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Abstract

The development of an all-glass separation-based sensor using microdialysis coupled to microchip

electrophoresis with amperometric detection is described. The system includes a flow-gated

interface to inject discrete sample plugs from the microdialysis perfusate into the microchip

electrophoresis system. Electrochemical detection was accomplished with a platinum electrode in

an in-channel configuration using a wireless electrically isolated potentiostat. To facilitate bonding

around the in-channel electrode, a fabrication process was employed that produced a working and

a reference electrode flush with the glass surface. Both normal and reversed polarity separations

were performed with this sensor. The system was evaluated in vitro for the continuous monitoring

of the production of hydrogen peroxide from the reaction of glucose oxidase with glucose.

Microdialysis experiments were performed using a BASi loop probe with an overall lag time of

approximately five minutes and a rise time of less than 60 seconds.
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1. Introduction

Microdialysis is a well-established sampling technique that makes it possible to perform

continuous monitoring of small molecules present in complex media both in vivo and in

vitro. Sampling is accomplished by pumping a perfusate solution that is similar in

composition to the sample being analyzed through a semipermeable probe. Small molecules

then diffuse across the membrane based on the concentration gradient while larger

compounds, such as proteins and other macromolecules, are excluded. Sampling is generally

performed at flow rates of one microliter per minute or less in order to obtain good temporal

resolution and high analyte recoveries. Since most analytical methods require several
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microliters of sample for analysis, this leads to temporal resolution of tens of minutes. For

the best temporal resolution, techniques able to analyze submicroliter samples are desirable.

Toward this end, capillary electrophoresis has been used extensively for the analysis of

microdialysis samples due to its nanoliter-to-picoliter volume requirements.[1–5]

More recently, microchip electrophoresis (MCE) has been employed for the analysis of

microdialysis samples.[3–14] Like capillary electrophoresis, it has several advantages for

analysis of these samples. These include the ability to analyze submicroliter sample volumes

and the potential to perform fast, highly efficient separations. In addition, MCE offers the

possibility of integrating sample preparation and detection components directly into the

chip. Huyhn et al. first reported the direct coupling of microdialysis with microchip

electrophoresis (MD-MCE) in 2004.[12] This marriage of techniques leads to a separation-

based sensor that is capable of monitoring in vivo concentrations of several analytes

simultaneously for near real-time analysis.

Pre-, post-, and in-channel derivatization with fluorescence detection are the most common

approaches employed for the detection of analytes by microdialysis-microchip

electrophoresis systems.[8–14] Coupling MD-MCE with LIF detection is a popular method

for obtaining high temporal resolution for near real-time analysis of primary amines. While

this method is selective and sensitive, not all compounds of interest can be easily

derivatized. In addition, derivatization adds complexity to the design and fabrication of the

microchip device.

Applications of microdialysis-microchip electrophoresis with electrochemical detection

(MD-MCE-EC) are less common. The most significant work has been performed by the

Martin group using PDMS devices that are equipped with integrated, pneumatically actuated

valves used to introduce sample plugs from the microdialysis stream into the separation

channel. This approach has been employed for MD-MCE-EC monitoring of dopamine

released from PC 12 cells in culture.[15] Electrochemical detection was accomplished using

carbon ink microelectrodes printed on a glass plate with palladium contact pads overlaid

with the PDMS microfluidic device.

A goal of our research group is to develop a separation-based sensor that can be placed on-

animal for continuous monitoring of drug metabolism and neurotransmitters in freely

roaming animals.[16] Since the entire system (chip and associated electronics) must be able

to fit on the back of a large laboratory animal, using pneumatically actuated valves is not

feasible. For these reasons, we have developed an all-glass microfluidic device with flow-

gated injection for MD-MCE-EC. In this case, the injection process can be remotely

controlled using a telemetry-enabled power supply mounted to a miniaturized portable

device. An all-glass microfluidic device was chosen over one made of PDMS because it can

withstand higher pressures without delamination. Additionally, the electroosmotic flow in

glass MCE devices is more reproducible and stable over long periods of time.[17] There have

been few reports in the literature concerning the fabrication of an all-glass chip with

integrated electrochemical detection for microchip electrophoresis.[18–22] The main deterrent

in producing such devices is the ability to completely seal the two pieces of glass in the
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vicinity of the electrode, especially in the cases where the electrode (or decoupler) is placed

in the channel.

In this paper, we describe the fabrication and evaluation of an all-glass MD-MCE chip with

integrated electrochemical detection. Electrochemical detection is accomplished in an in-

channel configuration using an electrically isolated wireless potentiostat.[23] The device is

evaluated for the in vitro monitoring of hydrogen peroxide generated by glucose oxidase, as

well as for the separation and detection of biological analytes in both positive and negative

polarity mode.

2. Materials and Methods

2.1. Reagents and Materials

Tetradecyltrimethyl ammonium bromide (TTAB), sodium nitrite, sodium chloride, ascorbic

acid, and glucose were purchased from Sigma-Aldrich (St. Louis, MO). Boric acid, 49%

hydrofluoric acid, hydrochloric acid, hydrogen peroxide, nitric acid, methanol, isopropyl

alcohol and acetone were purchased from Fisher Scientific (Pittsburgh, PA). Glucose

oxidase was purchased from BBI Enzymes (Madison, WI). Solutions were prepared in

deionized water (18 MΩ) using a Millipore A10 system (Billerica, MA). Chrome and

AZ1518 photoresist-coated soda-lime glass blanks were obtained from Nanofilm (Westlake

Village, CA). AZ® 300 MIF was purchased from Capitol Scientific, Inc. (Austin, TX).

Chrome etchant (CR-7S) was purchased from Cyantek Corp. (Freemont, CA). Platinum (Pt)

and titanium (Ti) sputtering targets were purchased from the Kurt J. Lesker Company

(Jefferson Hills, PA). Colloidal silver was purchased from Ted Pella, Inc. (Redding, CA).

PEEK tubing was purchased from IDEX Health & Science (Oak Harbor, WA). DL-1 loop

microdialysis probes were purchased from BAS, Inc. (West Lafayette, IN).

2.2. Microchip Fabrication

The all-glass microdialysis-microchip electrophoresis device with embedded platinum

working and reference electrodes was fabricated in-house. The chip configuration is shown

in Figure 1. The microfluidic channels and integrated electrode designs were drawn using

AutoCAD software (Autodesk, San Rafael, CA) to produce a negative tone mask

transparency (Infinite Graphics, Inc., Minneapolis, MN). The printed masks were overlaid

on 4″ × 4″× 0.060″ chrome and AZ1518 photoresist coated soda-lime glass blanks. The

plates were photolithographically patterned using an I-line UV flood source with an

exposure dose of 86 mJ/cm2 (ABM, Inc., Scotts Valley, CA), developed in AZ® 300 MIF

for 30 seconds and baked at 100°C for 10 minutes using a hot plate. Once the photoresist is

developed and hardened, the exposed chrome layer is etched using chrome etchant.

Fluid wells were drilled in the plate containing the microfluidic channels using a 1.55 mm

diamond drill bit (TrueBite, Inc., Vestal, NY) mounted in a Dremel® drill press. The

microfluidic wells and access holes were drilled before the glass was etched. This allows the

etching process to smooth the splintering and roughness of the access holes caused during

the drilling process, as well as to remove any debris from the drilling process. The plates

were then etched at a rate of 5 μm/min in a 20:14:66 solution (49% hydrofluoric acid:

concentrated nitric acid: water) to a depth of 15 microns for the microfluidic channels.[24]
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Etch depths were verified using an Alpha-Step 200 stylus profilometer (Tencor, Milpitas,

CA). The patterned and etched glass blanks were then cut into individual chips using a

tungsten carbide cutting wheel, resulting in four chips per plate. Following a thorough water

rinse, the etched plates were placed in an acetone bath to dissolve the layer of AZ® 1518

photoresist. The remaining chromium was then removed from each piece using CR-7S

etchant.

To produce the embedded platinum electrodes, recesses in a separate glass plate for

electrode deposition were patterned and developed using the same photolithographic

methods as described above. However, in this case, the patterned glass plates were etched in

10:1 buffered oxide etchant (JT Baker, Austin, TX) with an etch rate of 0.35 μm/min, to

produce a trench with a depth of approximately 400 nm. Following a thorough water rinse,

the plate was dried on a hotplate at 100°C for 10 minutes. It was then exposed to oxygen

plasma (March Plasmod, Concord, CA) for 1 minute in order to promote adhesion of the

metal to the etched glass surface.[25] Immediately following the oxygen plasma treatment,

the glass plate was placed directly into the vacuum chamber of an AXXIS DC magnetron

sputtering system (Kurt J. Lesker Co.) and pumped down to a base pressure of 5.0 × 10−7

Torr. Using argon as the process gas, a 20 nm adhesion layer of titanium was deposited,

followed by a 400 nm layer of platinum metal. All deposition was done at a pressure of 2.4

× 10−3 Torr, with applied powers of 220 W and 200 W, respectively. The excess metal

around the electrodes was lifted off in an acetone bath. The remaining chromium layer was

removed from each piece using the aforementioned CR-7S etchant. This process resulted in

glass plates with embedded Pt electrodes, as can be seen in Figure 1.

To complete the fabrication of the microfluidic device, the two halves were thoroughly

scrubbed with an Aconox™ soaked sponge, and rinsed with DI water.[26] After drying with

nitrogen, the two halves were then exposed to an oxygen plasma for 2 min. After plasma

treatment, the two halves were brought together under a stream of deionized pure water, and

then visually inspected for the presence of air bubbles between the glass plates. If bubbles

were present, the plates were pried apart and the previous step repeated until none were

present. The plates were then more-precisely aligned under a microscope so that the front of

the working electrode was positioned no more than five microns into the end of the

separation channel. Four assembled chips were then placed between two ceramic tiles in a

programmable muffle furnace (750 Series, Fisher Scientific) for thermal bonding, with a 300

g weight being placed over each chip (11.6 g/cm2). The temperature ramping protocol that

follows was adapted from previous publications.[27] The temperature was ramped from 25°C

to 540°C at 3°C/min, then ramped to 630°C at a rate of 4°C/min. The temperature was held

at 630°C for 3 hours, cooled at 3°C/min to 540°C, and then cooled at 1.5°C/min to the

annealing temperature of 510°C and held there for 30 minutes. Following the annealing

process, the furnace was cooled to 460°C at 0.5°C/min to minimize the induction of stress

after annealing. After the kiln temperature was below the strain point of the glass, it was

cooled to room temperature at 5°C/min.

Additionally, for some of the devices used in this study, a calcium-assisted bonding step, as

described by Chiu et al., was used in conjunction with full thermal bonding.[28] For the

calcium-assisted bonding step, the substrate surfaces were washed with a 5% Alconox™
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solution by using a fiber wipe to gently scrub each plate with the solution. The substrates

were then washed again in a 5% Alconox™/5% calcium acetate solution and then the etched

sides of each plate were gently rubbed together for approximately 2 minutes. This wash step

with 5% Alconox™/5% calcium acetate solution was repeated three times. The plates of

glass were rinsed with water while the electrodes and the microfluidic channels were

roughly aligned by hand. The chip was then visually inspected to ensure that no air bubbles

were present between the glass plates. The plates were then more precisely aligned under a

microscope so that the front of the working electrode was positioned no more than five

microns into the end of the separation channel. The assembled chip was then clamped using

binder clips to ensure that the electrode alignment did not shift during processing. The

clamped chip was then placed in a low temperature oven (Lindberg/Blue-M, SPX Thermal

Product Solutions, Riverside, MI) at 65°C for one hour after which time the temperature was

increased to 110°C for a minimum of 2 hours. Longer curing times of up to 96 hours for the

calcium-assisted bonding promote a significantly higher success rate for full thermal

bonding of the substrates. The assembled chip was then inspected for proper electrode

alignment and for areas of nonspecific binding identified by Newton rings. In the case of

electrode misalignment or the formation of Newton rings, the chip can easily be pried apart

and reassembled by repeating the procedure above until all requirements are met. This

process, while more time intensive, allows for the elimination of weights used in the thermal

bonding process.

After the glass plates were bonded together, bonded port connectors and fittings were

attached to the chip using LS EPOXY two-part adhesive (Labsmith, Livermore, CA) over

one of the access holes for the microdialysis sampling channel. Copper wires were also

connected to the platinum reference and working electrodes through the access holes using

colloidal silver.

2.3. Evaluation On-line

2.3.1. Direct infusion method—Direct infusion experiments were accomplished using a

CMA 107 syringe pump (N. Chelmsford, MA) connected to the chip using 15cm of 1/32 ×

0.005 PEEK tubing. The syringe was filled with either 50 mM boric acid buffer at pH 9.2, or

10 mM boric acid buffer containing 2 mM TTAB at pH 9.2, depending on the experiment.

The experimental setup is shown in Figure 2A.

2.3.2. Microdialysis sampling—Microdialysis sampling was accomplished using a

BASi loop microdialysis probe with a 1 cm membrane and 30 kDa molecular weight cut-off.

Each side of the 1 cm semipermeable membrane has 16 cm of fluorinated ethylene

propylene (FEP) tubing, which can be cut to desired lengths. The probe was placed in an

open 2 mL sample vial, which was used as a reaction well. The reaction well was then

placed in a sample holder and secured to a stage (Fig. 2B). The FEP tubing from the probe

was connected to the syringe pump; all 16 cm of the attached tubing was used in this case.

To connect the probe to the chip, 6 cm of the 1/32 × 0.005 FEP tubing was removed and

replaced with 5 cm of PEEK tubing with similar dimensions using tubing connectors. The

probe was connected to the chip using 1/32 LabSmith connectors and fittings (LabSmith,
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Livermore, CA). This setup results in having 16 cm of tubing going from the syringe to the

probe and 15 cm of tubing going from the probe to the chip.

Before each experiment, a conditioning procedure was performed on the chip that consisted

of a rinse with methanol for 5 minutes followed by deionized water for 5 minutes. The chip

was then rinsed with 0.1 N HCl for 5 minutes, followed by deionized pure water for 5

minutes. The final conditioning step consisted of a 10-minute rinse with 0.1 N NaOH

followed by an additional 10-minute rinse with the run buffer. Following the conditioning

procedure, the chip was secured to a stage. A high voltage lead was placed into the buffer

reservoir of the chip, and ground leads were placed into the buffer waste and sample waste

reservoirs. The voltage applied to the buffer reservoir was set at ± 1600 V (positive/reverse

polarity). Using Kirchoff’s rules for calculating field strength, as described by Seiler et al., a

field strength of 254 V/cm for the 2.5 cm separation channel was calculated.[29] Prior to

each injection, the charging current of the working electrode was allowed to dissipate,

producing a stable baseline. The microdialysis flow rate was 1.0 μL/min. The injection time

was set at 1 second. Analysis took between 40 and 60 seconds, depending on the analyte of

interest.

2.3.3. Detection—A Pinnacle model 9051 electrically isolated wireless potentiostat

(Pinnacle Technology, Lawrence, KS) was employed for detection in a two-electrode format

at a 13 Hz sampling rate. Physical contact between the electrode and the potentiostat was

accomplished using colloidal silver and copper wire. The 9051 single-channel isolated

potentiostat maintains a set voltage bias of up to 4 V between the working and reference

electrodes, and wirelessly transmits up to 2 digitized signals directly to a Bluetooth® module

connected to a PC at a sample rate of 1 sample/sec. The Bluetooth® module directly imports

the data to the PC with support from Serenia software suites.

The electrochemical cell consisted of platinum working (15 μm) and reference electrodes

(300 μm) deposited into a 400 nm channel etched into the glass surface. The working

electrode was aligned directly at the edge of the separation channel using in-channel

alignment, with the electrode being no more than 5 μm inside the separation channel. Using

the 9051 electrically isolated potentiostat makes it possible to place the working electrode

directly in the separation channel without destroying the potentiostat. For in-channel

alignment, the separation potential creates a positive bias shift in reverse polarity

separations, and a negative bias shift in positive polarity separations. The bias applied to the

electrode depends on its exact alignment in the separation channel, with compensation for

the bias shift adjusted according to the mode of separation.[23]

3. Results and Discussion

3.1. Device Fabrication

The aim for the microchip fabrication processes was to develop a simple and reproducible

method for integrating a metal electrode into an all-glass chip with a good success rate.

Previous reports by Crain et al. describe a fabrication process for an all-glass microfluidic

device using multiple acid-based cleaning steps and a final RCA base cleaning step.[30] Our

group was able to eliminate the use of these potentially dangerous cleaning steps while
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maintaining a high success rate. This was achieved in three ways. First, by drilling the

access holes prior to channel etching, small particles that remained from the drilling step

were dissolved away in the hydrofluoric acid used to make the channels. Secondly, it was

found that simply scrubbing the glass with soap and water prior to device assembly was

sufficient to remove organic and particulate contamination from the surface. Lastly, by

implementing a calcium-assisted bonding step as described by Allen et al.[28], bonding

success was guaranteed before the assembled pieces were subjected to the irreversible, high-

temperature thermal bonding process.

In the all-glass MCE-EC device described by the Baldwin group, the end-channel

configuration, in which the electrode was placed just outside the separation channel in the

detection reservoir, was used. To help mitigate some of the effects of band broadening

induced by the end-channel alignment, a curved working and reference electrode design was

used.[19–21, 30] In this work, in-channel alignment was used to eliminate the effects of band

broadening that can be generated due to the end-channel alignment of the electrodes.

Some publications have reported the use of simple replaceable working electrodes for

amperometric detection in microchip electrophoresis. This approach uses a fixed electrode

holder at the outlet of the separation channel.[31–33] While this can decrease the overall

production cost of the chip, it requires a supplementary detection cell along with the use of a

three-dimensional micromanipulator, thus increasing the complexity of the analytical

system. The use of micromanipulators also reduces the ability to miniaturize the system,

while minimizing the potential for making this a truly portable device. Conversely, our chip

design implements an integrated reference, thus simplifying fabrication and experimental

setup.

3.2. Evaluation of Chip by Direct Infusion

The microfluidic device used in these studies employs a flow-through gated injection

scheme. The approach was adapted from Lin et al.,[34] who used it in a direct injection

scheme with fluorescence detection; it has been previously described by our group for

microdialysis sampling.[7,12,14] In our system, a syringe pump was used to deliver the

dialysate through the enlarged flow channel at the top of the device. This flow generates a

hydrodynamic pressure inside the microfluidic channels. A gate is established by applying

an electric field between the high voltage lead and the respective ground leads at the waste

reservoirs (Fig. 1). This prevents the sample from prematurely entering to the separation

channel. In order to introduce a discrete sample plug into the separation channel, the high

voltage is floated, introducing the pressure-driven perfusate into the separation channel. The

gate is then reestablished after a specified amount of time by reapplying the high voltage.

Thus, injection time and flow rate define the sample plug size that is introduced into the

separation channel.

3.3. Reverse Polarity Separations

The system was first evaluated in reverse polarity for the continuous monitoring of hydrogen

peroxide and nitrite with direct infusion of the analyte. Using 10 mM boric acid containing 2

mM TTAB at pH 9.2 as a run buffer, 1 mM standard solutions of both nitrite and hydrogen
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peroxide were perfused into the chip at a flow rate of 1 μL/min (Fig. 2A). The

electrophoretic separation was accomplished in 20 seconds (Fig. 3). Ten sequential

injections resulted in an average peak heights of 4.7 nA for nitrite and 4.4 nA for hydrogen

peroxide, with RSD values of 7.4% and 10.8%, respectively (n = 10). This separation

demonstrated the ability to perform fast sampling and separations on chip, along with the

ability of the system to perform these separations over repeated injections with a reasonably

low relative standard deviation.

In a separate experiment, a 1 mM standard solution of nitrite, ascorbic acid, and hydrogen

peroxide in 10 mM boric acid and 2 mM TTAB at pH 9.2 was perfused through the chip at a

flow rate of 1 μL/min (Fig. 4). This experiment was run to evaluate the ability of the chip to

perform separations of multiple analytes with baseline resolution. The separation of the three

analytes was accomplished in 20 seconds with an average peak height of 4.1 nA for nitrite,

8.2 nA for ascorbic acid, and 1.8 nA for H2O2, with RSD values of 7.5%, 6.52% and 4.3%,

respectively (n = 10).

3.4. Positive Polarity Separation

The system was then evaluated in positive polarity with a 50 mM boric acid buffer at pH

9.2. A standard solution of 1 mM hydrogen peroxide was used with direct infusion to test

the system’s versatility (Fig. 5). For this experiment, the separation time was allotted at 45

seconds, with an average peak height of 3.9 nA and an RSD value of 8.27% (n=10). Positive

polarity along with simple boric acid buffer was used for these MD experiments to eliminate

the use of a surfactant, which could interfere with the recovery of analyte at the probe and

inhibit enzyme activity.

3.5. Microdialysis-Microchip Electrophoresis with Electrochemical Detection

The system was evaluated for MD sampling. These experiments were conducted using

positive polarity with the experimental setup shown in Figure 2B. A BASi loop probe was

specifically chosen for its flexibility, size (1.2mm OD at thickest point), and

biocompatibility; it will also be employed for future on-animal experiments using dermal

sampling. The total length of tubing from the probe to the chip was 15 cm and the flow rate

of the pump was 1 μL/min. Figure 6 shows the response obtained when 100 μL aliquots of

10 mM hydrogen peroxide standard were serially added at five minute intervals to the

sample vial that contained the microdialysis probe immersed in 50 mM boric acid buffer.

The lag time, defined as the period of time it takes for the analyte of interest to be

transferred from the probe to the device for sample injection and subsequent detection, was

5 minutes. The rise time was also measured; this is defined as the period of time which is

required for the probe to achieve 90% of the response to the change in concentration.[35] In

this case, the rise time was less than the separation time (60 seconds), leading to an overall

temporal resolution of one minute for these studies.

3.6. Monitoring Enzymatic Generation of H2O2 by MD-MCE-ED

To demonstrate the ability of this system to continuously monitor an enzymatic reaction, the

generation of hydrogen peroxide from glucose oxidase was measured. Glucose oxidase

readily catalyzes glucose to gluconic acid, with simultaneous production of hydrogen
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peroxide. The BASi loop microdialysis probe was placed in a vial containing 50 mg of

glucose oxidase (360 U/mg) in 1 mL of 50 mM boric acid buffer at pH 9.2. A large excess

of enzyme was used due to its low activity at pH 9.2. The probe was perfused with 50 mM

boric acid buffer at a flow rate of 1 μL/min. A baseline for the sample prior to the addition

of glucose was measured for 30 minutes, resulting in no visible amperometric peak for

peroxide (Fig. 7). 100 μL aliquots of 1 mM glucose were then added to the vial of glucose

oxidase using passive mixing; a steady increase in hydrogen peroxide was observed. Figure

7 shows the electropherogram obtained for hydrogen peroxide as a function of time

following the addition of glucose to the reaction vial.

4. Conclusions

In this paper, an on-line microdialysis-microchip electrophoresis system using integrated in-

channel electrochemical detection with a platinum electrode is described. The device can be

employed in either positive or negative polarity. The lag time, response time, and temporal

resolution for the device were determined using hydrogen peroxide as a model analyte.

Finally, the device was evaluated for continuous monitoring of hydrogen peroxide generated

by glucose oxidase in the presence of glucose. The ultimate goal is to use this chip in

conjunction with a portable analysis system for the continuous monitoring of drugs and

neurotransmitters in awake, freely roaming animals.
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Figure 1.
A schematic of the “double T” 2.5 cm microchip design and electrode placement for flow-through studies MD-MCE studies

with channel dimensions. All microfludic channels were etched to 15 μm deep and 40 μm wide, except for the microdialysis

inlet channel, which was 500 μm wide.
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Figure 2.
A) Experimental setup for the direct perfusion of analyte into the device. B) Experimental setup for the microdialysis sampling,

which includes the loop microdialysis probe inside the reaction well.
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Figure 3.
Separation of nitrite and hydrogen peroxide using direct infusion and reversed polarity. Perfusate buffer: 10 mM boric acid and

2 mM TTAB at pH 9.2, 1 mM nitrite and 1mM hydrogen peroxide, at a flow rate of 1 μL/min. Separation buffer: 10 mM boric

acid and 2 mM TTAB at pH 9.2. The applied voltage was −1600 V, generating a field strength of 254 V/cm, with an injection

time of 1 second. The working electrode was set to a 1.1 V bias to the Pt reference electrode.
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Figure 4.
Separation of 1 mM nitrite, 1 mM ascorbic acid, and 1 mM hydrogen peroxide using direct infusion. Syringe pump buffer: 10

mM boric acid and 2 mM TTAB at pH 9.2, 1 mM nitrite, 1 mM ascorbic acid, and 1 mM hydrogen peroxide. All other

conditions are identical to figure 3.

Scott et al. Page 14

Chemphyschem. Author manuscript; available in PMC 2014 July 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 5.
Detection of 1 mM hydrogen peroxide using direct infusion and normal polarity. Syringe pump buffer: 50 mM boric acid at pH

9.2. Separation buffer consisted of 50 mM boric acid at pH 9.2. The applied voltage was +1600 V. All other conditions are

identical to figure 3.
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Figure 6.
On-line microdialysis sampling with serial additions of hydrogen peroxide standard to the vial containing the microdialysis

probe. Microdialysis perfusate: 50 mM boric acid at pH 9.2. The 2 mL vial contained 50 mM boric acid at pH 9.2. 100 μL of

10mM hydrogen peroxide was serially added to the reaction well. Separation and detection conditions were identical to Figure

5. Syringe pump was set at a flow rate of 1 μL/min for microdialysis sampling.
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Figure 7.
Enzymatic reaction-induced concentration change experiment with glucose oxidase to produce hydrogen peroxide. Syringe

pump buffer: 50 mM boric acid at pH 9.2. The 2 mL reaction well contained 1 mL of 50 mM boric acid at pH 9.2 and 50 mg of

glucose oxidase. 100 μL of 1 mM glucose was added to the reaction well to stimulate the production of hydrogen peroxide. All

other conditions are identical to those in Figure 6.
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