115.5, 110.4, 108.2, 106.9, 103.2, 52.9, 36.8, 28.8; HRMS (FAB) m/z [M +

H+] for C17H15ClFNO5: 368.0701; found, 368.0701.

methyl 3-chloro-2-(3-((3-chlorophenyl)amino)-3-oxopropyl)-4,6-
dihydroxybenzoate (17)—30 mg, 78% yield, white amorphous solid: 1H NMR (500

MHz, (CD3)2CO) δ 9.33 (s, 1H), 8.06 – 7.85 (m, 1H), 7.49 (ddd, J = 8.2, 2.1, 1.0 Hz, 1H),

7.31 (t, J = 8.1 Hz, 1H), 7.08 (ddd, J = 7.9, 2.1, 0.9 Hz, 1H), 6.51 (s, 1H), 3.95 (s, 3H), 3.69

– 3.33 (m, 2H), 2.85 – 2.53 (m, 2H); 13C NMR(125MHz. (CD3)2CO): δ 171.3, 171.3, 162.3,

158.6, 143.0, 141.8, 134.7, 131.0, 123.8, 119.8, 118.1, 114.8, 108.2, 103.2, 52.9, 36.8, 28.8;

HRMS (FAB) m/z [M – H−] for C17H14Cl2NO5: 382.0249; found, 382.0237.

methyl 2-(3-((3-bromophenyl)amino)-3-oxopropyl)-3-chloro-4,6-
dihydroxybenzoate (18)—27 mg, 74% yield, white amorphous solid: 1H NMR (500

MHz, (CD3)2CO) δ 9.32 (s, 1H), 8.10 (q, J = 1.6 Hz, 1H), 7.66 – 7.46 (m, 1H), 7.38 – 7.15

(m, 2H), 6.51 (s, 1H), 3.95 (s, 3H), 3.60 – 3.33 (m, 2H), 2.73 – 2.61 (m, 2H). 13C NMR (125

MHz, (CD3)2CO) δ 171.32, 171.26, 158.63, 142.99, 141.93, 131.31, 126.77, 122.77, 122.70,

122.62, 118.63, 118.54, 114.81, 108.21, 103.18, 52.93, 36.81, 36.76, 28.84; HRMS (FAB)

m/z [M + Na+] for C17H15ClBrNO5Na: 449.9720; found, 449.9720.
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methyl 3-chloro-4,6-dihydroxy-2-(3-oxo-3-((3-
(trifluoromethyl)phenyl)amino)propyl)benzoate (19)—34 mg, 81% yield, white

amorphous solid: 1H NMR (400 MHz, CDCl3) δ 7.85 (s, 1H), 7.77 – 7.65 (m, 1H), 7.39 (t, J

= 7.9 Hz, 1H), 7.32 – 7.28 (m, 1H), 6.41 (d, J = 0.7 Hz, 1H), 5.27 (d, J = 0.7 Hz, 1H), 3.91

(d, J = 0.7 Hz, 3H), 3.50 – 3.39 (m, 2H), 2.67 – 2.45 (m, 2H); 13C NMR ( 125 MHz,

CDCl3): δ 170.7, 161.8, 158.0, 147.6, 141.6, 136.8, 136.5, 129.4, 126.4, 126.0, 125.1, 124.5,

120.1, 106.0, 102.4, 52.3, 30.7, 26.1; HRMS (FAB) m/z [M + H+] for C18H16ClF3NO5:

418.0669; found, 418.0661.

methyl 2-(3-([1,1’-biphenyl]-3-ylamino)-3-oxopropyl)-3-chloro-4,6-
dihydroxybenzoate (20)—35 mg, 72% yield, white amorphous solid: 1H NMR (500

MHz, (CD3)2CO) δ 8.10 – 8.01 (m, 1H), 7.66 (tdd, J = 6.3, 2.1, 1.0 Hz, 3H), 7.52 – 7.44 (m,

2H), 7.44 – 7.33 (m, 3H), 6.52 (s, 1H), 3.97 (s, 3H), 3.63 – 3.36 (m, 2H), 2.73 – 2.56 (m,

2H); 13C NMR(125 MHz, (CD3)2CO): δ 143.2, 130.1, 129.7, 128.3, 127.7, 122.6, 118.9,

118.5, 103.1, 52.9, 36.8, 29.0; . HRMS (FAB) m/z [M +Na+] for C23H20ClNO5Na:

448.0928; found, 448.0927.

methyl 3-chloro-4,6-dihydroxy-2-(3-((3-hydroxyphenyl)amino)-3-
oxopropyl)benzoate (21)—16 mg, 88% yield, off-white solid. . 1H NMR (400 MHz,

CD3OD): δ 7.16 (t, J = 2.27 Hz, 1 H), 7.06 (td, J = 2.36, 8.01 Hz, 1 H), 6.92 (dd, J = 2.70,

7.62 Hz, 1 H), 6.50 (dd, J = 2.47, 8.35 Hz, 1 H), 6.37 (s, 1 H), 3.86 (s, 3 H), 3.91 (s, 3 H),

3.32–3.25 (m, 2 H), 2.60 (ddt, J = 3.13, 7.38 Hz, 10.18, 2 H). 13C NMR (125 MHz,

CD3OD): δ 173.26, 171.66, 161.48, 158.88, 142.34, 140.93, 130.50, 114.95, 114.93, 112.36,

112.09, 109.54, 108.40, 103.14, 52.87, 37.06, 29.09. HRMS (FAB) m/z [M+Na+] for

C17H16ClNO6Na: 388.0558, found 388.0555.

methyl 3-chloro-4,6-dihydroxy-2-(3-((3-methoxyphenyl)amino)-3-
oxopropyl)benzoate (22)—14.6 mg, 76% yield, white solid. 1H NMR (500 MHz,

CDCl3) δ 11.15 (s, 1H), 7.30 – 7.11 (m, 3H), 6.92 – 6.58 (m, 2H), 6.52 (s, 1H), 6.25 (s, 1H),

3.90 (s, 3H), 3.75 (s, 3H), 3.46 – 3.37 (m, 2H), 2.58 – 2.51 (m, 2H).13C NMR (126 MHz,

CDCl3) δ 170.82, 170.71, 162.10, 160.03, 157.67, 142.01, 139.24, 129.61, 114.59, 111.83,

109.92, 106.09, 105.39, 102.47, 55.27, 52.54, 36.41, 28.58. HRMS (FAB) m/z [M+Na+] for

C18H18ClNO6: 402.0720; found, 402.0722.

methyl 2-(3-((3-aminophenyl)amino)-3-oxopropyl)-3-chloro-4,6-
dihydroxybenzoate (23)—9 mg, 49% yield, pale yellow solid. 1H NMR (400 MHz,

CDCl3) δ 7.12 – 7.05 (m, 1H), 7.01 (t, J = 8.0 Hz, 1H), 6.68 (dd, J = 7.8, 2.1 Hz, 1H), 6.44 –

6.26 (m, 2H), 3.87 (s, 3H), 3.38 (t, J = 8.4 Hz, 2H), 2.61 – 2.47 (m, 2H). 13C NMR (125

MHz, CDCl3) δ 170.50, 162.27, 157.40, 146.36, 141.98, 129.72, 114.46, 111.35, 110.11,

106.84, 106.20, 102.55, 52.57, 36.57, 29.69, 28.69. HRMS (FAB) m/z [M+Na+] for

C17H17ClN2O5Na: 387.0724; found, 387.0736.

methyl 2-(3-((3-acetamidophenyl)amino)-3-oxopropyl)-3-chloro-4,6-
dihydroxybenzoate (24)—18 mg, 89% yield white solid. 1H NMR (400 MHz, CD3OD):

δ 7.86 (t, J = 1.91 Hz, 1 H), 7.34–7.21 (m, 3 H), 6.40 (s, 1 H), 3.91 (s, 3 H), 3.36–3.32 (m, 2

Muth et al. Page 15

Bioorg Med Chem. Author manuscript; available in PMC 2015 August 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



H), 2.69–2.62 (m, 2 H), 2.12 (d, J = 1.77 Hz, 3 H). 13C NMR (125 MHz, CD3OD): δ

173.33, 171.69, 171.65, 161.43, 159.00, 142.26, 140.37, 140.33, 130.02, 116.94, 116.83,

114.97, 113.06, 109.58, 103.15, 52.84, 37.01, 29.04, 23.81. HRMS (FAB) m/z [M+Na+] for

C19H19ClN2O6Na: 428.0829, found 429.0824.

methyl 3-chloro-2-(3-((4-fluorophenyl)amino)-3-oxopropyl)-4,6-
dihydroxybenzoate (25)—14.5 mg, 80% yield, white solid. 1H NMR (500 MHz, CDCl3)

δ 11.28 (s, 1H), 7.89 (s, 1H), 7.50 (ddd, J = 9.4, 4.8, 2.4 Hz, 2H), 7.02 (t, J = 8.7 Hz, 2H),

6.50 (s, 1H), 3.96 (s, 3H), 3.52 – 3.44 (m, 2H), 2.65 – 2.56 (m, 2H). 13C NMR (125 MHz,

CDCl3) δ 170.34, 169.85, 162.91, 160.34, 156.21, 141.58, 121.57, 121.50, 115.82, 115.64,

113.88, 106.86, 102.98, 52.73, 36.57, 28.79.HRMS (FAB) m/z [M+Na+] for

C17H15ClFNO5Na: 390.0521; found, 390.0553.

methyl 3-chloro-2-(3-((4-chlorophenyl)amino)-3-oxopropyl)-4,6-
dihydroxybenzoate (26)—13.8 mg, 72% yield, white solid. 1H NMR (500 MHz, CDCl3)

δ 11.16 (s, 1H), 7.52 – 7.45 (m, 2H), 7.32 – 7.28 (m, 2H), 6.60 (s, 1H), 6.14 (s, 1H), 3.97 (s,

3H), 3.55 – 3.45 (m, 2H), 2.65 – 2.59 (m, 2H). 13C NMR (125 MHz, CDCl3) δ 170.45,

170.35, 162.39, 157.07, 141.80, 136.48, 129.09, 128.99, 120.94, 120.84, 114.29, 106.38,

102.70, 52.62, 36.48, 28.64.HRMS (FAB) m/z [M+Na+] for C17H15Cl2NO5Na: 406.0225;

found, 406.0234.

methyl 2-(3-((4-bromophenyl)amino)-3-oxopropyl)-3-chloro-4,6-
dihydroxybenzoate (27)—15 mg, 70% yield, white solid. 1H NMR (500 MHz, CDCl3) δ

7.38 (s, 4H), 6.49 (s, 1H), 3.90 (s, 3H), 3.45 – 3.39 (m, 2H), 2.58 – 2.52 (m, 2H). 13C NMR

(125 MHz, CDCl3) δ 170.27, 169.88, 162.91, 156.18, 141.50, 136.83, 132.05, 121.18,

116.89, 113.864, 106.87, 103.01, 52.74, 36.71, 28.71.HRMS (FAB) m/z [M+Na+] for

C17H15BrClNO5Na: 449.9720; found, 449.9740.

methyl 3-chloro-4,6-dihydroxy-2-(3-((4-iodophenyl)amino)-3-
oxopropyl)benzoate (28)—22 mg, 76% yield, white solid. 1H NMR (500 MHz, CDCl3
and CD3OD) δ 7.55 (dd, 2H), 7.28 (dd, 2H), 6.43 (s, 1H), 3.89 (s, 3H), 3.41 – 3.39 (m, 2H),

2.56 – 2.53 (m, 2H). 13C NMR (125 MHz, CDCl3 and CD3OD) δ 169.93, 162.88, 156.22,

149.99, 141.51, 137.99, 136.22, 129.72, 128.84, 126.65, 126.34, 121.46, 103.01, 52.74,

36.74, 28.69. HRMS (FAB) m/z [M + Na+] for C17H15ClINO5Na: 497.9683; found,

497.9656.

methyl 3-chloro-4,6-dihydroxy-2-(3-oxo-3-((4-
(trifluoromethyl)phenyl)amino)propyl)benzoate (29)—31 mg, 74% yield, white

amorphous solid: 1H NMR (500 MHz, (CD3)2CO) δ 8.13 – 7.78 (m, 2H), 7.65 (dd, J = 8.8,

2.5 Hz, 2H), 6.51 (t, J = 1.7 Hz, 1H), 3.95 (t, J = 1.8 Hz, 3H), 3.44 (ddt, J = 10.2, 6.1, 1.8

Hz, 2H), 2.72 (ddt, J = 10.2, 6.3, 1.8 Hz, 2H); 13C NMR (125 MHz, (CD3)2CO) δ (171.5,

171.4, 171.3, 162.2, 158.6, 142.9, 126.9, 126.9, 126.8, 126.8, 119.8, 119.8, 114.8, 108.2,

103.2, 52.9, 36.8, 28.8. HRMS (FAB) m/z [M + H+] for C18H16ClF3NO5: 418.0669; found,

418.0669.
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methyl 2-(3-([1,1’-biphenyl]-4-ylamino)-3-oxopropyl)-3-chloro-4,6-
dihydroxybenzoate (30)—12.5 mg, 60% yield, white solid. 1H NMR (400 MHz, CDCl3)

δ 7.57 – 7.48 (m, 6H), 7.41 – 7.23 (m, 3H), 7.15 (d, J = 5.6 Hz, 1H), 6.54 (s, 1H), 6.02 (s,

1H), 3.92 (s, 3H), 3.49 – 3.41 (m, 2H), 2.62 – 2.55 (m, 2H). 13C NMR (125 MHz, CDCl3) δ

170.41, 169.88, 162.96, 156.19, 141.64, 140.41, 137.25, 128.81, 127.70, 127.17, 126.84,

119.96, 113.88, 106.87, 102.96, 52.75, 36.75, 28.82. HRMS (FAB) m/z [M+Na+] for

C23H20ClNO5Na: 448.0928; found, 448.0946.

methyl 3-chloro-4,6-dihydroxy-2-(3-oxo-3-(p-tolylamino)propyl)benzoate (31)—
14 mg, 76% yield, white solid. 1H NMR (500 MHz, CD3OD) δ 7.32 (dd, J = 8.5, 2.0 Hz,

2H), 7.08 – 7.02 (m, 2H), 6.47 (s, 1H), 3.88 (s, 3H), 3.45 – 3.37 (m, 2H), 2.56 – 2.49 (m,

2H), 2.24 (s, 3H). 13C NMR (125 MHz, CD3OD) δ 168.00, 167.60, 167.51, 154.20, 139.34,

132.64, 131.47, 131.44, 127.00, 117.33, 117.21, 111.59, 104.03, 100.23, 50.14, 34.05,

26.29, 18.34.HRMS (FAB) m/z [M+Na+] for C18H18ClNO5Na: 386.0771; found, 386.1007.

methyl 3-chloro-4,6-dihydroxy-2-(3-((4-hydroxyphenyl)amino)-3-
oxopropyl)benzoate (32)—8.8 mg, 48% yield, white solid. 1H NMR (500 MHz,

CD3OD) δ 7.36 – 7.27 (m, 2H), 6.74 – 6.63 (m, 2H), 6.38 (s, 1H), 3.88 (s, 3H), 3.30–3.28

(m, 2H), 2.64 – 2.55 (m, 2H). 13C NMR (125 MHz, CD3OD) δ 172.98, 171.64, 161.37,

158.85, 155.34, 142.31, 131.72, 123.38, 116.18, 114.89, 109.69, 103.11, 52.84, 36.88,

29.19.HRMS (FAB) m/z [M+Na+] for C17H16ClNO6Na: 388.0564; found, 388.0556.

methyl 3-chloro-4,6-dihydroxy-2-(3-((4-methoxyphenyl)amino)-3-
oxopropyl)benzoate (33)—32 mg, 73% yield, white powder. 1H NMR (500 MHz,

CD3OD): δ 7.42–7.37 (m, 2 H), 6.84–6.79 (m, 2 H), 6.41 (s, 1 H), 3.90 (s, 3 H), 3.75 (s, 3

H), 3.45–3.39 (m, 2 H), 2.58–2.52 (m, 2 H). 13C NMR (125 MHz, CD3OD): δ 170.74,

170.72, 161.9, 157.8, 156.1, 142.0, 131.1, 121.6, 114.6, 114.0, 106.0, 102.3, 55.4, 52.4,

36.1, 28.6. HRMS (FAB) m/z [M+Na+] for C18H18ClNO6Na: 402.0720; found, 402.0725.

methyl 2-(3-((4-aminophenyl)amino)-3-oxopropyl)-3-chloro-4,6-
dihydroxybenzoate (34)—8 mg, 33% yield, dark brown solid. 1H NMR (400 MHz,

CD3OD) δ 7.45 – 7.27 (m, 2H), 6.90 – 6.74 (m, 2H), 6.50 (s, 1H), 4.00 (s, 3H), 3.41 (dt, J =

3.2, 1.7 Hz, 13H), 2.77 – 2.65 (m, 2H). 13C NMR (125 MHz, CDCl3 and CD3OD) δ 170.59,

169.91, 162.49, 156.88, 143.10, 141.99, 129.23, 121.91, 115.51, 106.47, 102.65, 52.63,

49.80, 36.43, 29.70, 28.90. HRMS (FAB) m/z [M+Na+] for C17H17ClN2O5Na: 387.0826;

found, 387.0836.

methyl 3-chloro-2-(3-((4-cyanophenyl)amino)-3-oxopropyl)-4,6-
dihydroxybenzoate (35)—13.6 mg, 72% yield, white solid. 1H NMR (500 MHz, CDCl3)

δ 7.71 – 7.60 (m, 4H), 6.56 (s, 1H), 3.98 (s, 3H), 3.53 – 3.46 (m, 2H), 2.70 – 2.64 (m,

2H). 13C NMR (125 MHz, CDCl3) δ 170.97, 170.41, 162.19, 157.38, 142.28, 141.72,

133.26, 119.32, 118.94, 114.44, 106.70, 106.26, 102.66, 52.59, 36.46, 28.41.HRMS (FAB)

m/z [M+H] for C18H15ClN2O5: 375.0748; found, 375.2276.

methyl 3-chloro-2-(3-((4-ethynylphenyl)amino)-3-oxopropyl)-4,6-
dihydroxybenzoate (36)—18 mg, 95% yield, off-white solid. 1H NMR (400 MHz,
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CDCl3): δ 7.51–7.46 (m, 2 H), 7.39–7.34 (m, 2 H), 6.38 (s, 1 H), 3.87 (s, 3 H), 3.48–3.32

(m, 5 H), 3.01 (s, 1 H), 2.60–2.53 (m, 2 H); 13C NMR (125 MHz, CDCl3 and CD3OD): δ

171.2, 170.7, 161.8, 157.8, 141.9, 138.7, 132.7, 119.2, 117.1, 114.6, 106.0, 102.3, 83.3,

76.5, 52.3, 36.0, 28.3. HRMS (FAB) m/z [M+Na+] for C19H16ClNO5Na: 396.0615; found,

396.0608.

methyl 3-chloro-4,6-dihydroxy-2-(3-((4-isopropylphenyl)amino)-3-
oxopropyl)benzoate (37)—26 mg, 87% yield, white solid. 1H NMR (500 MHz,

(CD3)2CO) δ 9.13 (s, 1H), 7.74 – 7.52 (m, 2H), 7.27 – 7.13 (m, 2H), 6.54 (t, J = 1.5 Hz,

1H), 4.08 – 3.89 (m, 3H), 3.54 – 3.36 (m, 2H), 2.90 (td, J = 7.0, 2.1 Hz, 1H), 2.69 (ddt, J =

8.1, 6.5, 1.6 Hz, 2H), 2.15 – 2.11 (m, 1H), 1.25 (dt, J = 6.9, 1.4 Hz, 7H). 13C NMR (125

MHz, (CD3)2CO) δ 171.36, 170.68, 162.29, 158.56, 144.45, 143.28, 138.23, 138.15, 127.23,

120.07, 114.76, 108.22, 103.09, 52.91, 36.73, 34.28, 29.03, 24.41. HRMS (FAB) m/z [M

+Na+] for C20H22ClNO5Na: 414.1187; found, 414.1165.

methyl 3-chloro-4,6-dihydroxy-2-(3-oxo-3-(pyridin-2-ylamino)propyl)benzoate
(38)—1H NMR (500 MHz, (CD3)2CO) δ 8.39 – 8.07 (m, 2H), 7.80 (dd, J = 8.7, 7.4, 1.8 Hz,

1H), 7.10 (dd, J = 7.3, 4.8, 1.1 Hz, 1H), 6.55 (s, 1H), 3.99 (s, 3H), 3.57 – 3.42 (m, 2H), 2.98

– 2.77 (m, 2H). 13C NMR (125 MHz, (CD3)2CO) δ 171.60, 162.34, 158.67, 153.19, 148.85,

143.11, 138.72, 120.02, 114.86, 114.29, 108.11, 103.12, 52.92, 36.62, 28.77. HRMS (FAB)

m/z [M+Na+] for C16H15ClN2O5Na: 373.0669; found, 373.0630.

methyl 3-chloro-4,6-dihydroxy-2-(3-oxo-3-(pyridin-3-ylamino)propyl)benzoate
(39)—23 mg, 65% yield, white amorphous solid: 1H NMR (500 MHz, (CD3)2CO) δ 8.80

(dd, J = 4.7, 1.5 Hz, 1H), 8.35 (dd, J = 9.0, 1.5 Hz, 1H), 7.51 (dd, J = 9.0, 4.7 Hz, 1H), 6.40

(s, 1H), 3.82 (s, 3H), 3.48 – 3.21 (m, 2H), 2.80 – 2.75 (m, 2H); 13C NMR(125 MHz,

(CD3)2CO): δ 158.6, 145.2, 143.0, 141.9, 126.7, 124.2, 103.1, 52.9, 36.7, 36.6, 28.8; HRMS

(FAB) m/z [M +H+] for C16H6ClN2O5: 351.0748; found, 351.0755.

methyl 3-chloro-4,6-dihydroxy-2-(3-oxo-3-(pyridin-4-ylamino)propyl)benzoate
(40)—10 mg, 51% yield, white solid. 1H NMR (500 MHz, (CD3)2CO and CD3OD) δ 9.55

(s, 1H), 8.53 – 8.40 (m, 2H), 7.73 – 7.61 (m, 2H), 6.52 (s, 1H), 3.95 (s, 3H), 3.52 – 3.40 (m,

2H), 2.75 – 2.71 (m, 2H). 13C NMR (125 MHz, (CD3)2CO) δ 172.20, 171.54, 165.56,

162.82, 151.33 (2C), 146.82, 142.44, 113.98 (2C), 103.33, 54.98, 52.68, 36.96, 28.73.

HRMS (FAB) m/z [M+Na+] for C16H15ClN2O5Na: 373.0669; found, 373.0695.

methyl 3-chloro-4,6-dihydroxy-2-(3-oxo-3-(pyrazin-2-ylamino)propyl)benzoate
(41)—9 mg, 26% yield, white powder. 1H NMR (400 MHz, CDCl3 and CD3OD): δ 11.22

(s, 1 H), 9.58 (s, 1 H), 8.38–8.35 (m, 1 H), 8.27–8.23 (m, 1 H), 8.02 (bs, 1 H), 6.58 (s, 1 H),

3.98 (s, 3 H), 3.55–3.48 (m, 2 H), 2.76–2.69 (m, 2 H); 13C NMR (125 MHz, CDCl3 and

CD3OD): δ 171.5, 170.6, 161.7, 158.0, 148.5, 142.2, 141.3, 139.3, 136.7, 114.6, 105.9,

102.3, 52.3, 35.7, 27.9. HRMS (FAB) m/z [M+Na+] for C15H14ClN3O5Na: 374.0520;

found, 374.0524.

methyl 3-chloro-4,6-dihydroxy-2-(3-oxo-3-(pyridazin-3-
ylamino)propyl)benzoate (42)—26 mg, yield 74%, white amorphous solid: 1H NMR
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(500 MHz, (CD3)2CO) δ 10.04 (s, 1H), 8.92 (dd, J = 4.7, 1.5 Hz, 1H), 8.47 (dd, J = 9.0, 1.5

Hz, 1H), 7.63 (dd, J = 9.0, 4.7 Hz, 1H), 6.52 (s, 1H), 3.94 (s, 3H), 3.54 – 3.38 (m, 2H), 2.99

– 2.84 (m, 2H); 13C NMR (125 MHz, (CD3)2CO) δ 158.78, 149.10, 142.85, 128.79, 118.60,

118.54, 103.20, 52.93, 36.60, 28.60; HRMS (FAB) m/z [M +Na+] for C15H14ClN3O5Na:

374.0520; found, 374.0534.

methyl 3-chloro-4,6-dihydroxy-2-(3-oxo-3-(pyrimidin-5-
ylamino)propyl)benzoate (43)—23 mg, 66% yield, white amorphous solid: 1H NMR

(400 MHz, CDCl3-MeOD) δ 9.01 (s, 2H), 8.84 (s, 1H), 6.42 (s, 1H), 3.91 (s, 3H), 3.59 –

3.36 (m, 2H), 2.70 – 2.51 (m, 2H); 13C NMR (CDCl3, 125 MHz): δ 172.1, 170.9, 162.0,

158.1, 152.9, 147.6 (2), 141.8, 114.8 (2), 106.2, 102.6, 52.6, 35.7, 28.2; (FAB) m/z [M + H+]

for C15H15ClN3O5: 352.0712; found, 352.0712.

methyl 3-chloro-4,6-dihydroxy-2-(3-oxo-3-(pyrimidin-2-
ylamino)propyl)benzoate (44)—21 mg, yield 60%, white amorphous solid: 1H NMR

(500 MHz, (CD3)2CO) δ 9.04 (d, J = 1.3 Hz, 2H), 8.83 (s, 1H), 6.51 (s, 1H), 3.94 (s, 3H),

3.57 – 3.31 (m, 2H), 2.82 – 2.69 (m, 2H); 13C NMR(125 MHz, (CD3)2CO): δ 171.7, 171.2,

158.6, 154.2, 148.0, 147.9, 142.7, 135.6, 135.5, 114.8, 108.3, 103.2, 52.9, 36.4, 28.7; HRMS

(FAB) m/z [M + Na+] for C15H14ClN3O5Na: 374.0520; found, 374.0527.

methyl 2-(3-((1,2,4-triazin-5-yl)amino)-3-oxopropyl)-3-chloro-4,6-
dihydroxybenzoate (45)—8.7 mg, 12% yield, yellow powder. 1H NMR (500 MHz,

CDCl3 and CD3OD): δ 8.89 (d, J = 2.5 Hz, 1 H), 8.47 (d, J = 2.5 Hz, 1 H), 6.37 (s, 1 H),

3.80 (s, 3 H), 3.45–3.38 (m, 2 H), 2.89–2.80 (m, 2 H). 13C NMR (125 MHz, CDCl3 and

CD3OD): δ 171.8, 170.7, 161.8, 158.8, 157.9, 149.7, 145.1, 141.5, 114.6, 105.9, 102.3, 52.3,

36.2, 27.6. HRMS (FAB) m/z [M+Na+] for C14H13ClN4O5Na: 375.0472; found, 375.0468.

methyl 3-chloro-4,6-dihydroxy-2-(3-oxo-3-(thiazol-2-ylamino)propyl)benzoate
(46)—30 mg, 84% yield, white amorphous solid: 1H NMR (500 MHz, (CD3)2CO) δ 7.40 (d,

J = 3.6 Hz, 1H), 7.11 (d, J = 3.6 Hz, 1H), 6.52 (s, 1H), 3.94 (s, 3H), 3.57 – 3.34 (m, 2H),

2.98 – 2.78 (m, 2H); 13C NMR ((CD3)2CO, 125 MHz) δ 171.3, 170.7, 162.4, 158.9, 158.7 ,

142.7, 138.5, 114.9, 113.9, 108.2, 103.3, 53.0, 35.4, 28.6. (FAB) m/z [M + H+] calcd for

C14H14ClN2O5S: 357.0312; found, 357.0323.

methyl 2-(3-((1,3,4-thiadiazol-2-yl)amino)-3-oxopropyl)-3-chloro-4,6-
dihydroxybenzoate (47)—28 mg, 78% yield, white amorphous solid: 1H NMR (500

MHz, CDCl3-MeOD,) δ 8.79 (d, J = 0.9 Hz, 1H), 6.44 (d, J = 0.9 Hz, 1H), 3.89 (d, J = 0.9

Hz, 3H), 3.62 – 3.30 (m, 2H), 2.93 – 2.40 (m, 4H); 13C NMR(CDCl3-MeOD, 125 MHz):

171.0, 170.9, 162.3, 159.5, 158.1, 148.0, 141.3, 114.9, 106.1, 102.8, 52.6, 34.9, 28.0. (FAB)

m/z [M + Na+] for C13H12ClN3O5SNa: 380.0084; found, 380.0090.

methyl 2-(3-((1,2,4-thiadiazol-5-yl)amino)-3-oxopropyl)-3-chloro-4,6-
dihydroxybenzoate (48)—19 mg, 53% yield, white amorphous solid: 1H NMR (400

MHz, CDCl3-MeOD) δ 8.19 (s, 1H), 7.72 (s, 1H), 6.36 (s, 1H), 3.83 (s, 3H), 3.50 – 3.32 (m,

2H), 2.91 – 2.69 (m, 2H); 13C NMR (CDCl3-MeOD, 125 MHz): δ 179.3, 176.3, 174.5,
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163.0, 162.2.161.6, 144.8, 118.6, 110.2, 106.4, 56.3, 38.1, 33.5. (FAB) m/z [M + Na+] for

C13H12ClN3O5SNa: 380.0084; found, 380.0078.

methyl 3-chloro-4,6-dihydroxy-2-(3-(methyl(phenyl)amino)-3-
oxopropyl)benzoate (49)—28 mg, 77% yield, white amorphous solid: 1H NMR (400

MHz, CDCl3-MeOD) δ 7.34 (dd, J = 8.4, 6.8 Hz, 2H), 7.31 – 7.23 (m, 2H), 7.15 – 7.08 (m,

2H), 6.33 (s, 1H), 3.87 (s, 3H), 3.25 (d, J = 7.5 Hz, 5H), 2.35 – 2.27 (m, 2H); 13C NMR

(CDCl3-CH3OH, 125 MHz) δ 172.9, 171.0, 162.1, 157.9, 143.7, 142.3, 130.0 (2), 128.1,

127.2 (2), 114.8, 106.0, 102.3, 52.4, 37.6, 33.4, 28.9; (FAB) m/z [M + H+]for

C18H19ClNO5: 364.0952; found, 364.0943.

methyl 3-chloro-2-(3-(ethyl(phenyl)amino)-3-oxopropyl)-4,6-
dihydroxybenzoate (50)—30 mg, 79% yield, white amorphous solid: 1H NMR (500

MHz, CDCl3-MeOD) δ 7.34 (t, J = 7.7 Hz, 2H), 7.31 – 7.24 (m, 2H), 7.06 (dd, J = 7.3, 1.7

Hz, 2H), 6.33 (d, J = 4.0 Hz, 1H), 3.87 (d, J = 3.9 Hz, 3H), 3.70 (q, J = 7.1 Hz, 3H), 3.27 –

3.19 (m, 2H), 2.34 – 2.16 (m, 2H), 1.07 (td, J = 7.2, 3.4 Hz, 3H); 13C NMR (CDCl3-MeOD,

125 MHz) δ 172.3, 171.0, 162.0, 157.9, 142.3, 141.9, 129.9 (2), 128.3 (2), 128.2, 114.7,

106.1, 102.2, 52.4, 44.3, 33.7, 28.8, 13.0; (FAB) m/z [M + H+] for C19H21ClNO5: 378.1108;

found, 378.1108.

methyl 3-chloro-4,6-dihydroxy-2-(3-(isopropyl(phenyl)amino)-3-
oxopropyl)benzoate (51)—A solution of benzyl protected acid 1a (100 mg, 0.22 mmol)

in dry CH2Cl2 was treated with oxalyl chloride (23 µL, 0.33 mmol) under Ar atmosphere

and then stirred at room temperature for 2 h. The solvent was then removed in vacuo and the

residue was placed under high vacuum for 30 min to remove any unreacted oxalyl chloride.

The residue was then redissolved in dry CH2Cl2 (3 mL), cooled to 0oC, and was treated

sequentially with diisopropylethyl amine (57 µL, 0.33 mmol) and N-isopropylaniline (72µL,

0.33 mmol). The resulting mixture was stirred at room temperature overnight under Ar. The

solvent was removed in vacuo and the residue was passed through a short pad of silica (1:1,

EtOAc:Hexanes) and was concentrated to afford the amide crude product, which was

dissolved in MeOH (5 mL) and treated with Pd/C (10 mol%, 23 mg). The resulting

suspension was charged with a hydrogen balloon and stirred under H2 at room temperature.

When debenzylation was found to be complete, the mixture was filtered through celite,

concentrated, and purified on silica gel chromatography (1:1, EtOAc:Hexanes) to afford

compound 51 (30 mg, 35% yield over 2 steps) as a white solid. 1H NMR (400 MHz,

CDCl3): δ 7.45–7.27 (m, 13 H), 7.06–7.12 (m, 2 H), 6.41 (s, 1 H), 5.07 (hept, J = 6.8 Hz, 1

H), 5.04 (s, 2 H), 4.98 (s, 2 H), 3.88 (s, 3 H), 3.03–2.93 (m, 2 H), 2.30–2.21 (m, 2 H), 1.08

(d, J = 6.8 Hz, 6 H). 13C NMR (125 MHz, CDCl3): δ 171.1, 167.5, 155.4, 154.5, 138.6,

138.3, 136.2, 135.9, 130.3, 129.2, 128.6, 128.5, 128.1, 127.9, 126.9, 126.8, 118.4, 115.5,

98.2, 70.9, 70.8, 52.4, 45.8, 34.4, 27.9, 21.0. HRMS (FAB) m/z [M+Na+] for

C20H22ClNO5Na: 414.1084; found, 414.1076.

methyl 3-chloro-4,6-dihydroxy-2-(3-(hydroxy(phenyl)amino)-3-
oxopropyl)benzoate (52)—A round bottom flask was charged with aldehyde 1b (100

mg, 0.2 mmol), nitrosobenzene (22 mg, 0.2 mmol), and 6,7-Dihydro-2-
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pentafluorophenyl-5H–pyrrolo[2,1-c]-1,2,4-trazolium tetrafluoroborate (catalyst, 7 mg, 0.02

mmol) and purged with argon. The mixture was then dissolved in CH2Cl2 (1.5 mL) followed

by addition of DBU (3µL, 0.02 mmol) and stirred at room termperature for 30 min. Upon

completion, the solvent removed in vacuo. The resulting residue was dissolved in THF (2

mL) and treated with TBAF (0.5 mL of 1M solution). After complete silyl-deprotection,

saturated aqueous NH4Cl was added and extracted 3x with EtOAc (15 mL). The crude

material was purified via flash chromatography (SiO2, 2:3 EtOAc:Hexanes) to yield 52 as an

off white solid (16 mg, 94%). 1H NMR (400 MHz, CDCl3): δ 11.30 (s, 1 H), 7.45–7.32 (m,

5 H), 6.52 (s, 1 H), 3.88 (s, 3 H), 3.42–3.36 (m, 2 H), 2.73–2.48 (m, 2 H). 13C NMR (125

MHz, CDCl3): δ 170.74, 163.10, 156.32 (2 C), 141.18, 137.80, 129.57, 126.54, 119.88,

114.00, 106.92, 103.03 (2 C), 52.71, 31.51, 28.84, 28.82. HRMS (FAB) m/z [M+Li+] for

C17H16ClNO6Li: 372.0826, found 372.0823.

methyl 3-chloro-4,6-dihydroxy-2-(3-(indolin-1-yl)-3-oxopropyl)benzoate (53)—
15 mg, 25% yield, white solid. 1H NMR (400 MHz, CDCl3): δ 1H NMR (400 MHz, CDCl3
and CD3OD) δ 8.19 (d, J = 8.0 Hz, 1H), 7.24 – 7.10 (m, 2H), 6.99 (d, J = 1.2 Hz, 1H), 6.42

(d, J = 1.5 Hz, 1H), 4.00 (dd, J = 9.1, 7.8 Hz, 2H), 3.88 (d, J = 2.8 Hz, 3H), 3.52 – 3.40 (m,

2H), 3.16 (t, J = 8.4 Hz, 2H), 2.75 – 2.60 (m, 2H). 13C NMR (125 MHz, CDCl3 and

CD3OD) δ 170.88, 170.71, 162.06, 157.89, 142.74, 142.21, 131.21, 127.50, 124.61, 123.81,

116.90, 114.64, 106.04, 102.42, 102.35, 52.51, 50.07, 49.72, 49.55, 49.38, 49.21, 49.03,

48.86, 48.69, 47.97, 35.08, 27.95, 27.84. HRMS (FAB) m/z [M+Na+] for C19H18ClNO5Na:

398.0771; found, 398.0773.

methyl 3-chloro-2-(3-((2,4-dibromophenyl)amino)-3-oxopropyl)-4,6-
dihydroxybenzoate (54)—21 mg, 83%, white solid. 1H NMR (500 MHz, CDCl3 and

CD3OD) δ 8.22 (d, J = 8.9 Hz, 1H), 7.63 (dd, J = 2.2, 1.2 Hz, 1H), 7.49 – 7.33 (m, 1H), 6.44

(d, J = 1.0 Hz, 1H), 3.90 (d, J = 1.2 Hz, 3H), 3.47 – 3.39 (m, 2H), 2.72 – 2.54 (m, 2H). 13C

NMR (125 MHz, CDCl3 and CD3OD) δ 170.52, 162.40, 157.48, 141.32, 134.74, 134.42,

131.43, 122.78, 116.73, 114.47, 113.56, 106.14, 102.72, 52.64, 36.99, 28.77. HRMS (FAB)

m/z [M+Na+] for C17H14Br2ClNO5Na: 527.8927, found 527.8935.

methyl 3-chloro-2-(3-((3,5-dichlorophenyl)amino)-3-oxopropyl)-4,6-
dihydroxybenzoate (55)—19 mg, 91% yield, white solid. 1H NMR (400 MHz, CDCl3):

δ 11.07 (s, 1 H), 7.51 (d, J = 1.88 Hz, 2 H), 7.29 (s, 1 H), 7.11 (t, J = 1.7 Hz, 1 H), 6.60 (s, 1

H), 6.13 (s, 1 H), 3.98 (s, 1 H), 3.52–3.43 (m, 2 H), 2.75–2.49 (m, 2 H). 13C NMR (125

MHz, CDCl3 and CD3OD): δ 170.73, 170.50, 162.48, 157.22, 141.80, 139.98, 135.30,

124.08, 117.85, 114.43, 106.49, 102.87, 52.77, 36.52, 28.62. HRMS (FAB) m/z [M+Na+]

for C17H14Cl3NO5Na: 439.9830, found 439.9840.

methyl 2-(3-((4-bromo-3-chlorophenyl)amino)-3-oxopropyl)-3-chloro-4,6-
dihydroxybenzoate (56)—24 mg, 89% yield, white solid. 1H NMR (500 MHz,

(CD3)2CO) δ 8.12 (d, J = 2.5 Hz, 1H), 7.64 (d, J = 8.8 Hz, 1H), 7.48 (dd, J = 8.8, 2.5 Hz,

1H), 6.52 (s, 1H), 3.96 (s, 3H), 3.50 – 3.37 (m, 2H), 2.80 – 2.63 (m, 2H). 13C NMR (125

MHz, (CD3)2CO) δ 170.45, 170.32, 161.23, 157.73, 141.96, 140.00, 133.72, 120.46, 119.04,
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114.46, 113.91, 107.27, 102.20, 52.01, 35.87, 27.84. HRMS (FAB) m/z [M+Na+] for

C17H14BrCl2NO5Na: 483.9432; found, 398.9333.

methyl 2-(3-((2-bromo-3-chlorophenyl)amino)-3-oxopropyl)-3-chloro-4,6-
dihydroxybenzoate (57)—23 mg, 72% yield, white amorphous solid: 1H NMR (500

MHz, CDCl3-MeOD) δ 8.14 (d, J = 7.9 Hz, 1H), 7.25 – 7.15 (m, 2H), 6.40 (d, J = 1.2 Hz,

1H), 3.90 (d, J = 1.2 Hz, 3H), 3.46 – 3.37 (m, 3H), 2.72 – 2.62 (m, 2H); 13C NMR (CDCl3-

MeOD, 125 MHz): δ 170.9, 170.6, 162.0, 158.1, 141.3, 137.3, 134.8, 128.5 (2), 125.6,

120.2, 114.7, 105.9, 102.5, 52.5, 36.8, 28.7; (FAB) m/z [M + Na+] for C17H14BrCl2NO5Na:

483.9330; found, 483.9327.

methyl 3-chloro-2-(3-((6-chloropyridin-2-yl)amino)-3-oxopropyl)-4,6-
dihydroxybenzoate (58)—27 mg, 70% yield, white amorphous solid: 1H NMR (500

MHz, (CD3)2CO) δ 10.88 (1H, br s), 9.48 (1H, br s)8.09 (dd, J = 8.2, 1.8 Hz, 1H), 7.80 –

7.58 (m, 1H), 7.00 (dd, J = 7.9, 1.7 Hz, 1H), 6.63 – 6.10 (m, 1H), 3.93 (s, 3H), 3.46 – 3.10

(m, 2H), 2.91 – 2.55 (m, 2H); 13C NMR (125 MHz, (CD3)2CO) δ 172.1, 171.5, 158.8,

153.3, 149.6, 143.1, 142.2, 119.9 (2), 115.0, 112.8, 108.3, 103.3, 53.1, 36.7, 28.8; (FAB) m/z

[M + Na+] for C16H14Cl2N2O5Na: 407.0174; found, 407.0177.

methyl 2-(3-((5-bromopyridin-2-yl)amino)-3-oxopropyl)-3-chloro-4,6-
dihydroxybenzoate (59)—29 mg, 68% yield, white amorphous solid: 1H NMR (500

MHz, CDCl3-MeOD) δ 8.31 – 8.19 (m, 1H), 8.19 – 8.05 (m, 1H), 7.84 – 7.71 (m, 1H), 6.54

– 6.28 (m, 1H), 3.94 (s, 3H), 3.42 – 3.35 (m, 2H), 2.63 (dq, J = 12.7, 3.8, 2.1 Hz, 2H); 13C

NMR (CDCl3-MeOD, 125 MHz): δ 171.5, 170.9, 162.1, 158.2, 150.2, 148.6, 141.6, 141.0,

115.5, 114.8, 114.5, 106.1, 102.6, 52.6, 36.4, 28.3. (FAB) m/z [M + Na+] for

C16H14BrClN2O5Na: 450.9672; found, 450.9681.

methyl 3-chloro-2-(3-((4-chloropyridin-2-yl)amino)-3-oxopropyl)-4,6-
dihydroxybenzoate (60)—16 mg, 64% yield, white solid. 1H NMR (500 MHz,

(CD3)2CO) δ 8.41 (dd, J = 2.0, 0.6 Hz, 1H), 8.28 (dd, J = 5.3, 0.6 Hz, 1H), 7.19 (dd, J = 5.3,

1.9 Hz, 1H), 6.55 (s, 1H), 3.99 (s, 3H), 3.56 – 3.42 (m, 2H), 2.98 – 2.81 (m, 2H). 13C NMR

(125 MHz, (CD3)2CO) δ 172.16, 171.34, 162.41, 158.69, 154.30, 150.12, 145.43, 142.93,

120.15, 113.98, 108.12, 103.20, 52.93, 36.62, 28.62. HRMS (FAB) m/z [M+Na+] for

C16H14Cl2N2O5Na: 407.0280; found, 407.0766.

methyl 3-chloro-2-(3-((3-chloropyridin-2-yl)amino)-3-oxopropyl)-4,6-
dihydroxybenzoate (61)—21 mg, 55% yield, white amorphous solid: 1H NMR (500

MHz, (CD3)2CO) δ 8.36 (dd, J = 4.7, 1.6 Hz, 1H), 7.92 (dd, J = 8.0, 1.6 Hz, 1H), 7.27 (ddd,

J = 8.0, 4.7, 0.6 Hz, 1H), 6.52 (s, 1H), 3.97 (s, 3H), 3.55 – 3.39 (m, 2H), 3.00 – 2.76 (m,

2H). 13C NMR (125 MHz, (CD3)2CO) δ 171.4, 171.28, 158.6, 149.3, 147.5, 143.2 (2),

139.3, 122.9 (2), 114.8, 108.14, 103.1, 52.9, 35.9, 28.8; (FAB) m/z [M + Na+] for

C16H14Cl2N2O5Na: 407.0174; found 407.0174.

methyl 2-(3-((3-bromopyridin-2-yl)amino)-3-oxopropyl)-3-chloro-4,6-
dihydroxybenzoate (62)—31 mg, 71% yield, white amorphous solid: 1H NMR (400

MHz, CDCl3-MeOD) δ 8.47 (dd, J = 4.7, 1.6 Hz, 1H), 7.98 (dd, J = 8.0, 1.6 Hz, 1H), 7.27 –
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7.22(m, 1H), 6.34 (s, 1H), 3.85 (s, 3H), 3.35 – 3.29 (m, 2H), 2.91 – 2.65 (m, 2H). 13C NMR

(125 MHz, CDCl3,): δ 172.8, 170.0, 161.2, 156.9, 149.7, 147.8, 141.7, 140.6, 124.9, 120.3,

113.8, 105.0, 101.4, 51.6, 36.3, 26.6. (FAB) m/z [M + Na+] for C16H14BrClN2O5Na:

450.9672; found, 450.9677.

methyl 3-chloro-2-(3-((5-chlorothiazol-2-yl)amino)-3-oxopropyl)-4,6-
dihydroxybenzoate (63)—17 mg, 44.7% yield, pale yellow amorphous solid: 1H NMR

(400 MHz, (CD3)2CO) δ 7.34 (s, 1H), 6.52 (s, 1H), 5.63 (s, 1H), 3.94 (s, 3H), 3.55 – 3.31

(m, 2H), 2.93 – 2.71 (m, 2H). 13C NMR (125 MHz, CDCl3-MeOD): δ 170.8 (2), 162.0,

158.1, 147.8, 141.8, 136.9, 129.5, 126.6, 125.3, 124.6, 120.9, 114.8, 106.2, 52.5, 30.8,

26.2; . HRMS (FAB) m/z [M +H+] for C14H13Cl2N2O5S: 390.9922; found, 390.9913.

methyl 2-(3-((5-bromothiazol-2-yl)amino)-3-oxopropyl)-3-chloro-4,6-
dihydroxybenzoate (64)—36 mg, 83% yield, gray amorphous solid: 1H NMR (500

MHz, (CD3)2CO) δ 7.33 (s, 1H), 6.52 (s, 1H), 3.94 (s, 2H), 3.60 – 3.28 (m, 2H), 2.93 – 2.78

(m, 2H). 13C NMR(125 MHz, (CD3)2CO): δ 170.9, 170.9, 162.2, 159.6, 158.1, 141.4, 137.7,

114.9, 106.1, 102.7 (2), 52.7, 34.7, 28.1; HRMS (FAB) m/z [M +Na+] for

C14H12BrClN2O5SNa: 456.9237; found, 456.9238.

methyl 2-(3-((5-bromo-1,3,4-thiadiazol-2-yl)amino)-3-oxopropyl)-3-chloro-4,6-
dihydroxybenzoate (65)—12 mg, 28% yield, gray amorphous solid: 1H NMR (500

MHz, (CD3)2CO) δ 6.53 (s, 1H), 3.94 (s, 4H), 3.59 – 3.43 (m, 2H), 3.05 – 2.84 (m, 2H). 13C

NMR (125 MHz, (CD3)2CO): δ 171.7, 161.6, 158.7, 142.2, 134.8, 130.6, 114.9, 108.1,

103.3, 79.3, 53.0, 35.2, 21.1. HRMS (FAB) m/z [M +H+] for C13H12BrClN3O5S: 435.9370;

found, 435.9377.
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Figure 1.
(A) Structures of natural product Hsp90 inhibitors GDA and RDC, chimeric inhibitor RDA,

and Grp94-selective inhibitor BnIm; (B) Co-crystal structure of RDA bound to Hsp90

(PDB: 2FXS); (C) Co-crystal structure of RDA bound to Grp94 (PDB: 2GFD)
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Figure 2.
Optimization of Amide Linker and Hydrophobic Moiety.a–d
a Compounds 2–6 (25 µM) were incubated with cGrp94 and FITC-GDA (tracer) for 24 h

before fluorescence polarization values were determined. b DMSO (1%) served as a negative

control (vehicle), and GDA (50 nM) served as the positive control. c All compounds tested

at 25 µM. d All compounds were tested in triplicate.
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Figure 3.
Evaluation of 2-Phenyl Substitutions a–d
a Compounds 7–15 (25 µM) were incubated with cGrp94 and FITC-GDA (tracer) for 24 h

before fluorescence polarization values were determined. b DMSO (1%) served as a negative

control (vehicle), and GDA (50 nM) served as the positive control. c All compounds tested

at 25 µM. d All compounds were tested in triplicate.
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Figure 4.
Evaluation of 3-Phenyl Substitutionsa–d
a Compounds 16–24 (25 µM) were incubated with cGrp94 and FITC-GDA (tracer) for 24 h

before fluorescence polarization values were determined. b DMSO (1%) served as a negative

control (vehicle), and GDA (50 nM) served as the positive control. c All compounds tested

at 25 µM. d All compounds were tested in triplicate.
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Figure 5.
Evaluation of 4-Phenyl Substitutionsa–d
a Compounds 25–37 (25 µM) were incubated with cGrp94 and FITC-GDA (tracer) for 24 h

before fluorescence polarization values were determined. b DMSO (1%) served as a negative

control (vehicle), and GDA (50 nM) served as the positive control. c All compounds tested

at 25 µM. d All compounds were tested in triplicate.
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Figure 6.
Evaluation of Heterocyclic Amidesa–d
a Compounds 38–48 (25 µM) were incubated with cGrp94 and FITC-GDA (tracer) for 24 h

before fluorescence polarization values were determined. b DMSO (1%) served as a negative

control (vehicle), and GDA (50 nM) served as the positive control. c All compounds tested

at 25 µM. d All compounds were tested in triplicate.
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Figure 7.
Evaluation of Amides 49–53a–d
a Compounds 49–53 (25 µM) were incubated with cGrp94 and FITC-GDA (tracer) for 24 h

before fluorescence polarization values were determined. b DMSO (1%) served as a negative

control (vehicle), and GDA (50 nM) served as the positive control. c All compounds tested

at 25 µM. d All compounds were tested in triplicate.
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Figure 8.
Inhibition of Grp94 and Hsp90a at 25 µM Illustrating Grp94-Selectivitya–e.
a Compounds (25 µM) were incubated with cGrp94 or Hsp90a and FITC-GDA (tracer) for

24 h before fluorescence polarization values were determined. b DMSO (1%) served as a

negative control (vehicle), and GDA (50 nM) served as the positive control. c All

compounds tested at 25 µM. d All compounds were tested in triplicate
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Figure 9.
Combinations of Key Features and their Grp94 Inhibitiona–d
a Compounds 54–65 (25 µM) were incubated with cGrp94 and FITC-GDA (tracer) for 24 h

before fluorescence polarization values were determined. b DMSO (1%) served as a negative

control (vehicle), and GDA (50 nM) served as the positive control. ND=not determined. c

All compounds tested at 25 µM. d All compounds were tested in triplicate.
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Figure 10.
a,b Inhibition of MDA-MB-231 Cell Migration by Compounds 38 and 46a–b
a MDA-MB-231 cells were incubated for 24 h prior to compound addition. b Cells were

incubated for 16 h and 24 h at 37°C with the respective conjugate indicated above (2.5 µM).
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Figure 11.
Effect of compounds 38 and 46 on Grp94 conformation. MDA-MB-231 cells were treated

with the indicated concentrations of 38 and 46 (concentrations listed are µM) or radicicol (R
15 µM) overnight, and cell lysates were immunoprecipitated with the conformational-

specific antibody 9G10 and subsequently were immunoblotted for Grp94. Lower panel,

immunoblot of whole cell lysates with 9G10.
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Figure 12.
Western blot analysis of IGF-II secretion into MDA-MB-231 breast cancer cell media upon

treatment with amides 38 and 46. H (high) represents a concentration equal to 10 µM. L

(low) represents a concentration equal to 1 µM. Radicicol (RDC, 15 µM) and

dimethylsulfoxide (DMSO, 100%) were employed as positive and negative controls,

respectively.
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Figure 13.
Western blot analyses of Hsp90-dependent client proteins from MDA-MB-231 breast cancer

cell lysate upon treatment with amides 38 and 46. H (high) represents a concentration equal

to 5-fold the anti-proliferative IC50 value. L (low) represents a concentration equal to 0.5-

fold the anti-proliferative IC50 value. Radicicol (RDC, 15 µM) and dimethylsulfoxide

(DMSO, 100%) were employed as positive and negative controls, respectively.
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Figure 14.
Effect of compounds 38 and 46 on Grp94 conformation. RPMI 8226 cells were treated with

the indicated concentrations of 38 and 46 (concentrations listed are µM) or radicicol (R 15

µM) overnight, and cell lysates were immunoprecipitated with the conformational-specific

antibody 9G10 and subsequently were immunoblotted for Grp94. Lower panel, immunoblot

of whole cell lysates with 9G10.
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Figure 15.
Western blot analysis of IGF-II secretion into RPMI 8226 cell media upon treatment with

amides 38 and 46. H (high) represents a concentration equal to 2-fold the anti-proliferative

IC50 value. L (low) represents a concentration equal to 0.25-fold the anti-proliferative IC50

value. Radicicol (RDC, 15 µM) and dimethylsulfoxide (DMSO, 100%) were employed as

positive and negative controls, respectively.
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Figure 16.
Western blot analyses of Hsp90-dependent client proteins from RPMI 8226 multiple

myeloma cell lysate upon treatment with amides 38 and 46. H (high) represents a

concentration equal to 5-fold the anti-proliferative IC50 value. L (low) represents a

concentration equal to 0.5-fold the anti-proliferative IC50 value. Radicicol (RDC, 15 µM)

and dimethylsulfoxide (DMSO, 100%) were employed as positive and negative controls,

respectively.
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Figure 17.
Summary of SAR for Grp94 Binding of RDA Based Derivatives.
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Scheme 1.
Development of RDA-Based Grp94 Inhibitors
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Table 1

Kd’s of 8, 17, 27, 38, and 46 for Grp94.a–d

entry Kd (µM)

8 1.85 (±0.22)

17 6.42 (±0.92)

27 1.50 (±0.18)

38 0.82 (±0.09)

46 1.08 (±0.13)

47 1.54 (±0.26)

a
Compounds 8, 17, 27, 38, 46 and 47 were incubated with cGrp94 and FITC-GDA (tracer) for 24 h before fluorescence polarization values were

determined.

b
DMSO (1%) served as a negative control (vehicle), and GDA (50 nM) served as the positive control.

c
All compounds were tested in triplicate.

d
Millipolarization (mP) units were used to determine % tracer bound.
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Table 2

a–c Anti-proliferative Evaluation of 38 and 46 in RPMI 8226 Cells

entry IC50 (µM)

38 9.12 (±0.4)

46 7.83 (±2.2)

a
RPMI 8226 cells were incubated for 24 h prior to drug addition.

b
Cells were incubated for 72 h at 37°C in 5% CO2 with the respective conjugate.

c
All experiments were performed in triplicate.
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