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Abstract
We describe a method for analysis of single-molecule Förster resonance energy transfer (FRET)
burst measurements using classic maximum entropy. Classic maximum entropy determines the
Bayesian inference for the joint probability describing the total fluorescence photons and the
apparent FRET efficiency. The method was tested with simulated data and then with DNA labeled
with fluorescent dyes. The most probable joint distribution can be marginalized to obtain both the
overall distribution of fluorescence photons and the apparent FRET efficiency distribution. This
method proves to be ideal for determining the distance distribution of FRET-labeled biomolecules,
and it successfully predicts the shape of the recovered distributions.
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Introduction
Single-molecule Förster resonance energy transfer (FRET) is being applied to characterize
the conformational states and dynamics of biomolecules in increasingly powerful ways.1-6

FRET trajectories of immobilized molecules can track the internal dynamics of single
molecules over periods of seconds,7 but the molecules must be trapped or tethered at a
surface. The detection of fluorescence bursts from biomolecules freely diffusing in solution
avoids the need for their immobilization. The underlying molecular parameters may be hard
to recover, however, due to the stochastic nature of molecular paths through the probe
volume and the statistics of photon detection. As a result, the analysis of single-molecule
FRET data has become increasingly sophisticated.8-12

In single-molecule analysis, as in other fields, wildly different models can fit the
experimental data adequately, based on goodness-of-fit measures such as least squares. The
experimenter must then decide which model to prefer. To make this decision systematically,
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researchers in the single-molecule field have begun to use Bayesian data-fitting
approaches.13-20

In Bayesian analysis, the probability P(f|D,I) of a set of parameters f, given the experimental
data set D and all other assumed information I, is calculated via Bayes’ theorem. This
probability is called the inference. Bayes’ theorem relates the inference P(f|D,I) to the prior
probability P(f|I), the likelihood for the data P(D|f,I), and the evidence P(D|I), as follows:21

(1)

The evidence carries information concerning model selection, since it is the probability of
the data given all assumed information including whatever model is chosen. A model-free,
or non-parametric, approach dispenses with a pre-determined shape (Gaussian or any other)
of an entire distribution. This is in contrast to model-fitting approaches in which the
experimenter specifies the form of a distribution in terms of a few parameters that are to be
estimated from the data. Even a model-free approach does not mean that all prior
assumptions have been eliminated, since it inevitably depends on the mathematical form of
the prior.

Our objective is to analyze single-molecule FRET data on freely diffusing molecules
(“burst” measurements) by Bayesian maximum entropy theory. The power of maximum
entropy to recover FRET distributions from single-molecule trajectories of immobilized
molecules has already been demonstrated by Yang and coworkers,22,23 who used the
method to uncover the underlying FRET states for polyproline constructs of varying
length22 and to detect open and closed states of adenylate kinase.23 Maximum entropy
methods have been applied to burst analysis by Seidel and co-workers to recover the
distribution of FRET efficiencies P(E) for freely diffusing molecules8 given a model for the
distribution of total fluorescence counts P(F) per time bin.24

The approach we present extends the application of maximum entropy to single-molecule
burst data in four ways. First, it implements the so-called “classic” maximum entropy
method,25 in which Bayesian analysis is used to evaluate the weight of the information
entropy relative to the data likelihood. Second, the maximum entropy analysis is applied
directly to the two-dimensional histogram of intensities in two data channels detecting green
and red emission rather than to the experimental FRET distribution. This approach makes no
assumption as to the character of the fluorescence decay, P(F). Third, the Bayesian analysis
permits evaluation of the Bayesian evidence, allowing for model selection. Fourth, intrinsic
correlation functions are used as a model for introducing smoothness into the recovered
distribution with the degree of blurring optimized by maximizing the Bayesian
evidence.25,26

Background and Theory
Bayesian maximum entropy

One of the most widely used model-free data fitting techniques is maximum entropy. The
information entropy of a probability distribution was first described by Shannon; it is a
measure of the amount of information contained in a probability distribution.27 Jaynes28 and
Shore & Johnson29 have shown that the only consistent way to recover a probability
distribution, given a set of constraints upon it, is to choose the distribution with the maximal
information entropy. Maximum entropy was initially employed as a regularization
technique25,30-32 in which the entropy is maximized subject to a constraint on the data,
typically the χ2 constraint. This is done by maximizing the function Θ defined as:25
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(2)

(3)

where S(f,m) is the entropy of a positive, additive, function as defined by Skilling,25,26

L(D,f) is a goodness-of-fit parameter (such as  for Gaussian-distributed errors), D is a
vector comprising the measured data, f is the distribution to be recovered, and m is an initial
model that encodes prior knowledge of the distribution. Although the entropy formalism
requires an initial model in the prior, the shape of the resulting distribution f has not been
parameterized as a Gaussian or any other form. The weight of the entropy relative to the
goodness-of-fit constraint is controlled by the Lagrange multiplier α.

Choice of the Lagrange multiplier α
All maximum entropy methods face the problem of how to set the value of the Lagrange
multiplier α. In non-Bayesian maximum entropy, α is typically selected such that the value
such that χ2 for the recovered distribution is equal to the number of data points.25,26,32 With
the value of α selected, the distribution f which maximizes expression (2) is determined.
Selection of α by this means has been termed historic maximum entropy.25,26,32 This choice
for α is convenient, but χ2 is equal to the number of data points in the fit only on average.
For a given measurement the value of χ2 is a random variable that follows its own
distribution. The situation is similar with other goodness-of-fit parameters.

To optimize the choice of α Gull and Skilling developed classic maximum entropy, which
uses Bayesian analysis for selection of the value of the Lagrange multiplier α. In classic
maximum entropy the information entropy determines a prior probability of the form:25,33

(4)

Here, Z(α) is a normalization factor. This prior is inserted into Bayes’ theorem, together with
the likelihood, to determine the probability P(f|D,m) of any positive additive distribution f,
given the experimental data D and the initial model m. The Lagrange multiplier α is
determined by maximizing P(D|α,m), the probability of the data given α, which is referred
to as the α-evidence.26 The α -evidence is brought into the analysis through the full joint
probability of D, f, and α. This treatment of α constitutes a rigorous way to select α and
includes information concerning the entire distribution of the likelihood function by
returning not one recovered f distribution, but rather the probability of any f distribution,
P(f|D,m).25,26,32 A full description of the classic maximum entropy approach can be found
in the original papers,25,32,33 the MemSys5 user’s manual,26 the book by Sivia,21 and a
paper by Brochon.34

The Bayesian choice of α usually results in a value of χ2 that is less than the number of data
points, as there will be a number of statistically significant features in the reconstructed f.
These features constitute “good” degrees of freedom that do not contribute to the misfit. It
should be emphasized, however, that the actual value of χ2 is not explicitly used in classic
maximum entropy, though it can be used to make a self-consistent estimate of the noise
level.
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The Bayesian approach to maximum entropy also allows quantification of f over regions of
its domain. This can done either through the use of a mask function or by directly
calculating the average and standard deviation of each peak or region from random samples
of the inference distribution, P(f|D,m).32 For example, if a mask function is chosen such that
its value is unity over a range in the domain of f and zero elsewhere, the inference gives the
average amplitude and error of P(f|D,m) contained within the masked region.32

Finally, intrinsic correlation functions (ICFs) can be used to allow correlations between
elements of the reconstructed image, f.25,26 ICFs consist of a blurring function that acts upon
a hidden distribution, h. The blurring reduces the effective number of degrees of freedom in
the model, and can therefore increase the value of the evidence, provided that the fit to the
data is not compromised. On the other hand, if the blurring is too severe, the increase in the
value of χ2 will decrease the evidence. The hidden distribution can also be constructed to
have multiple layers, where each layer increases the amount of blurring between elements.
The visible distribution, f, is then calculated from a weighted sum of the layers of h. The
entropy formalism is applied to the hidden distribution. The amount of blurring required by
the data is controlled by the fit, although the experimenter must choose how many layers to
place into the hidden distribution. This can again be determined using the Bayesian
evidence. An increase in the evidence suggests that the blurring model is more appropriate
for the data. The use of an ICF introduces smoothness into the recovered distribution, while
allowing the overall shape of the distribution to be dictated by the data.

Photon Distribution Analysis
Single-pair FRET burst measurements (spFRET) are used to determine the efficiency of
energy transfer between two fluorophores. In many cases the fluorophores are linked to
specific locations on a biomolecule, and the FRET efficiencies are then related to the
conformational distribution of the biomolecule. This distribution is an important property of
the biomolecule relating to its structure and function; it is what the experimenter wishes to
determine.

A very dilute solution of the FRET species is first placed on a microscope. Individual
molecules diffuse through the focus of a laser, and photons that are emitted by the FRET dye
pair are detected. The number of detectors used can vary, but at least two are needed. Each
detector monitors the emission of one of the dye probes.

To analyze spFRET data, a stochastic approach is used. The probability of measuring a
particular combination of signals in two detectors is related to the FRET efficiency
distributions of the molecules in the sample.8,10 For measurements of multiple molecular
species diffusing freely in solution, Seidel and coworkers showed that the probability of
detecting S1,S2 counts in two detectors in a time bin is given by8,24

(5)

where F1 and F2 are the numbers of fluorescence photons detected in each detection
channel, F = F1 + F2, B1 and B2 are the numbers of background counts detected in each
channel, and P(F1|F,Eapp) is the probability of detecting F1 photons in channel one given
that F photons were detected in both channels and emitted by a molecule with apparent
FRET efficiency Eapp. Also, P(F1|F,Eapp) is the binomial distribution with probability of
success 1-Eapp, and P<B1>(B1) and P<B2>(B2) are the Poisson probabilities of detecting B1
and B2 background counts in the time bin, with averages <B1> and <B2>; P(F,Eapp) is the
joint distribution for the total number of fluorescence photons and apparent FRET
efficiency, j is an index denoting the molecular species, and Ps(j) is the probability of
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observing the jth molecular species. Equation (5) is obtained in the single-molecule limit in
which only one molecule is present in the focal volume. Weiss and coworkers found a
similar equation, but describe the distribution of counts per single-molecule burst.10 In our
instrumental configuration, detection channel 1 measures fluorescence from the donor dye,
and channel 2 detects photons from the acceptor dye. By explicitly accounting for
measurement noise and Poisson statistics in burst measurements, eq (5) and the analogous
equation for burst-wise probabilities10 can account for the rugged appearance of
experimental FRET histograms.8,10

In previous treatments, the joint distribution P(F,Eapp) was factorized as P(F)P(Eapp)
according to the assumption that the distributions are independent.8,9,24,35 The distribution
P(F) was then expanded into a sum over volume elements of the point spread function. Each
element is defined by an average brightness qi, and the probability that a molecule resides
within a particular volume element, P(qi), an approach analogous to the fluorescence
intensity distribution analysis (FIDA).35,36 The distribution P(F) was determined as an
intermediate result by recovering the distribution P(qi) for a pre-selected range of qi. A
historic maximum entropy approach was used with

(6)

where ⊗ denotes convolution, P(S) is the experimentally measured distribution P(S1+S2),
and P(B) is a Poisson distribution for the background counts, with a mean determined by a
background measurement. After P(qi) had been determined, it was used in a second historic
maximum entropy fit to recover P(Eapp).24,35

Recovery of PA(Eapp,F)
We describe in this paper the direct model-free recovery of the average joint distribution
PA(F,Eapp) by the classic maximum entropy technique. This approach avoids the use of an
expansion over volume elements and recovers the entire joint distribution directly. Classic
maximum entropy has not previously been used to analyze burst measurements. It has the
advantages of returning the inference distribution, the evidence, and the value of α
determined via the α-evidence. Furthermore, ICFs with multiple blurring layers can be used
to incorporate smoothness into the model, and the evidence can be used to determine the
number of layers appropriate for the data.

The average joint distribution can be obtained as a sum over all molecular species present in
solution:

(7)

where PA(F,Eapp) is the average joint distribution. After recovering PA(F,Eapp), we
determine the overall apparent FRET efficiency distribution PA(Eapp) and the overall
average fluorescence distribution PA(F) by marginalization over F and Eapp respectively:

(8)

(9)

The apparent FRET efficiency is related to the true FRET efficiency E between the dyes by8
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(10)

where  is a ratio of detection efficiencies in the red and green channels, φ1 and φ2
respectively denote the quantum yields of the donor and acceptor dyes, and c is the fraction
of donor dye emission detected in the acceptor detection channel. For a single diffusing
molecular species, the distribution PA(Eapp) can be converted to a distribution of distances
PA(R) by8

(11)

When the joint distribution of a single species can be determined, or when the contributions
of each species to the average joint distribution are intrinsically separate, a potential of the
mean force can be obtained from the distance distribution. This is done by taking the
negative logarithm of the distance distribution,

(12)

where β is the inverse temperature and V(R) is the potential of the mean force. The integral
amounts to a normalization constant. This means the shape of the estimated potential of the
mean force can be calculated from single-molecule burst measurements provided the
molecules do not exhibit conformational dynamics during a time bin.37

Materials and Methods
Simulations

Simulations were performed by generating random numbers from appropriate probability
distributions, based on the theory of photon distribution analysis (PDA), equation (5). A
detailed description of our simulations is as follows. Two arrays of integers were generated
to represent the number of counts detected by two detectors in time bins of equal length. In
all simulations, two molecular species with differing distributions P(F,Eapp) were simulated
such that P(F,Eapp) = P(F)P(Eapp). For each time bin, photon counts were generated for one
of the species. The contribution of each species to the simulated PA(F,Eapp) was controlled
by the number of array elements associated with each species. The total number of photons
F detected by both detectors was simulated by selecting a random integer from a Poisson
distribution with a given mean. After selection of the total number of photons, the FRET
efficiency of the molecule for that time bin was chosen by selecting a random number from
a Gaussian distribution having specified width and mean. Once the efficiency for a bin had
been selected, a random number was chosen from the binomial distribution with the
appropriate total number of photons and apparent FRET efficiency. This number of photons
was input to the donor array, representing F1, and a number (F-F1) was placed into the
acceptor array. Finally, two random numbers representing B1 and B2 from independent
Poisson distributions were added to the corresponding F1, F2 arrays. The resulting signal
arrays were then ordered into a two-dimensional histogram of counts N(S1,S2), which
differs from P(S1,S2) only by a normalization constant. All simulations displayed in this
paper contained 70,000 total counts in the data histogram. Random numbers were generated
using programming code from Numerical Recipes.38
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Sample preparation
Unlabeled and dye-labeled single-stranded DNA was purchased from Eurofins MWG
Operon (Huntsville, AL). The forward strand was labeled on the 5′ end with Alexa Flour
594 or Cy5 through an amino C6 linkage (sequence: 5′ –
TGTAAAACGAGAGAGCCTAAAACGATC-3′), or was unlabeled. The reverse strand was
labeled with Alexa Flour 488 via a deoxyguanosinethymidine (dT) base with a six carbon
linker (sequence: 5′-GATCGTTTTAGGCdTCTCTCGTTTTACA-3′), resulting in a 12 base
pair separation between the dye labeling sites. All DNA species were dissolved in buffer EB
(Qiagen, Valencia, CA), 10mM Tris-HCl, pH 8.5. Single labeled strands were mixed with
unlabeled complementary strands in the ratios 2:1 and 1:1. The FRET species was formed
by mixing Cy5 labeled single-stranded DNA with its complementary strand containing
AF488 in a 2:1 ratio (Cy5 strand:AF488 strand), or by mixing AF594 labeled single strands
with the AF488 strand in a 1:1 ratio. All mixed samples were placed in a PCR Sprint
thermal cycler for annealing. The temperature of each mixture was raised to 95°C for 3 min
and then lowered in steps to 58.1°C, 53.1°C, and 20°C, in 3 min intervals. The final double-
stranded DNA solutions were stored in a freezer at −20°C prior to analysis. The resulting
samples included double-stranded DNA labeled with AF488 and AF594 (DA594), double-
stranded DNA labeled with AF488 and Cy5 (DACy5), double-stranded DNA labeled with
AF488 (D488), and double-stranded DNA labeled with Cy5 (ACy5).

Single-molecule Burst Measurements
All single-molecule burst measurements were performed with an inverted fluorescence
microscope system. Light produced from an argon-ion laser at 488 nm (2201-20SL, JDS
Uniphase, San Jose, CA) was polarized circularly and directed to the sample through a
Nikon TE2000 microscope fitted with a 1.2 N.A. water immersion objective (UPLSAPO,
Olympus, Center Valley, PA). Fluorescence from the sample was collected and separated
from the excitation light using a z488/594rpc dichroic beam splitter (Chroma Technology
Corp., Rockingham, VT). The emission of the dyes was then separated into two detection
channels by a 565 DCLP dichroic beam splitter (Chroma). Emission from each channel was
focused through a 75 μm pinhole before being refocused onto an avalanche photodiode
(SPCM AQR-14, Perkin-Elmer). Emission filters were placed in front of the detectors, to
further select for dye fluorescence: ET535/50m for donor emission (Chroma), and HQ
650/100m-2p or HQ 667LP (Chroma) for acceptor emission from DA594 or DACy5.

TTL pulses produced by the avalanche photodiode detectors were logged with a National
Instruments PCI-6602 counter timer card, which was custom programmed in LabVIEW.
Each pulse was time stamped with an 80 MHz clock (12.5 ns per tick), giving rise to two
data arrays containing the arrival times of photons relative to the beginning of the
experiment. These arrival times were binned into 300 μs time bins and ordered as a
histogram. This is the experimental N(S1,S2) histogram for subsequent classic maximum
entropy analysis. Only histogram bins corresponding to a total signal greater than 10 counts
and less than or equal to a selected maximum signal were included in the fit. The maximum
signals were 70 and 80 counts for DA594 and DACy5 respectively.

A Petri dish fitted with a glass coverslip was used as a sample cell (MatTek Corp., Ashland,
MA). The sample cell was prepared by placing 2 ml of 2 mg/ml Bovine Serum Albumin
(BSA) in the dish for approximately 5 min. The BSA was used to prevent DNA from
sticking to the glass coverslip. The cell was then emptied and dried with nitrogen gas. The
FRET-labeled DNA sample, 2 ml at 20 pM, was added to the cell and placed on the
microscope. The focus of the laser was adjusted to be positioned approximately 30 μm into
the solution. The laser power was set at 40 μW for DA594, and 60 μW for DACy5
experiments. The laser power was measured before the beam entered the microscope. Three
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sets of burst data were collected for approximately 1 hour each for DA594, and two sets of
an hour each for DACy5. The average background count rate was determined for each
measurement with a buffer-only sample. The average number of background counts in each
channel in a 300-μs time bin was then used in eq (5). The average numbers of background
counts measured for the green and red channels in a 300-μs time bin were 0.137 and 0.0783
with the DA594 filter set and 0.154 and 0.112 for the DACy5 filter set.

Instrumental Detection Factors and Quantum Yields
A Cary Eclipse fluorimeter was used to measure the fluorescence spectra for DACy5, ACy5,
D488, and DA594. The fluorescence spectrum of AF594 with double-stranded DNA was
obtained by exciting DA594 at 575 nm; this wavelength does not excite the donor dye. The
emission spectra were corrected for the wavelength-dependent detection efficiencies of the
fluorimeter by using the standard emission spectra of Coumarin 153, LDS751, DCM, and
fluorescein.39 The shapes of the emission spectra for DA594 (acceptor excitation), D488,
and ACy5 were fitted to sums of Gaussians. The bulk FRET efficiencies with DACy5 and
DA594 were determined from fits the fixed the shape of the spectra from the individual dyes
while allowing the amplitude for each dye species to vary. The resulting contribution to the
fit from each dye was integrated and was used to calculate the bulk FRET efficiency,
weighted appropriately by the quantum yields.

D488 was used to determine the cross talk of the donor dye into the acceptor channel on the
microscope. The sample, comprising 30.0 μl of 8 nM D488, was placed on a BSA-treated
coverslip for data collection. The average intensity was measured in both detection channels.
At low laser intensities and large sample concentrations the background intensity was
negligible. The ratio of the average emission intensity in the acceptor channel to that in the

donor channel gives the term  directly (eq (10)). The cross talk was found to be 0.046 for
the DA594 filter set, and 0.0077 for the DACy5 filter set.

To measure the bulk apparent FRET efficiency, 30 μl of 8 nm DA594 or of 10 nm DACy5
was placed on BSA-treated coverslips. Measurements were performed three times between
burst data sets. The bulk Eapp from each of the measurements was averaged; values were
0.619 ± 0.003 for DA594 and 0.303 ± 0.002 for DACy5.

The quantum yields of dyes bound covalently to DNA were measured using either the
standard reference technique39 or the Strickler-Berg method.40,41 Relative to fluorescein
(quantum yield 0.925 in 0.1 M NaOH42), the quantum yield of AF488 on DNA, D488, was
determined to be 0.95. The quantum yield of DNA-AF594 and DNA-Cy5 were 0.71 and
0.45, respectively, by the Strickler-Berg method.40,41 All quantum yield values determined
have an error of approximately 5%. Finally, the bulk Eapp measured on the microscope, the
bulk FRET efficiency measured on the fluorimeter, the quantum yields and the cross talk

were used in equation (8) to determine the ratio of detector efficiencies , which was 1.05
for the DA594 filter set and 0.71 for the DACy5 filter set.

Recovery of the joint distribution
MemSys5 in C was obtained from Maximum Entropy Data Consultants (Cambridge, UK).
The MemSys5 kernel contains a set of functions that solves the classic maximum entropy
data problem in an iterative manner. We custom-programmed function calls to the kernel so
as to interface its minimization calculations with the photon distribution analysis. A Poisson
likelihood was chosen for all classic maximum entropy fits. The initial model m in the
entropy functional (3) was chosen to be flat, with the dimensions of the joint distribution
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PA(Eapp,F) multiplied by the number of blurring layers. Each layer increases the blurring by
a factor of 2 in both dimensions. Fits were performed with up to 8 layers. The continuous
distribution in Eapp, P(Eapp|F), was approximated by 100 equally spaced points. The value
of F ranged from 5 to 55 in the simulations, 10 to 70 for DA594 measurements, and 10 to 80
for DACy5 measurements.

RESULTS
Simulations

Simulations were used to test the reliability of classic maximum entropy analysis in
recovering the distribution PA(Eapp,F). Simulated data were generated directly from the
PDA theory with model distributions P(Eapp) and P(F).8 The distribution PA(Eapp,F)
recovered from classic maximum entropy analysis could then be compared with the original
distribution. Accurate recovery of the initially assumed distribution indicates that the
analysis can reliably determine the average distribution that is exhibited by molecules during
an experiment.

Four simulations were performed as described in Materials and Methods, each with two
molecular species. (For simulations with three molecular species, see the supporting
information.) The centers of the input Gaussian P(Eapp) for each species were changed in
successive simulations, to test the ability to recover different multimodal distributions. Table
1 summarizes the parameters used in each simulation.

Classic maximum entropy fits were performed with various numbers of blurring layers in
the hidden distribution. The recovered distribution is compared with the simulated data in
Figure 1. The distribution PA(Eapp, F) in panel A was used to create the simulated data
histogram, N(S1,S2), shown in panel B. The value of N(S1,S2) was read into the maximum
entropy routine for fitting. Although classic maximum entropy returns the probability,
known as the inference, of any PA(Eapp,F) distribution, we plot the most probable
PA(Eapp,F) in panel C. The MemSys5 algorithm approximates the inference distribution in a
second-order Taylor expansion around the most probable PA(Eapp,F). In this approximation
the most probable distribution must also be the average distribution. Mock data M(S1,S2),
generated from the most probable PA(Eapp,F), is displayed in panel D. There is close
resemblance of both the mock data and the recovered PA(Eapp,F) to the simulated data and
actual PA(Eapp,F). Six layers of blurring maximized the evidence for the first simulation,
Figure 1E. ICFs account for the fact that a model incorporating “neighboring” two-
dimensional histograms of FRET efficiency E and intensity F accounts better for the
experimental histogram of counts in S1 and S2 than a model without blurring, as
demonstrated by the increased value of the evidence. The recovery without ICFs is
displayed in the supporting information along with the Bayesian evidence.

The contribution to PA(Eapp,F) from each species was determined with a mask function. The
mask was chosen to determine the average probability contained within each peak, along
with its error, and was applied to the non-blurred recovery for the sake of simplicity. The
total probability and error in the apparent efficiency ranges of 0.101 to 0.467 and 0.475 to
0.909, summed over all F, were respectively 0.285 ± 0.003 and 0.711 ± 0.004. These values
are almost exactly the amplitudes of the species from the simulation, which were 0.286 and
0.714.

A helpful way to visualize the fit is to calculate a one-dimensional histogram from a ratio
such as the experimental FRET efficiency. For a given time bin, this is simply a histogram
of the number of counts detected in the acceptor channel divided by the total number of
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counts for that time bin, . This type of histogram is commonly plotted to
present single-molecule burst data. Figure 2B shows the experimental FRET efficiency
histogram for the simulated data (gray) and corresponding maximum entropy fit (red).
Figure 2A shows the weighted residuals calculated from the histograms. Figure 2C shows
the weighted residuals calculated from the two-dimensional histograms N(S1,S2), M(S1,S2)
used in the fitting procedure. The randomness and amplitude in the residuals in Figures 2B
and 2C show that the mock data accurately reproduces the simulated data. The slightly
negative background region in Figure 2C (light green) notably arises where there are no
counts in a particular bin in the data histogram. This is due to the inclusion of histogram bins
with few or no data points but with a slight positive amplitude in the mock data. The solid
yellow area at upper right of the plot is outside the fitting range for the data set, and is not
used in the calculations. The range for the recovered distribution of F was chosen to cover
nearly all the majority of the expected range of PA(F). The range in F selected has little
effect on the recovered distribution as discussed in the supporting information. Variation in
the background level also has little effect, as shown in the supporting information.

The distribution PA(Eapp,F) was marginalized over Eapp and F according to equation (7) and
the resulting marginals were compared against the distribution from which random numbers
were generated for the simulation; see Figure 3. The marginal distributions recovered both
with and without ICFs reproduce the actual marginal distributions very well. The recovery
without blurring is not as smooth as the visible blurred distribution. This is because each
point in the non-blurred distribution is independent.

The recovered PA(Eapp,F) distributions for the last three simulations were marginalized over
Eapp and F; the results are shown in Figure 4. Panels A, C, and E show the recovered PA(F),
and Panels B, D, and F show the corresponding PA(Eapp). In all panels, solid lines indicate
the actual marginalized distributions used in the simulations. Red squares indicate the fit. In
all simulations, the recovered most probable distributions are in excellent agreement with
the theoretical distributions. As overlap increases between states in the underlying
distribution, the recovered distribution begins to blur the two states together. Furthermore,
the recoveries of the proper shapes for PA(F) and PA(Eapp) are not strongly interdependent.
As shown in Figure 3 and 4, PA(F), which is the same in all simulations, is recovered
accurately even though the overall shape of PA(Eapp) is different in each simulation.
Recovery of a distribution with three FRET states is demonstrated in the supporting
information.

FRET Labeled DNA Measurements
Burst measurements were performed on DA594 and DACy5 as described in Materials and
Methods. The recovered PA(F,Eapp) and PA(Eapp) for both samples show two major peaks.
Figure 5 displays the recovered distribution for one DA594 measurement. The peak at an
apparent FRET efficiency of 0.044 is due to the presence of a donor-only species. This peak
may come from single stranded DNA labeled with AF488 that remains after annealing. The
peak may also include contributions from DA594 with a photobleached acceptor. The peak
at an apparent FRET efficiency of 0.643 is due to the FRET species. Figure 5B compares
PA(F) and P(S). It is apparent that PA(F) follows P(S) closely. This is as expected from the
low average background count rate. A low-signal threshold value of 10 counts per bin was
used to ensure that a molecule was present in the focal volume during a time bin. For this
threshold value, with typical average background count rates, it is unlikely that the
background would contribute significantly to the detected signal. As a result, PA(F) is
expected to follow P(S) closely. Simulations to test the effect of background level on the
recovered distributions show little effect with background levels up to 20 times that
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expected in experiments (see Supporting Information). An advantage of this approach is that
Pj(F) can be determined for a single species, j, if its distribution does not overlap with the
distribution of another species in PA(Eapp,F). Specifically, Pj(F) is determined by
marginalizing the joint distribution over Eapp in the range associated with the single species.
Any Pj(F) determined in this manner need not resemble P(S) closely; only the species
averaged PA(F) are expected to resemble P(S). The experimental FRET efficiency histogram
is shown in Figure 5D, together with its weighted residuals. We see that the recovery is an
acceptable fit to the data.

Each of three data sets of DA594 was fitted using classic maximum entropy. Figure 6A and
6B show overlays of PA(Eapp) and PA(F) from each measurement. Each recovery used four
layers of blurring in the hidden distribution. The distributions were highly reproducible. The
total probability amplitude contained within the donor-only and FRET-species peaks was
estimated according to the inference distribution for each data set from the non-blurred
recovery. The mask was selected to have value 1 in the range covering most of each peak;
the results are summarized in Table 2. The amplitude and error associated with all three data
sets show very good agreement. Plots corresponding to the recoveries of DACy5 can be
found in the supporting information.

The averages of the most probable PA(Eapp) for DA594 and DACy5 were calculated from
repeated data sets and transformed into distributions in distance, P(R). This P(R) was then
used to determine an estimated potential of the mean force (PMF), shown in Figure 8. The
Förster distance (Ro) calculated for DA594 was 58.8 Å, and for DACy5 it was 54.3 Å.
Details of the calculation are set out in the supporting information. The maximum amplitude
of the FRET species occurs at 51.4 ± 0.5 Å for DA594 and 53.7 ± 0.5 Å for DACy5. We
estimated the error in the peak position by propagating the estimated 5% error associated
with our quantum yield measurements to Ro. The average PA(Eapp) distributions were then
transformed to P(R) type using the upper and lower error bounds for Ro. For both dye pairs,
the PMF is actually a combination of two potentials, one for the donor-only species, which
dominates at long distances, and one for the FRET species. This is an insightful test of the
estimation of PMFs from model-free spFRET analysis, because it demonstrates the
exaggeration of small details in the distance distribution when taking the logarithm to create
the PMF. In particular, structure having low probability amplitude within the distribution is
exaggerated, giving rise to visible structure in the PMF. The shape of this structure is not
well determined. Caution is therefore necessary when interpreting the potential
corresponding to structures with low probability amplitude. Furthermore, the sensitivity of
the FRET efficiency to distance is greatly reduced at long and short distances. Sharp
structures in PA(Eapp) located at very high or low values of Eapp are transformed to features
with broad widths in the distance distribution and in the PMF.

DISCUSSION
Distributions of single-molecule distances in DNA have been reported by several
groups.8,10,43,44 In particular, our results are consistent with published results from the
Seidel group for the same sequence of double stranded DNA with the dye pair Alexa 488
and Cy5.8 In their work, the DNA and dye pair data were fitted to a Gaussian distribution of
distances, resulting in a width of of 2.3 Å centered at 53.9 Å. To compare the width of our
classic maximum entropy approach with the Gaussian distribution of distances reported
previously, we fitted the average P(R) distribution for DA594 and DACy5 by a Gaussian
distribution. The width obtained from these fits was 2.6 Å for DACy5 and 2.0 Å for DA594,
in good agreement with the previously published results.8 Seidel and coworkers showed that
the distribution of distances for short strands of DNA is probably due to effects of the local
environment on the properties of the dyes, and is not a consequence of conformational
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heterogeneity of the DNA.44 This may also be the case for DA594 and DACy5. The
absolute distance measured between the transition dipole moments of the dyes does not
strictly relate to the distance between the attachment points of the DNA base pairs to which
the dyes are attached.45 With similar linker lengths and sufficient orientational averaging,
however, the absolute distance measured with different dye pairs should be similar. The
absolute distances measured for DA594 and DACy5 are in good agreement, differing by
only 2.3 Å. The distance measured for DACy5 is also in agreement with that published
previously,8 with a difference of only 0.2 Å.

Because of possible dye-biomolecule interactions, care is necessary in interpreting
distributions for distance and the estimated PMF. Any broadening of distributions due to
heterogeneous properties of the dyes will add to the width of the PMF estimated by the
classic maximum entropy approach. Consequently, we can view the distance distribution
and PMF calculated from experiment as a limiting width for the true distributions. If dye
heterogeneities are present, the actual distributions must in fact be narrower than those
recovered by our estimate.

Maximum entropy recovers the widest distribution consistent with the data. Far from being a
drawback of the technique, this is its strength: it never over-commits, since information
theory guarantees that we cannot learn more than this. A narrow distribution would imply
that we could predict future results confidently; every measurement would result in virtually
the same outcome. The distribution recovered by maximum entropy analysis approaches the
width of the true distribution as more data is collected. Happily, extremely large data sets to
determine discrete states do not appear to be needed with the application of classic
maximum entropy to fit PA(Eapp,F). This is due to the extreme sensitivity of FRET when
looking for conformations near to Ro. A broad distribution in Eapp near to Ro can collapse to
a quite narrow distribution when transformed into distance.

Conclusions
We have demonstrated that the underlying average joint probability distribution PA(F,Eapp)
can be recovered directly from spFRET data using classic maximum entropy analysis. The
present technique is ideal for measurements in which a distribution of distances is expected
for the molecule of interest. The distributions PA(F) and PA(Eapp) can be obtained by
marginalizing the joint distribution over Eapp and F respectively. For molecules with
conformational distributions that are static on the timescale of photon binning, the potential
of mean force can be estimated directly from the marginal distribution P(Eapp). A great
benefit of utilizing classic maximum entropy is the calculation of the Bayesian evidence.
This procedure allows the experimenter to compare, quantitatively, the accuracy of various
assumptions, such as the Bayesian priors chosen. Furthermore, the probability amplitude,
and its average and error, can readily be calculated within an interval of Eapp. These benefits
are a consequence of the Bayesian framework, which determines the probability of any
PA(Eapp,F) distribution given the data. Finally, ICFs can be used to induce smoothness in
the recovered distribution.

We expect that the advantages of this approach will best be realized when working with
flexible proteins where an arbitrary distribution of distances is likely. In that case there is no
reason to suppose that the distance distribution conforms to any particular model, such as a
sum of Gaussians, and it is better to tackle the problem of determining an arbitrary
distribution using a model-free Bayesian approach. Regardless of whether the Bayesian
approach is model-free, the evidence P(D|I) can be used to discriminate between analyses.
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Plots corresponding to the first simulation are shown in panels A and B. Output from the
maximum entropy recovery with six layers of blurring is shown in panels C and D. (A)
Distribution PA(Eapp,F) from which random samples were taken to create the simulated
data. (B) Data histogram, N(S1,S2), from simulation run 1. (C) Most probable PA(Eapp,F)
recovered from the maximum entropy fit. The most probable distribution was used to
generate M(S1,S2). (D) Mock data histogram generated from the maximum entropy fit,
M(S1,S2). (E) The Bayesian evidence conditional upon the number of blurring layers in the
hidden distribution (black squares). Red open circles and solid circles depict the upper and
lower error bounds of the evidence.
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Figure 2.
(A) Weighted residuals between the data and mock data for the experimental FRET

efficiency histogram. The residuals were calculated as , where Di is a data point and
Mi is the corresponding data point calculated from the recovered PA(Eapp,F). Histogram bins
with less than 10 counts were excluded from the residuals. (B) A one-dimensional
experimental FRET efficiency histogram corresponding to the data in Figure 1. Data are
shown with a black line and solid gray fill. Mock data generated from the fit are shown in
red. (C) Residuals calculated by the maximum entropy routine for the two dimensional

signal histogram. Residuals were calculated by the MemSys5 kernel as , and all bins
were included.
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Figure 3.
Comparison of fits to data from the first simulation with and without ICFs. In all panels, red
squares indicate the recovered marginalized distribution, and the solid line is the
marginalized distribution used in the simulation. (A) and (B) show the recovered PA(F) and
PA(Eapp) with six layers of blurring. (C) and (D) show the recovered PA(F) and PA(Eapp)
without any use of ICFs.
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Figure 4.
(A) and (B) Recovered PA(F) and PA(Eapp) for simulation 2. (C) and (D) Recovered PA(F)
and PA(Eapp) for simulation 3. (E) and (F) Recovered PA(F) and PA(Eapp) for simulation 4.
In all panels, red squares show the recovered marginalized distribution with six layers of
blurring. The solid line corresponds to the underlying marginalized distribution used in the
simulation. Table 1 gives the parameters used for each simulation.
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Figure 5.
The most probable recovered distribution for double-stranded DNA labeled with AF488 and
AF594. (A) Joint distribution PA(Eapp,F). (B) PA(F) obtained by marginalization of the joint
distribution over Eapp (red line) and P(S) obtained from the experimental data (black
circles). (C) PA(Eapp) obtained by marginalization of the joint distribution over F. (D)
Experimental FRET efficiency histogram, with N(S1,S2) in gray and M(S1,S2) in red (lower
panel). The weighted residuals are shown in the upper panel. Four layers of blurring were
used in the hidden distribution.
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Figure 6.
(A) Overlay of PA(Eapp) recovered from three consecutive data collection intervals for the
DA594 sample. (B) Overlay of PA(F) for the same data sets as in panel A. In all panels,
black squares indicate the same data set as displayed in Figure 5.
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Figure 8.
(A) Distance distribution for DA594. (B) Estimated potential of the mean force for DA594.
(C) Distance distribution from DACy5. (D) Estimated potential of the mean force for
DACy5.
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Table 1

Parameters used in four simulations. Each simulation was performed with two species. P(E) for each species
was a Gaussian distribution, and P(F) was a Poisson distribution.

Simulation P(E) P(F)

Run Species Mean σ Average

1 1 0.7 0.07 20

2 0.3 0.05 35

2 1 0.6 0.07 20

2 0.4 0.05 35

3 1 0.575 0.07 20

2 0.425 0.05 35

4 1 0.55 0.07 20

2 0.45 0.05 35
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Table 2

Average probability for two ranges of Eapp marginalized over all F.

Run Eapp Range
0.411 to 0.817

Eapp Range:
0.044 to 0.208

1 0.865±0.005 0.122±0.003

2 0.860±0.006 0.119±0.003

3 0.858±0.005 0.124±0.003
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