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Abstract

Structural characterization of protein-protein interactions is important for understanding life 

processes. Because of the inherent limitations of experimental techniques, such characterization 

requires computational approaches. Along with the traditional protein-protein docking (free search 

for a match between two proteins), comparative (template-based) modeling of protein-protein 

complexes has been gaining popularity. Its development puts an emphasis on full and partial 

structural similarity between the target protein monomers and the protein-protein complexes 

previously determined by experimental techniques (templates). The template-based docking relies 

on the quality and diversity of the template set. We present a carefully curated, non-redundant 

library of templates containing 4,950 full structures of binary complexes and 5,936 protein-protein 

interfaces extracted from the full structures at 12Å distance cut-off. Redundancy in the libraries 

was removed by clustering the PDB structures based on structural similarity. The value of the 

clustering threshold was determined from the analysis of the clusters and the docking performance 

on a benchmark set. High structural quality of the interfaces in the template and validation sets 

was achieved by automated procedures and manual curation. The library is included in the 

Dockground resource for molecular recognition studies at http://

dockground.bioinformatics.ku.edu.
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INTRODUCTION

Proteins often function by interacting with other proteins. Thus structural characterization of 

protein-protein interactions is important for understanding life processes. Due to the inherent 

limitations of experimental techniques, computational approaches are needed for such 

characterization. Following current paradigm and terminology in modeling of individual 

proteins, structural modeling of protein-protein complexes (docking) can be roughly divided 

into: (i) free docking, where sampling of the binding modes is performed with no regard to 

the possible existence of similar experimentally determined complex structures (templates), 
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and (ii) template-based docking, where such similar complexes determine docking 

predictions.

Free docking methods were initially developed as ab initio approaches based on the physical 

potentials (primarily, van der Waals interactions),1 currently increasingly supplemented by 

the knowledge-based approaches (statistical potentials, docking constraints, etc.).1,2 Despite 

their reasonable success, free docking methods have shown serious limitations, mostly due 

to the large size of the search space and structural flexibility upon the complex formation.

The template-based modeling of protein complexes relies on target/template relationships 

based on sequence,3 sequence/structure (threading) and structure similarity,1-7 with the latter 

showing a great promise in terms of availability of the templates.8 The docking problem 

assumes a priori knowledge of the structures of the participating proteins. Thus, the docking 

templates may be found by structure (rather than sequence) alignment of the target 

monomers to the full structures of co-crystallized complexes. Evolutionary conserved 

surface patches may yield similar binding modes for otherwise dissimilar proteins9,10 

implying that docking can also be performed by the structure alignment of the target 

proteins with the interface parts of the co-crystallized complexes.

The key element in successful structure alignment application is the quality (diversity, non-

redundancy and completeness of PDB structure) of the template libraries (generic or specific 

sets of 3D structures of binary complexes and/or their interfaces). Simply selecting all 

pairwise protein-protein complexes from PDB would produce the complete set of currently 

known structures. However, such “brute force” set will have many identical or highly 

similar complexes and some complex types will be overrepresented. The set will also 

contain erroneous, low-quality and biologically irrelevant structures.11,12 Thus, groups 

working on structure alignment docking typically generate their own template libraries by 

filtering PDB in order to retain only the relevant interactions. A genome-wide study13 

utilized a library of ~30,000 full structures of template complexes extracted from PDB and 

PQS14 databases with the intention (due to the termination of PQS) to switch to the PISA 

server.15 The PRISM docking protocol,16 where protein complexes are modeled by structure 

alignment of the interface regions, used a library of 8,205 protein-protein interfaces that 

represent unique interface architectures.17 Classification of interfaces into biological and 

those due to crystal packing, obligatory and nonobligatory was done by NOXclass 

procedure18 and structural comparison of the initial 49,512 interfaces was performed by the 

geometric hashing with subsequent hierarchical clustering. A more recent study by the same 

group introduces a new library of 22,605 entries which is suggested for interface-based 

structure alignment docking.19 The interfaces in this set were extracted from the full 

structures using effective distance cut-off ~ 10 Å, while an earlier study20 indicated that the 

maximum success rate in interface structure alignment docking is achieved when template 

interfaces are extracted with a larger, 12 Å distance cut-off.

In this paper we describe our most recent sophisticated set of templates that addresses many 

drawbacks of the existing sets. We extract the interfaces at the optimal distance cut-off and 

cluster full structures and interfaces separately using various thresholds for structural 

similarity. Resulting datasets of full structures and interfaces, available in the Dockground 
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resource http://dockground.bioinformatics.ku.edu, were generated using clustering threshold 

determined by the performance of the docking protocols.

METHODS

The methods used in this study involved procedures for the structure quality control of 

protein-protein interfaces, clustering of the complexes and interfaces, and optimization of 

the clustering parameters based on the performance of the template libraries in the docking 

runs.

Chain inter-penetration

Complexes from the initial set (see Results) were checked for inter-penetration of chains by 

an automated procedure. For each residue of a protein in a complex, all atoms of the other 

protein within 6Å distance were selected. An imaginary line through C and N backbone 

atoms of the residue and two half planes joined by this line were drawn. By rotating the half 

planes around this axis, the maximal sector free of atoms of the second protein was 

determined. If the corresponding angle between the planes was < 90°, the residue was 

considered buried. Complexes with two consecutive buried residues in any of the chains 

were excluded from the set.

Clustering of complexes and interfaces

Pairwise structural alignment of all complexes and interfaces in the initial set (see Results) 

was performed by MM-align21 (an offshoot of the TM-align program22 specifically 

designed for comparison of protein complex structures) with TM-score23 normalized by the 

length of the larger complex. The TM-scores were further used to construct an undirected 

graph, with nodes representing individual complexes (interfaces) and edges reflecting their 

similarity. Two vertices in the graph were connected by an edge if the corresponding TM-

score was not less than a specified threshold value TMT, which varied in the course of 

computations. The resulting graph was split into clusters by a two-stage procedure. At the 

first stage, the graph was divided into connected components by the breadth-first search 

algorithm.24 The minimum cut in a graph G was defined as the minimum number of edges 

k(G), which needs to be removed to disconnect the graph into two (connected) components. 

A component with n nodes (n > 1) was considered highly connected if the condition k(G) > 

n/2 is satisfied.25 The basic clustering algorithm by Hartuv and Shamir25 uses the Stoer-

Wagner mincut algorithm26 to iteratively split a graph into subgraphs until they become 

highly connected. These highly connected subgraphs are induced subgraphs of the original 

graph and represent clusters. Several heuristics25 were also applied to speed-up 

computations and to enhance the quality of clusters by adopting nodes, which became 

separated after the direct application of the basic, non-enhanced approach by Hartuv and 

Shamir.25 The enhanced algorithm was applied to every connected component, which did 

not represent a complete graph. The clustering procedure was implemented as a standalone 

C++ program; the igraph library (http://igraph.sourceforge.net/index.html) was used to 

handle operations on the graphs.
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Validation set of protein-protein complexes

Docking performance on a validation set of complexes was used to determine the clustering 

threshold. To generate the validation set, the initial list of structures was taken from 

Dockground at 30% sequence identity cut-off. We selected only moderate- and high-

resolution X-ray structures (resolution ≤ 3.5 Å) with a well-defined interface (mean 

accessible surface area buried by each chain ≥ 250 Å2, and ≥ 10 residues at an interface in 

each chain). Complexes with a protein containing < 3 secondary structure elements were 

excluded from consideration, as well as complexes with monomers of substantially different 

size, where one protein is three or more times lager than the other (according to the number 

of residues). Finally, the set was visually inspected to clean out coiled-coil complexes (to 

decrease the modeling noise, since the alignment of any helix in a target to such a template 

has high TM-score) and complexes with interwoven chains.

Docking protocol

We used the template-based docking protocol similar to the one developed previously in our 

lab.20,27 The procedure performs spatial rearrangement of 3D structures of two target 

proteins (treated as rigid bodies) to match either the entire monomers of the co-crystallized 

complexes (from the full-structure template library) or their interfaces only (from the 

interface template library). Structural alignment of proteins was performed by TM-align.22 

The resulting pool of putative matches was filtered to retain only significant matches with 

TM-scores of both alignments > 0.4. Models were scored by the average TM-score of both 

alignments. When the docking protocol was run in the benchmarking mode, the self-matches 

were avoided by excluding templates with both TM-scores > 0.9. Assessment of resulting 

models was done in terms of Cα ligand RMSD with receptors optimally superimposed. This 

RMSD definition was chosen, as opposed to the slightly different one used in CAPRI28 

(superimposition of the native interface residues in the native and the modeled complexes), 

for consistency with our previous studies.8,12

RESULTS AND DISCUSSIONS

Initial set of structures

We built two separate libraries, one consisting of the full two-chain structures and the other 

of the interface fragments. The flowchart of the generation process is in Figure 1. The initial 

pool of the X-ray structures with resolution ≤ 3.5 Å and buried interface area ≥ 250 Å2 per 

chain was extracted for both libraries from the Dockground co-crystallized protein-protein 

complexes.11 We imposed an additional constraint that interfaces should consist of at least 

ten residues in each chain. At the point of computation, the Dockground version was based 

on December 2012 PDB release. Protein complexes in Dockground are derived from the 

PDB Biological Unit files. Thus our set likely consists of biologically functional complexes, 

although some false positives are inevitable.12 Each complex was further checked for inter-

penetration of chains by an automated procedure developed for this task (see Methods) and 

complexes like the one shown in Figure 2 were removed (284 entries). This resulted in 

12,134 structurally redundant complexes. Interfaces were extracted from these complexes 

using 12Å distance cut-off between heavy atoms of residues belonging to different chains. 

The extracted interfaces were clustered and analyzed in terms of structural connectivity and 
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docking performance in order to choose the clustering parameters. Full structures were 

further filtered by an additional requirement that at least three regular (> 4 residues each) 

secondary structure elements be present in each interacting protein. The secondary structure 

elements (α-helices and/or β-strands) were detected by the DSSP tool.29 The resulting 

reduced set of 11,774 complexes was subjected to the clustering and analysis procedures, 

same as the interfaces.

Connectivity of the structural space of protein-protein complexes

To eliminate structural redundancy, the intermediate sets of 11,774 complexes and 12,134 

interfaces had to be clustered by some measure of structural similarity. In this study, for 

such a measure we used TM-score.23 TM-score (ranging from 0 to 1) is produced by the 

TM-align routine,22 which was previously successfully employed in the template-based 

docking,8,12,20,27,30 although other programs for the structural alignment with their own 

structural similarity scores were utilized by others.31,32

For efficient clustering, it is useful to understand how similar complexes and interfaces are 

connected in the structural space. We analyzed similarity graphs built at different threshold 

values of TM-score (TMT, see Methods) in terms of the size of the connected components 

(initial, first-approximation clusters with some missing edges between the nodes) and the 

clustering coefficient (the probability of neighbors of a given node to be connected between 

themselves33). As seen in the main panels of Figure 3, a substantial fraction of connected 

components belongs to either isolated nodes (53 – 68 % of complexes and 56 – 72 % of 

interfaces, depending on TMT) or pairs of connected nodes (14 – 16 % of complexes and 13 

– 16 % of interfaces) and cannot be split further. Interestingly, this property is persistent 

within a broad TMT range.

In terms of clusters, the clustering coefficient can be viewed as a measure of the extent to 

which the groups of connected nodes in a graph are close to the complete graphs (or ideal 

clusters), in which every pair of nodes is connected by an edge. Inserts in Figure 3 show the 

clustering coefficient of graphs for full structures (panel A) and interfaces (panel B) in the 

full TMT range from 0.0 to 1.0. Due to the random matches of short structural fragments, 

TM-score seldom gets very close to 0. Thus, at low TMT, there are edges in the graph 

between almost all nodes making the graph close to complete and resulting in high 

clustering coefficient of almost 1. The similarity graphs then will be close to complete 

graphs comprising almost entire set of complexes/interfaces (left sides of inserts in Figure 

3). When TMT increases, the clustering coefficient decreases dramatically and has a 

minimum at TMT = 0.27 for the full structures and TMT = 0.28 for the interfaces, which is 

consistent with a previous estimate of the average TM-score for random match 0.17.23 With 

further increase of TMT, the statistical significance of a structural match increases as well. 

Starting from TMT ~ 0.5 (the lowest TM-score for proteins with similar folds22,34), the 

clustering coefficient stops growing and remains unchanged (~0.98 for both full structures 

and interfaces) up to TMT ~ 0.9 for full complexes and TMT ~ 0.8 for interfaces. High values 

of the clustering coefficient within such TMT ranges suggest that the graph nodes are 

clustered in almost optimal way. The decrease in the clustering coefficient for TMT > 0.9 

stems from small structural differences (especially in the loops) often present in different 
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PDB files for otherwise identical or very similar (in terms of sequences) proteins. Due to the 

smaller size of interfaces, TM-score between pair of interfaces, on average, is smaller than 

TM-score between corresponding pair of the full structures (Figure 4) and thus the clustering 

coefficient for the interfaces starts to drop closer to TMT ~ 0.8.

Importantly, even at the highest value of TMM = 1.0, 991 (8%) complexes and 594 (5%) 

interfaces are removed from the corresponding libraries. This shows that a blind selection of 

all pairwise complexes from PDB would result in a library with a considerable number of 

identical entries.

Analysis of clusters

We utilized a clustering approach, which, first, divides the similarity graph into “loosely” 

connected components and then further splits them into tightly connected clusters (see 

Methods). Figure 5 shows how the number of connected components NCC and the number 

of resulting clusters NC varies with TMT. Since the majority of the connected components 

cannot be split further (as shown in Figure 3), NC is only slightly larger than NCC for most 

values of TMT. The relative increase in the number of clusters is ~ 5% for TMT = 0.6 – 0.9 

for both full complexes and interfaces (green lines in Figure 5). This correlates with the high 

values of clustering coefficient in these TMT ranges (Figure 3).

Finally, we checked the quality of the resulting clusters at different TMT by calculating TM-

scores between members of each cluster in order to detect pairs of nodes within a cluster that 

lack an edge (TM-score < TMT). We found that only ~ 3% of the final clusters have pairs of 

dissimilar complexes (or interfaces) with TM-score < TMT (circles in Figure 6). The 

clustering algorithm we employed allows the final clusters to have as little as 50% of edges 

(compared to complete graphs).25 However, the analysis of the actual clusters showed that 

the fraction of dissimilar pairs in the vast majority of clusters is < 30%, with the mean value 

close to 10% (box-and-whiskers plots in Figure 6). The quality of clusters remains roughly 

the same within the full TMT range, with minor variations at TMT < 0.6 for full complexes 

(Figure 6A) and TMT > 0.9 for both complexes and interfaces (Figures 6 A and B). 

Sequence identity, in general, follows the same trend, i.e. ~70% of the clusters have the 

minimal sequence identity between the members > 90%. However, in some extreme cases 

(e.g., the cluster of 49 complexes from RNA polymerase), there are cluster members with 

sequence identities ≤ 30%.

Template libraries in docking: selecting optimal parameters

The success of docking depends heavily on the diversity of the template library. On the 

other hand, the running time of the template-based docking is directly proportional to the 

size of the template set. Thus, an optimal template library should be large enough to 

maximize the docking success rate, but should not contain excessive entries, which only 

marginally improve the performance. This approach to the optimal library is different from 

the one used to compile PRISM interface library,19 where optimization was performed 

according to the quality of the resulting clusters. For practical docking purposes, our choice 

was rather to optimize the performance of the modeling of complexes based on our 

templates, through benchmarking.
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We tested 26 full-structure and 26 interface libraries, generated at TMT ranging from 0.50 to 

1.00 with 0.02 step, on a non-redundant set of 293 hetero complexes (see Methods). Success 

rate was defined as a ratio of targets, for which at least one model had interface Cα ligand 

RMSD < 5 Å, to the total number of targets.8,12 To exclude the influence of the scoring 

scheme, we calculated success rate for the entire set of models, although results for the top 

ten models, ranked by the average TM-score, were also obtained (not shown separately due 

to qualitative similarity to the all-models results). Templates that were similar to a particular 

target (both TM-scores for a target-template pair exceed 0.9) were left out from the 

consideration. Such exclusion of similar structures leads to success rates higher than 

reported in a recent benchmark study35 where the main focus was on docking in the 

“twilight zone” of low target/template similarity (sequence identities between target and 

template < 30%).

Results of the test are shown in Figure 7. As one can expect, more entries in the template 

library (higher TMT values) lead to higher success rates of the docking. Such monotonic 

behavior holds for almost entire TMT range from 0.5 to ~0.9. For TMT > 0.9 the success rate 

is largely saturated. A slight increase in the success rates at TMT > 0.9 is an artifact of our 

procedure. While TM-scores used in the clustering are obtained by the MM-align for 

complexes, TM-scores for exclusion were produced by TM-align for separate monomers. At 

certain TMT (especially at values close to the similarity criteria), a cluster may have a 

representative, identified as the similar structure (thus excluding entire cluster from 

consideration) and other structures with one out of two TM-scores of TM-align slightly less 

than the similarity criteria (this could have TM-score of the MM-align exceeding TMT). 

These structures at higher TMT can split into a separate cluster with representative identified 

as non-similar and thus yielding good-quality model (in total, there are seven such cases in 

the full-structure set and one case in the interface set).

The differences in the success rates of the full structure and the interface-based alignments 

(Figure 7) can be explained by different TM-score values for the full structures and the 

corresponding interfaces. In docking, the templates with both TM-scores > 0.9 were 

excluded from consideration. In full structure-based docking, the TM-score was calculated 

based on the alignment of two full proteins, whereas in interface-based docking the TM-

score was obtained by aligning target proteins with the template interfaces. According to 

Figure 4, the latter TM-score should be generally lower than the former. Thus, some 

templates, excluded as self-matches in full structure-based docking (both TM-scores > 0.9) 

still represented suitable interface templates.

The number of clusters (and, consequently, computational time) starts growing 

exponentially at TMT > 0.9 (Figure 5). This, along with the results in Figure 7, suggests that 

the optimal library ought to be generated at TMT = 0.9.

Availability of the template and the benchmark sets

A representative complex from each cluster at TMT = 0.9 was selected based on the best 

resolution and the smallest number of missing residues. The resulting sets of 4,950 full-

structure complexes and 5,936 interfaces (representing ~40% of folds in SCOP36 and in a 

more recent ECOD database, http://prodata.swmed.edu/ecod) are available on the Web 
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within our Dockground resource at http://dockground.bioinformatics.ku.edu, under “docking 

templates” tab. The sets are downloadable as zip archives (one for full structures and the 

other for the interfaces) each containing folders “templates,” “targets” and “info.” The folder 

“templates” contains two PDB-formatted files of atomic coordinates per library entry. The 

files are named by the original PDB file, from which the entry was extracted, as follows:

where [XXXX] is the 4-symbol PDB code, [M1] and [M2] are the model numbers, [CH2] and 

[CH2] are the chain identifiers for the first and the second component of the library entry, 

and N = 1 or 2 identifies the component. Separation of library entries into two files makes it 

easier to use the set in the docking programs. However, simple joining of the two files (e.g., 

with cat command in Linux) will produce the complex (interface) structure without 

geometrical clashes and distinct chain identifiers. The folder “targets” in both full-structure 

and interface archives consists of 2×293 similarly named PDB-formatted files for the full 

structures of validation set used in this study. The folder “info” contains two text files per 

structure in the validation set (named as the files in the “target” folder, but with the 

extension .txt) with information on all meaningful structural alignments (TM-scores > 0.4) 

of the target files to full-structures or interfaces of the template set. The folder also contains 

a text file with information on the resulting models. In validation, some target complexes 

(64 for full structure and 33 for interface templates) had at least one model with interface 

RMSD > 5 Å and the minimal of the TM-scores of the components > 0.8, indicating high 

similarity to a wrong template. The “difficult_targets.txt” files in the “info” folders contain 

the list of such targets.

The sets can be used either for modeling of unknown protein complexes of interest by full or 

interface structural alignment (using only structures in the “templates” folder) or for 

benchmarking of new modeling techniques (using both “target” and “template” folders and 

comparing results with the data in the “info folder”).
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Figure 1. 
Flowchart of algorithm for generation of full-structure and interface template libraries.
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Figure 2. 
Example of a “bad” complex. Chains D and E from 1fma are shown in magenta and yellow, 

respectively, with penetrating chain removed by the automated procedure described in the 

text. Buried Val and Thr residues at the C-terminal of chain F identified by the procedure are 

shown as sticks (the last two residues at the terminus are Gly).
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Figure 3. 
Properties of similarity graphs. (A) Protein-protein complexes and (B) protein-protein 

interfaces. The main panels show distributions of connected component size at different 

thresholds of the clustering TM-score (TMT). The inserts display dependence of clustering 

coefficient CC on TMT.
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Figure 4. 
Correlation of protein-protein and interface-interface TM-scores.
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Figure 5. 
Number of connected components and clusters as a function of clustering threshold. (A) 

Protein-protein complexes, and (B) protein-protein interfaces. NCC is the number of 

connected components, and NC is the number of clusters. Green lines (scaled to the right-

hand axes) show the relative increase in the number of connected graph parts after splitting 

the connected components into tightly connected clusters.
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Figure 6. 
Quality of clusters at different clustering thresholds. (A) Protein-protein complexes, and (B) 

protein-protein interfaces. Distributions of missing edges per cluster are shown as box-and-

whickers plots with horizontal lines for minimal, maximal and median values in the 

distributions and boxes containing second and third quartiles of data. The circles (scaled to 

the right hand axis) show how the fraction of clusters, which are not complete sub-graphs of 

the initial similarity graphs, depends on TMT.
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Figure 7. 
Performance of structure alignment at different clustering thresholds. Full-structure (circles) 

and interface (triangles) libraries were generated at different threshold values. Success rates 

were calculated for the entire pool of structures excluding templates similar to the target (see 

text).
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