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Abstract

Acute myeloid leukemia (AML) is the most common form of adult leukemia. The transcription 

factor fusion CBFβ-SMMHC (core binding factor β and the smooth-muscle myosin heavy chain), 

expressed in AML with the chromosome inversion inv(16)(p13q22), outcompetes wild-type CBFβ 

for binding to the transcription factor RUNX1, deregulates RUNX1 activity in hematopoiesis, and 

induces AML. Current inv(16) AML treatment with nonselective cytotoxic chemotherapy results 

in a good initial response but limited long-term survival. Here, we report the development of a 

protein-protein interaction inhibitor, AI-10-49, that selectively binds to CBFβ-SMMHC and 

disrupts its binding to RUNX1. AI-10-49 restores RUNX1 transcriptional activity, displays 

favorable pharmacokinetics, and delays leukemia progression in mice. Treatment of primary 

inv(16) AML patient blasts with AI-10-49 triggers selective cell death. These data suggest that 

direct inhibition of the oncogenic CBFβ-SMMHC fusion protein may be an effective therapeutic 

approach for inv(16) AML, and they provide support for transcription factor targeted therapy in 

other cancers.

Acute myeloid leukemia (AML) is the most common form of adult leukemia (1). Long-term 

survival for AML remains poor and varies with the mutational composition of the leukemic 

cells. The transcription factor fusion CBFb-SMMHC (fusion of core binding factor β and 

smooth-muscle myosin heavy chain), expressed in AML with the chromosome inversion 

inv(16)(p13q22), cooperates with activating mutations in components of cytokine signaling 

pathways in leukemia transformation (2–5). CBFb is a component of the heterodimeric 
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transcription factor core binding factor, where it binds to RUNX proteins and enhances their 

affinity for DNA (6), and the resulting complex plays a key role in regulating hematopoiesis 

(7). CBFβ-SMMHC outcompetes CBFb for binding to RUNX1 (8), deregulates RUNX1 

transcription factor activity in hematopoiesis, and induces AML. Current inv(16) AML 

treatment with nonselective cytotoxic chemotherapy results in a good initial response but 

limited long-term survival. Studies in mice and patient samples support the concept that 

inv(16) is a driver mutation that generates preleukemic progenitor cells that, upon 

acquisition of additional cooperating mutations, progress to leukemia (3, 4, 9-12).

To develop a targeted inhibitor of CBFβ-SMMHC function, we used a previously described 

fluorescence resonance energy transfer (FRET) assay (13) with Venus-CBFβ-SMMHC 

replacing Venus-CBFb (fig. S1) to screen the National Cancer Institute, NIH, Diversity Set 

for compounds that inhibit the binding of CBFβ-SMMHCto theRUNX1 Runt domain. This 

screen identified the active compound AI-4-57 with a 50% inhibitory concentration (IC50) of 

22 μM, whereas AI-4-88, a derivative lacking the methoxy functionality, is inactive (Table 

1). Changes in the chemical shifts in a nuclear magnetic resonance (NMR) spectrum of a 

protein upon binding of a small molecule are a powerful method to confirm binding to a 

protein. We recorded two-dimensional 2D 15N-1H heteronuclear single quantum coherence 

(HSQC) spectra and 1D saturation transfer difference (STD) NMR experiments of AI-4-57 

with CBFβ and the Runt domain. No interaction was observed for the Runt domain, but we 

can demonstrate chemical shift perturbations in the HSQC spectrumof CBFβ upon addition 

ofAI-4-57 (Fig. 1A) and no changes upon addition of the inactive derivative AI-4-88 (fig. 

S2), which establishes that the compound binds to CBFβ. Chemical shift perturbations in the 

backbone and in two aromatic side chains [tryptophan at position 113 (W113) and tyrosine 

at position 96 (Y96)] indicate that the compound binds in a site spatially close to CBFβ but 

not on the protein-protein interaction surface on CBFβ, that is, it acts in an allosteric manner 

to inhibit binding (fig. S3).

We have shown that a reduced dosage of CBFβ in the presence of a CBFβ-SMMHC knockin 

allele enhances leukemogenesis in mice (14) and argue that selectivity for CBFβ-SMMHC 

versus CBFβ is critical for in vivo utility. To achieve such specificity, we have taken 

advantage of the state of the two in solution: CBFβ-SMMHC is oligomeric, whereas CBFβ 

is monomeric (8, 15) and have applied the principles of polyvalency (16, 17) to develop 

derivatives of AI-4-57 with enhanced potency and selectivity (Fig. 1B). Substitutions at the 

five position of the pyridine ring do not affect activity (Table 1), sowe have utilized 

polyethylene glycol-based linkers at this position to create bivalent derivatives with 5-, 7-, 

10-, and 16-atom linker lengths (Table 1). Measurement of the IC50 values with the FRET 

assay (Fig. 1C) shows that the five-atom linker compound has less activity, but the longer 

linker compounds show potent inhibition with the seven-atom linker inhibitor (AI-4-83) 

yielding a 350 nM IC50, which corresponds to a 63-fold enhancement over themonovalent 

compound (Fig. 1D and Table 1). In addition, AI-4-83 achieves >10-fold dissociation of 

CBFβ-SMMHC andRUNX1 Runt domain at saturating concentrations (Fig. 1D).

The activity of the bivalent inhibitors on cell growth was tested in three human leukemia cell 

lines [ME-1, inv(16) cell line; Kasumi-1, t(8;21) cell line; and U937, lymphoma cell line] by 

using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) conversion 
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assay. Mimicking the results obtained with the FRET assay, even in terms of relative 

efficacy, growth of inv(16) cell line ME-1 was sensitive to compounds AI-4-71, AI-4-83, 

and AI-4-82 but not to AI-10-19 (Fig. 1E). In contrast, growth of non-inv(16) cell lines 

U937 and Kasumi-1 was unaffected over the same concentration range (fig. S4, A and B), 

which demonstrated a high degree of specificity and suggested that the activity of these 

bivalent compounds was on target.

Analysis of the pharmacokinetic properties of AI-4-57 showed that the compound has a 

short half-life (t½ = 37 min) in mouse plasma (fig. S5) and that loss of the methyl group 

from the methoxy functionality is the primary metabolite. Trifluoromethoxy (CF3O) 

substitutions have been shown to be less reactive (18, 19), so we synthesized AI-10-47 with 

this substitution. FRET measurements show that this substitution actually enhances the 

activity of the monovalent compound (Table 1). Measurements of stability in liver 

microsomes showed that AI-10-47 reduced the metabolic liability and so justified the 

synthesis of the bivalent derivative AI-10-49 (Table 1).AI-10-49 is potent (FRET 

IC50=260nM) (Table 1) [isothermal titration calorimetry (ITC) measurements yielded a 

dissociation constant (KD) = 168 nM] (fig. S6), has improved in vivo pharmacokinetic 

properties (t½ = 380min) (fig. S5), and has enhanced inhibitory activity on ME-1 cell 

growth (IC50 = 0.6 mM) (Fig. 1F) compared with the parent protonated bivalent compound 

AI-4-83 (IC50 of ~3 μM) (Fig. 1E). Note that AI-10-49 showed negligible activity (IC50 > 

25 μM) in normal human bone marrow cells (Fig. 1G), which indicated a robust potential 

therapeutic window. In a panel of 11 human leukemia cell lines, ME-1 cells were the only 

cell line highly sensitive to AI-10-49 (fig. S7).

The specificity of AI-10-49 in disrupting endogenous RUNX1 binding to CBFβ-SMMHC 

versus CBFβ was assessed in ME-1 cells. AI-10-49 effectively dissociatedRUNX1 from 

CBFβ-SMMHC, with 90% dissociation after 6 hours of treatment, whereas it had only a 

modest effect on CBFβ-RUNX1 association (Fig. 2A). The stability of RUNX1, CBFβ, 

andCBFβ-SMMHCwas not affected by AI-10-49 (fig. S8A). Expression of the RUNX1-

regulated genes RUNX3, CSF1R, and CEBPA is repressed by CBFβ-SMMHC in 

inv(16)AML (20-22). Previous studies have shown decreased RUNX1 binding to target 

genes in the presence of CBFβ-SMMHC (23, 24), which suggests that CBFβ-SMMHC 

represses RUNX1 target genes by blocking binding ofRUNX1 to targetDNAsites (Fig. 2B). 

Consistent with this model, chromatin-immunoprecipitation (ChIP) assays showed that 

treatment of ME-1 cells for 6 hours with AI-10-49 increased RUNX1 occupancy 8-, 2.2-, 

and 8-fold at the RUNX3, CSF1R, and CEBPA promoters, respectively, whereas no 

enrichment was observed at control loci (Fig. 2C and fig. S8, B and C). In accordance with 

this, treatment of ME-1 cells for 6 or 12 hours with AI-10-49 increased expression of 

RUNX3, CSF1R, and CEBPA but had no effect on control gene PIN1 (Fig. 2D).Neither of 

these effectswas observed in inv(16)-negative U937 cells. These data establish AI-10-49 

selectivity in inhibiting CBFβ-SMMHC binding to RUNX1 and validate our approach of 

using bivalent inhibitors to achieve this specificity.

Up to 90% of inv(16) AML patients have cooperating mutations in components of the 

receptor tyrosine kinase pathway, including N-RAS and c-Kit (25). We have recently 

developed an efficient mouse model of inv(16) AML, by combining the conditional 
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NrasLSL-G12D and CbfbMYH11 alleles (26). To test the effects of AI-10-49 administration in 

vivo, we transplantedmice with Cbfb+/MYH11:Ras+/G12D leukemic cells, waited 5 days for 

engraftment, and then treated mice with vehicle [dimethyl sulfoxide (DMSO)] or 200 mg/kg 

of body weight AI-10-49 for 10 days, and assessed the effect on disease latency. As shown 

in Fig. 3A, vehicle-treatedmice succumbed to leukemia with a median latency of 33.5 days, 

whereas AI-10-49-treated mice survived significantly longer (median latency = 61 days; P = 

2.7 × 10−6). Thus, transient treatment with AI-10-49 reduces leukemia expansion in vivo. 

Although we have not assessed toxicity after longterm exposure, after 7 days of 

administration of AI-10-49, we observe no evidence of toxicity (figs. S9 to S11).

To test the potential utility of AI-10-49 for use in human inv(16) leukemia treatment, we 

evaluated the survival of four primary inv(16) AML cell samples treated for 48 hours with a 

dose range ofmonovalent AI-10-47 and bivalent AI-10-49. As shown in Fig. 3B, the 

viability of inv(16) patient cells was reduced by treatment with AI-10-49 at 5 and 10 μM 

concentrations (individual dose-response experiments are shown in fig. S12). Note that the 

bivalent AI-10-49 was more potent than the monovalent compound AI-10-47 and so 

recapitulated the effects observed in the human inv(16) cell line ME-1. In contrast, the 

viability of normal karyotype AML sampleswas not affected by AI-10-49 treatment (Fig. 

3C). Analysis of an additional set of five AML samples revealed that AI-10-49 treatment 

specifically reduces the viability of inv(16) leukemic cells without having an apparent effect 

on their differentiation (fig. S13). AI-10-49 specificity was also evident when we assessed 

the ability of AML cells to form colonies by evaluating colony-forming units (CFUs) after 

compound exposure. The ability of inv(16) AML cells to form CFUs was selectively 

reduced by AI-10-49 when compared with normal karyotype and t(8;21) AML patient 

samples (Fig. 3D). This inhibitory effect was dose-dependent (40 and 60% at 5 and 10 μM, 

respectively) (Fig. 3E), whereas there was no change in CFUs of AML cells treated with 

AI-10-47, AML cells with normal karyotype (Fig. 3F), or CD34+ cord blood cells (Fig. 3G). 

These studies show that AI-10-49 selectively inhibits viability and CFU capacity in inv(16) 

AML blasts, whereas it has negligible effects on AML blasts with normal karyotype or, 

importantly, on normal human hematopoietic progenitors.

Dysregulated gene expression is a hallmark of cancer and is particularly important for the 

maintenance of cancer stem-cell properties, such as self-renewal, which lead to relapse. As 

such, the targeting of proteins that drive transcriptional dysregulation, so-called 

“transcription therapy,” represents an avenue for drug development with immense potential. 

A number of fusion proteins involving transcription factors have been identified as drivers 

of disease in leukemia (27); sarcoma (28); and, recently, in prostate cancer (29), which 

provide excellent targets for therapeutic intervention. Our results provide a proof-ofprinciple 

for this approach, as AI-10-49 specifically inhibits CBFβ-SMMHC-RUNXbinding and 

shows efficacy against CBFβ-SMMHC-driven leukemia in mice with no obvious side 

effects. Specificity of action is a key component in the development of a targeted drug. 

Imatinib, for example, shows excellent specificity, and its efficacy in chronic myelogenous 

leukemia is clearly a result of effective inhibition of the BCR-ABL fusion protein that drives 

chronic myelogenous leukemia. However, even this highly selective agent inhibits both the 

BCR-ABL fusion protein, aswell aswild-typeABL. The “Holy Grail,” as it were, of targeted 
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therapy with fusion or mutated protein drivers of cancer is to achieve inhibition of the fusion 

or mutated protein with little to no effect on the wild-type protein. This study demonstrates 

that AI-10-49 represents an example of such selectivity for inv(16) leukemia, as it inhibits 

CBFβ-SMMHC activity while having a minimal effect on CBFβ function. There are 

relatively few examples of drugs targeting transcription factors. ATRA (all-transretinoic 

acid) for RAR (retinoic acid receptor) fusions in leukemia and MDM2-p53 inhibitors are 

successful examples; however, neither of these has the selectivity of AI-10-49. In addition, 

AI-10-49 has the key properties of a high-quality chemical probe recently outlined by Frye 

(30)–namely, a clear molecular profile of activity, mechanism of action, identity of active 

species, and proven utility. Development of agents, like AI-10-49, which can inhibit the 

driver mutation(s) in specific types of cancer, is essential for better therapeutic outcomes for 

patients.

In summary, AI-10-49 is a potent and specific first-generation CBFβ-SMMHC lead 

compound that induces cell death in inv(16) leukemic cells. The work described here 

provides additional evidence that transcription factor drivers of cancer can be directly 

targeted.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Development of potent selective inhibitor of CBFβ-SMMHC-RUNX binding
(A) 15N-1H HSQC spectrum (peaks correspond to all NH moieties of protein) of CBFβ 

alone (blue) and CBFβ + AI-4-57 (red). (B) Schematic diagram for the application of 

polyvalency to develop a specific and potent inhibitor of CBFβ-SMMHC-RUNX binding. 

Equations refer to predicted KD values for a bivalent inhibitor binding to CBFβ and CBFβ-

SMMHC. Ceff is the effective local concentration, which depends on the distance between 

CBFβ domains in the oligomeric CBFβ-SMMHC. (C) FRET assay measurements for 

bivalent inhibitors with varying linker lengths with 10 nM Cerulean-Runt domain and 10 

nM Venus-CBFβ-SMMHC.The y axis is the ratio of emission intensities at 525 and 474 nm. 

Three independent measurements were performed, and their average and standard deviation 

were used for IC50 data fitting. (D) FRETassay measurements of inhibition of CBFβ-

SMMHC- RUNX binding for AI-4-57 and AI-4-83 with 10 nM Cerulean-Runt domain and 

10 nM Venus-CBFβ-SMMHC. Data for AI-4-83 are the same as presented in (C). Data for 

these two compounds are presented separately for clarity of comparison to one another. Left 

y axis is the ratio of emission intensities at 525 and 474 nm. Right y axis indicates the FRET 

ratios observed with addition of 100 nM and 1000 nM untagged CBFβ, corresponding to 

roughly 1-fold and 10-fold dissociation of CBFβ-SMMHC and Runt domain [CBFβ-

SMMHC binds with 7-fold the affinity of CBFβ (8)]. Three independent measurements were 

performed, and their average and standard deviation were used for IC50 data fitting. (E) 

Dose-dependent effect of a 24-hour treatment of ME-1 cells with bivalent inhibitors with 

varying linker lengths measured by MTT assay and normalized to the DMSO-treated group. 

Each symbol represents the mean of triplicate experiments; error bars represent the SD. (F 
and G) Dose-dependent effect of AI-10-47 (red) and AI-10-49 (black) treatment for 48 

hours; (F) ME-1 cells were assessed by annexin V and 7-amino-actinomycin (7AAD) 

viability staining, and (G) human bone marrow cells were assessed by MTT assay. The data 
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were normalized to the DMSOtreated group. Each data point represents the mean of 

triplicate experiments; error bars represent the SD.
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Fig. 2. Specificity of AI-10-49 activity on CBFβ-SMMHC-RUNX1 binding
(A) Effect of 1 μM AI-10-49 on CBFβ-RUNX1 and CBFβ-SMMHC-RUNX1 binding at 3 

and 6 hours in ME-1 cells, measured by coimmunoprecipitation (quantification of three 

experiments is shown on the right). (B) Schematic of the effect of CBFβ-SMMHC on 

RUNX1 occupancy and target gene expression and the effect of AI-10-49 on occupancy and 

expression. (C) Chromatin immunoprecipitation assay showing RUNX1 occupancy on 

RUNX3, CSF1R, and CEBPA in ME-1 and U937 cells treated with 1 μM AI-10-49 for 6 

hours and represented as fold enrichment relative to DMSOtreated cells. Each symbol 

represents the mean of triplicate experiments; error bars represent the SD. (D) Relative 

expression (qRT-PCR) of RUNX3, CSF1R, and CEBPA in ME-1 and U937 cells treated with 

1 μM AI-10-49 for 6 and 12 hours, and normalized to the DMSO control group. Each 

symbol represents the mean of triplicate experiments; error bars represent the SD. For all 

panels, significance was calculated as unpaired t-test, *P < 0.05, or ***P < 0.001.
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Fig. 3. Activity of AI-10-49 in inv(16)mousemodel and inv(16) AML patient samples
(A) Kaplan-Meier survival curve of mice (n = 11 per group) transplanted with 2 × 103 

cbfb+/MYH11;Ras+/G12D leukemic cells and treated between days 5 and 15 

posttransplantation (blue arrows)with DMSO(black line) or 200 mg/kg of body weight per 

day AI-10-49 (red line); Statistics described in the statistical methods section. (B) Percent 

viability (annexin V and 7AAD assay) relative to vehicle control (DMSO) for CD34+ 

purified primary human inv(16) AML samples treated for 48 hours with either AI-10-49 or 

AI-10-47 at the indicated concentrations. Each symbol represents the average for an 

individual sample from duplicate treatments. The line represents the mean; error bars 

represent the SD. (C) Percent viability (annexin V and 7AAD assay) relative to vehicle 

control (DMSO) for primary human AML samples with normal karyotype treated for 48 

hours with either AI-10-49 or AI-10-47 at the indicated concentrations. Each symbol 

represents the average for an individual sample from duplicate treatments.The line 

represents the mean of all biological replicates; error bars represent the SD. (D) Percentage 

of colony-forming units (CFUs) after treatment with AI-10-49 relative to vehicle control 

(DMSO) for primary human AML cells. Each symbol represents the average for an 

individual sample from duplicate treatments; error bars represent the SD. (E) Percent CFUs 

to vehicle control (DMSO) for CD34+ purified primary human inv(16) AML samples 

treated with either AI-10-49 or AI-10-47 at the indicated concentrations. CFU assays were 

performed in triplicate. Error bars represent the SD. (F) Percent CFUs to vehicle control 

(DMSO) for CD34+ purified primary human AML samples with normal karyotype treated 

with either AI-10-49 or AI-10-47 at the indicated concentrations. CFU assays were 

performed in triplicate. Error bars represent the SD. (G) Percent CFUs to vehicle control 

(DMSO) for CD34+ purified primary CD34+ cord blood cells treated with either AI-10-49 

or AI-10-47 at the indicated concentrations. Significance calculated as unpaired t test, *P < 

0.05 or ***P < 0.001.

Illendula et al. Page 10

Science. Author manuscript; available in PMC 2015 August 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Illendula et al. Page 11

Table 1

Chemical structures and IC50 values of AI-10-49 and related compounds, determined by using the FRET 

assay.

Compound Name Compound Structure FRET IC50 (μM)

AI-4-88 >240

AI-4-57 22 ± 8

AI-10-11 14 ± 4

AI-10-19 >2.5

AI-4-83 0.35 ± 0.05

AI-4-82 0.44 ± 0.07

AI-4-71 0.37 ± 0.07

AI-10-47 2.0 ± 0.03

AI-10-49 0.26 ± 0.01
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