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Abstract

HuR, an RNA binding protein, binds to adenine- and uridine-rich elements (ARE) in the 3′-

untranslated region (UTR) of target mRNAs, regulating their stability and translation. HuR is 

highly abundant in many types of cancer, and it promotes tumorigenesis by interacting with 

cancer-associated mRNAs, which encode proteins that are implicated in different tumor processes 

including cell proliferation, cell survival, angiogenesis, invasion, and metastasis. Drugs that 

disrupt the stabilizing effect of HuR upon mRNA targets could have dramatic effects on inhibiting 

cancer growth and persistence. In order to identify small molecules that directly disrupt the HuR–

ARE interaction, we established a fluorescence polarization (FP) assay optimized for high 

throughput screening (HTS) using HuR protein and an ARE oligo from Musashi RNA-binding 

protein 1 (Msi1) mRNA, a HuR target. Following the performance of an HTS of ~6000 
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compounds, we discovered a cluster of potential disruptors, which were then validated by 

AlphaLISA (Amplified Luminescent Proximity Homogeneous Assay), surface plasmon resonance 

(SPR), ribonucleoprotein immunoprecipitation (RNP IP) assay, and luciferase reporter functional 

studies. These compounds disrupted HuR–ARE interactions at the nanomolar level and blocked 

HuR function by competitive binding to HuR. These results support future studies toward 

chemical probes for a HuR function study and possibly a novel therapy for HuR-overexpressing 

cancers.

NA-binding proteins (RBPs) are critical trans factors that associate with specific cis 

elements present in mRNAs, thereby regulating the fate of target mRNAs.1 The RBP Hu 

antigen R (HuR, also known as HuA; Hu references the patient's initials from whom an anti-

HuR, autoinflammatory antibody was first isolated2) is a member of the embryonic lethal 

abnormal vision-like (ELAVL) protein family that binds to adenine- and uridine-rich 

elements (ARE) mainly located in the mRNA 3′-untranslated region (UTR).1,3,4 HuR is 

elevated in a broad range of cancer tissues compared with the corresponding normal 

tissues.5 In early reports, upregulated HuR in brain and colon cancers was linked to the 

enhanced expression of COX-2, VEGF, TGF-β, IL-8, and other cancer-associated 

proteins,6,7 Subsequent studies revealed that HuR was broadly overexpressed in virtually all 

malignancies tested, including cancers of the colon,5,8,9 prostate,10,11 breast,12 brain,6 

ovaries,13 pancreas,14 and lung.15 Elevated cytoplasmic accumulation of HuR correlates 

with high-grade malignancy and serves as a prognostic factor of poor clinical outcome in 

those cancers.3,4,16 HuR is proposed to play a causal role in tumor development. Cultured 

carcinoma cells with elevated HuR produced significantly larger tumors than those arising 

from control populations in a mouse xenograft model,5 while reducing HuR by siRNA or 

microRNA led to decreased tumor size.5,17

HuR contains three RNA recognition motifs (RRM), of which RRM1 and RRM2 are 

involved in RNA binding, whereas RRM3 does not contribute to RNA binding but is needed 

for cooperative assembly of HuR oligomers on RNA.18 Many cytokine and proto-oncogene 

mRNAs have been identified as containing AREs within their 3′-UTRs, which confer a short 

mRNA half-life.19 Cytoplasmic binding of HuR to these ARE-containing mRNAs is 

generally accepted as leading to mRNA stabilization and increased translation.20,21 HuR 

promotes tumorigenesis by interacting with cancer-associated mRNAs which encode 

proteins implicated in different tumor processes including cell proliferation, cell survival, 

angiogenesis, invasion, and metastasis.3,4,16 HuR also promotes the translation of several 

target mRNAs encoding proteins that are involved in cancer treatment resistance.16,22–24 
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Taken together, these findings suggest that HuR is an attractive target for developing novel 

cancer therapies.

RBPs have been considered “undruggable targets” due to the lack of a well-defined binding 

pocket for target mRNA. Indeed, there has globally been limited success in finding small 

molecules that directly disrupt the HuR interaction with AREs of target mRNAs, with 

limited reports indicating several active hits arising from screening for HuR inhibitors.25–27 

Those reported hits are structurally independent, so they cannot provide information for later 

structure–activity relationship (SAR) analysis to design more potent and specific HuR 

inhibitors. Currently, the most potent hit reported (MS-444) acts via inhibition of HuR 

homodimerization, leading to disruption of the HuR–ARE interaction.25 Here, we try to 

identify HuR inhibitors, which competitively bind to HuR and directly disrupt the HuR–

ARE interaction.

In this study, we optimized a fluorescent polarization-based (FP-based) binding assay using 

human full-length HuR protein and an ARE region of Musashi1 (Msi1) 3′-UTR mRNA. 

HuR binds to and stabilizes the mRNA of Msi128 allowing for oncogenic overexpression of 

Msi1 and negative regulation of Numb and adenomatous polyposis coli (APC), which are 

involved in controlling Notch and Wnt signaling pathways.29 Using this FP-based HTS, we 

screened a library of ~6000 compounds and identified a set of HuR–ARE disruptors, which 

were validated by AlphaLISA assay, SPR, RNP IP, and luciferase reporter functional 

studies. The discovery of these inhibitors and related inactive compounds provides the 

impetus for rational design of more potent and specific HuR–ARE disruptors.

RESULTS AND DISCUSSION

FP Assay Setup and Optimization

To identify small molecule disruptors of HuR–ARE interactions, we established a FP-based 

binding assay for HTS. We first optimized the assay by titrating both HuR protein 

(concentration range 1–50 nM) and a 16-nt ARE-containing fluorescein-labeled RNA oligo 

from Msi1 mRNA (AREMsi1, concentration range 0.5–100 nM). All test RNA 

concentrations showed dose–response curves with HuR protein (Figure 1A). Based on the 

fluorescence intensity, a final concentration of 2 nM AREMsi1 was used in optimization 

experiments and 1 nM was used for HTS. The equilibrium dissociation constant, Kd, of HuR 

binding to AREMsi1 was then determined in a saturation binding experiment using a 2 nM 

concentration of fluorescent ligand while varying concentrations of HuR protein. As shown 

in Figure 1B, HuR has high binding affnity to AREMsi1–FITC, with a Kd of about 3 nM and 

a dynamic range of 183 ± 5 mP (ΔmP = mP of bound RNA – mP of free RNA), but not to a 

16-nt control RNA oligo with a random sequence. To further demonstrate specificity, HuR 

has a 20-fold lower binding affnity to a 16-nt oligo of the APC mRNA, which is not a 

predicted binding site for HuR (Figure 1B). A non-RNA binding protein Bcl-xL was used to 

determine the specificity of the AREMsi1 oligo binding to HuR. Bcl-xL has no binding to 

AREMsi1–FITC at the highest concentration tested (1000 nM, Figure 1C). The stability of 

the FP assay is critical for HTS and has been tested. By incubating the plate at RT for 24 h 

and reading the plate at set intervals, the stability of the FP assay was tested. Thus, the Kd 
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value and the binding range were found to be reproducible throughout this period, which 

demonstrates the assay to be suitable for HTS (data not shown).

In order to determine if this FP assay could be employed to evaluate competitive 

interactions, we performed a competitive binding experiment using the corresponding 

unlabeled RNA oligos. The signal/background window (the difference between the highest 

and lowest polarization values) and the sensitivity are two major factors that should be 

considered and could be affected by the concentration of labeled RNA and protein used in 

the experiment. Based on the saturation binding curves in Figure 1B, 10 nM HuR protein 

was used, which resulted in about 80% of maximal FP with AREMsi1 but no binding with 

random control RNA. Using the fixed concentration of labeled AREMsi1 and HuR protein 

and increasing doses of unlabeled RNA, the IC50 of unlabeled AREMsi1 and a random 

control RNA oligo was determined (Figure 1D). Unlabeled AREMsi1 competed for binding 

with an IC50 of 17.9 nM, while the random control RNA oligo did not compete with the 

binding at the highest concentration tested (5000 nM). These results indicated that this FP 

assay is suitable for detecting HuR–ARE disruptors.

After confirming the binding affnity and specificity of the 16-nt AREMsi1 to HuR purified 

from E. coli, we asked whether it binds to endogenous HuR by performing an RNA 

pulldown experiment. As shown in Figure 1E, biotinylated AREMsi1 effciently bound 

endogenous HuR in HCT-116 cells, which was attenuated by 10-fold unlabeled oligo. In 

addition, a biotinylated random control oligo was unable to pull down endogenous HuR, 

thereby demonstrating that the 16-nt AREMsi1 oligo specifically binds to endogenous HuR 

in HCT-116 cells.

We also tested the established FP assay using two other ARE oligos from the reported HuR 

target mRNAs, Bcl-230,31 and XIAP.23,32 As shown in Figure 1F, AREBcl-2 and AREXIAP 

exhibited similar binding curves with HuR protein and similar Kd values compared to 

AREMsi1. Based on this, the 16-nt AREMsi1 oligo was selected as a representative cognate 

ARE for development of the final HTS. We noted that in the natural context AREs are often 

longer and in proximal tandem repeats; therefore this 16-nt oligo can be regarded as an 

exemplar ARE element. Disruptors of the HuR–AREMsi1 interaction are also expected to 

inhibit binding of other ARE-containing RNAs (e.g., Bcl-2 and XIAP mRNAs).

FP-based High Throughput Screening

Prior to screening, we first verified that HuR–Msi1 binding is not affected by DMSO 

(Figure 2A). The HTS was performed in 384-well plate format, using DMSO only (no 

compound) for negative controls and FITC-labeled AREMsi1 only for positive controls. For 

the 20 plates screened, the coeffcient of variation (CV) of DMSO and AREMsi1 controls was 

2.8% and 16.2%, respectively, with a signal to background window (S/B) of 5.6 (Figure 

2B). The average Z′ factor was 0.79 ± 0.03 (Figure 2C). Together, these results indicated the 

assay was robust and reliable. We screened ~6000 compounds from two libraries: (1) an in-

house library developed by the KU Chemical Methodologies and Library Development 

center (www.cmld.ku.edu) and (2) a library of FDA-approved drugs. The scattergram of the 

~6000 compounds screened is shown in Figure 2D. Compounds were ranked according to 

their ability to disrupt the HuR–AREMsi1 interaction, and 58 compounds exhibiting 
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significant inhibition (median +3 SD) were designated as the initial hits. After elimination of 

hits based on autofluorescent interference and suspected promiscuous behavior (as 

determined by PubChem searches), 38 candidate compounds were selected for further 

validation, resulting in a HTS hit rate of 0.7%.

Structure Clustering of Candidate Compounds

We applied the free ChemMine software (http://chemmine.ucr.edu/) to access the structure 

similarity of our hits. Application of hierarchical clustering based on pairwise compound 

similarities defined using atom pair descriptors and Tanimoto coeffcient comparisons 

resulted in a heat map of the distance matrix with the columns ranked by location in libraries 

and rows ranked by similarity. This heat map indicated two major clusters, A and B, 

containing 6 and 12 compounds, respectively, with the rest of the hits being singletons or 

occurring in pairs (Figure 3). Cluster A compounds exhibited greater potency in disrupting 

HuR–ARE interactions in the screening; therefore cluster A compounds were chosen for 

further validation.

The structures of the six cluster A compounds (CMLD1–6) share a coumarin-derived core 

with differences at the aryl and amide substituents. Examination of the screened library 

showed that there were an additional 51 compounds having a similar scaffold, including 

numerous examples in which the amide group was replaced by an analogous amino 

substituent (Supporting Information Table 1). Since these compounds did not disrupt the 

HuR–AREMsi1 interaction in the initial screen, three representatives (NC1–3, Figure 3) were 

selected as negative controls for validation assays.

Validation of Cluster A Compounds by Biochemical Assays

The FP assay was again used to validate the ability of cluster A compounds to disrupt the 

HuR–AREMsi1 interaction (Figure 4A). Compounds CMLD1–6 displayed a dose-dependent 

inhibitory effect with compound CMLD-2 being the most potent, with a Ki of 0.35 ± 0.3 μM 

(n = 3). NC-1 and NC-3 turned out to be weakly active while NC-2 did not disrupt the HuR–

AREMsi1 interaction. Similar results were obtained using AREBcl-2 and AREXIAP (data not 

shown).

In order to determine that these inhibitory effects were not assay specific, another 

biochemical assay, the AlphaLISA, was employed to evaluate the HuR protein–RNA 

complex formation as performed previously.27 This assay includes four components: His6-

tagged HuR RRM1/2 domain, biotinylated AREMsi1oligo, streptavidin coated donor beads, 

and nickel coated acceptor beads. The interaction of RRM1/2 and AREMsi1 brings the two 

beads close enough to generate a signal following excitation. The AlphaLISA assay was 

optimized by titration of RRM1/2 protein and AREMsi1, and a Kd value of 75 nM was 

calculated (Figure S1A,B). CMLD1–6 and NC1–3 compounds were tested using 25 nM 

RNA and 100 nM RRM1/2 protein (Figure 4B). Although the resulting Ki values are higher 

than corresponding values in FP assays, the rank order is the same with the exception of 

NC-1. The high affnity of NC-1 was due to a false positive result determined using the 

AlphaLISA TruHits kit (Figure S1C). The higher IC50 and Ki values in the AlphaLISA 

assay as compared to those in the FP assay was a result of different HuR fragments used in 
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two assays. It was found that compounds also gave higher IC50 and Ki values in FP assay 

when RRM1/2 protein was used compared to full-length HuR (Figure S2).

Data from the FP and AlphaLISA assays do not indicate whether compounds are binding to 

protein or RNA. Therefore, SPR was used to verify the direct binding of compounds to HuR 

protein. As shown in Figure 4C–F, both CMLD-2 and NC-3 exhibit dose-dependent binding 

to full-length HuR protein and RRM1/2 fragment, but NC-3 had a relatively lower response 

to two proteins. Moreover, the same compound displayed a higher response to full-length 

HuR comparing to RRN1/2; this is consistent with the finding in the above two assays that 

compounds show less potency with RRM1/2 versus full-length HuR protein. Validation of 

cluster A hits by three biochemical assays supports our hypothesis that small molecule 

compounds disrupt the HuR–ARE interaction through directly binding to HuR protein.

HuR–ARE Disruptors Block HuR Function

In order to determine the functional consequence HuR–ARE disruptors have on downstream 

targets and cancer cell growth, RNP IP, luciferase-based reporter assays, and cytotoxicity 

assays were performed. The cytotoxicity of CMLD1–6 and NC1–3 compounds on human 

cancer cells, normal fibroblast cell line WI-38, and normal human colon epithelial cell line 

CCD 841 CoN was examined first by a MTT-based cytotoxicity assay. Except for CMLD-3, 

the CMLD compounds 1–6 show moderate cytotoxicity against HCT-116 colon cancer cells 

and MiaPaCa2 pancreatic cancer cells. These same compounds show decreased cytotoxicity 

against normal cell WI-38 and CCD 841 CoN as demonstrated by ~2-fold greater IC50 

values (Figure 5A–C and Figure S3). (Note that the accuracy of IC50 determination in 

WI-38 and CCD 841 CoN cells may be an underestimate, since with most compounds 

inhibitory activity was observed at the highest dose.) This suggests that these compounds are 

disrupting an oncogenic pathway preferentially active in cancer cells and resulting in 

decreased cell viability.

To address whether these CMLD compounds can disrupt endogenous HuR-mRNA 

interactions, we performed RNP IP assay to test the two most potent compounds CMLD-1 

and CMLD-2, as well as negative control NC-3 (Figure 5D). The 50 μM CMLD-1 and 20 

μM CMLD-2 significantly blocked HuR bound Msi1 mRNA in HCT-116 cells compared to 

DMSO control. Similar results were obtained with XIAP mRNA, while NC-3 did not 

significantly impact HuR-Msi1 or XIAP interactions at the two doses tested.

As mentioned above, Msi1 plays a major role in controlling the Wnt signaling pathway 

through negative regulation of APC. Moreover, another HuR target mRNA CTNNB15,33 

which encodes β-catenin protein, is downstream of canonical Wnt signaling, where it serves 

as a transcriptional coactivator when translocated to the nucleus. To determine if CMLD 

compounds could impact oncogenic Wnt signaling through specific disruption of HuR–

mRNA interactions, luciferase reporter assays were performed. HCT-116 cells stably 

expressing a Wnt responsive 7xTcf promoter/luciferase reporter were stimulated with 20 

mM LiCl, an inhibitor of GSK3, which activates Wnt signaling, in combination with 

treatment of CMLD1–6 and NC1–3 compounds (20 μM) for 24 h. This concentration is 

below the IC50 values of these compounds in cytotoxicity assay in which cells are incubated 

with compounds for 4 days and was selected in order to inhibit the HuR effect on Wnt 
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signaling without being cytotoxic. We found that CMLD-1, -2, -4, and -6 significantly 

impacted Wnt signaling but not NC compounds, as compared to DMSO control (Figure 5E). 

Interestingly, CMLD-5 and especially CMLD-3 showed less inhibition of Wnt signaling that 

reflected their effects on cell viability compared to other CMLDs.

HuR functions by binding to the 3′-UTR of target mRNAs, stabilizing the mRNAs of target 

genes and promoting translation. Another luciferase reporter assay was used to determine 

whether CMLDs affected HuR's ability to stabilize target mRNAs. HCT-116 cells were 

transiently transfected with a luciferase reporter construct bearing the ARE (NM_000633, 

1274–1634) of Bcl-2 3′-UTR and treated with 20 μM compounds for 24 h. As shown in 

Figure 5F, all tested compounds except CMLD-3 reduced luciferase activity with differing 

effciency compared to the DMSO control. Further studies to determine the mechanism of 

low potency of CMLD-3 in cell-based assays need to be carried out. Interestingly, NC-2 also 

shows significant inhibition, which suggests that NC-2 acts upon the Bcl-2 3′-UTR through 

another mechanism since it has the strongest cytotoxicity among the nine tested compounds.

To further confirm that these disruptors can block the HuR function on stabilizing target 

mRNAs, the stability of Bcl-2, Msi1, and XIAP mRNAs was examined in HCT-116 cells 

after treatment with a transcription inhibitor actinomycin D. The 20 μM CMLD-1 and 

CMLD-2 shortened the half-lives of all three mRNAs as compared to a DMSO control, 

while 20 μM NC-3 treatment did not (Figure 6A–C). Consequently, the protein levels of 

Bcl-2, Msi1, and XIAP were decreased by CMLD-1 and CMLD-2 dose-dependently, but not 

by NC-3, indicating that CMLD-1 and CMLD-2 also block the HuR function on promoting 

translation (Figure 6D). Taken together, these studies demonstrate that many of the top 

compounds tested disrupt the HuR–ARE interaction, block HuR function, and reduce 

expression of HuR target mRNAs.

To explore the cancer cell death mechanisms of CMLD compounds, we measured protein 

levels of cleaved PARP (poly ADP ribose polymerase) and cleaved caspase-3, two apoptosis 

markers, and LC3 conversion, a marker for induction of autophagy, in HCT-116 cells. As 

shown in Figure 6E, 75 μM CMLD-1 and 50 μM CMLD-2 induced obvious PARP cleavage 

and subtle caspase-3 cleavage. LC3-I conversion to LC3-II was detected when cells were 

treated with 75 μM CMLD-1 and 50 μM CMLD-2. These results suggest that CMLD-1 and 

CMLD-2 induce cancer cell death via apoptosis by inhibiting HuR stabilization of targets 

Bcl-2 and XIAP, two well-studied antiapoptotic proteins. In addition, these compounds also 

induce autophagy-associated cell death by inhibiting Bcl-2, as previously reported by other 

Bcl-2 inhibitors.34 Further studies to investigate whether these compounds kill cancer cells 

via other pathways need to be performed, and the HuR inhibitors may provide novel 

chemical probes for dissecting the molecular interplay of various cell death pathways.

CONCLUSION

A FP assay to identify small molecule disruptors of the HuR-mRNA interaction was 

developed. The ARE-containing RNA oligos were designed to probe with specificity and 

binding affnity. The optimized FP assay is sensitive (low Kd value) and stable and has a 

wide signal/background window suitable for HTS. Screening of ~6000 small molecule 
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compounds resulted in an average plate Z′ factor of 0.79 and produced 38 initial hits. 

Structural clustering identified Cluster A, which contains six positive compounds and 51 

negative compounds with a similar scaffold. These inhibitory compounds were validated as 

potent HuR–ARE disruptors by three biochemical assays and additional functional reporter 

assays. CMLD-2 was identified as a new HuR-mRNA disruptor, with a Ki of about 350 nM. 

In addition, this compound displayed cytotoxic selectivity on cancer cells and blocked HuR 

protein bound to Msi1 and XIAP mRNAs, thereby decreasing target mRNA stability and 

protein levels as well as inhibiting the Wnt signaling pathway. Although studies here on this 

cluster of compounds shared a coumarin-derived core are not suffcient to summary clear 

SAR, they do provide clues for future rational design and lead optimization efforts that 

could lead to the development of more potent and specific HuR-mRNA disruptors.

MATERIALS AND METHODS

Cell Culture and Reagents

Human colon cancer cell line HCT-116, pancreatic cancer cell line MiaPaCa2, normal lung 

fibroblast cell line WI-38, and normal human colon epithelial cell line CCD 841 CoN were 

purchased from American Type Culture Collection and cultured in DMEM (Mediatech) 

supplemented with 10% fetal bovine serum (v/v, FBS; Sigma-Aldrich) and 1% antibiotics 

(v/v, Mediatech) in a 5% CO2 humidified incubator at 37 °C. The MTT-based cytotoxicity 

assay and Western Blot were performed as described previously.35 The details of protein 

expression and purification, AlphaLISA assay, surface plasmon resonance, and mRNA 

stability assay were described in the Supporting Methods.

Fluorescence Polarization Assay

RNA oligos with the following sequences (with or without 3′ fluorescein) were purchased 

from Dharmacon: Msi1 RNA, 5′-GCUUUUAUUUAUUUUG-3′; Bcl-2 RNA, 5′-

AAAAGAUUUAUUUAUU-3′; XIAP RNA, 5′-UAGUUAUUUUUAUGUC-3′; APC RNA, 

5′-UAUUUGAUAGUACACU-3′. A 16-nt random sequenced RNA (a mixture of random 

sequences) was used as the negative control. Initial optimization experiments were 

performed in 96-well black plates (Corning) using the BioTek Synergy H4 plate reader. 

RNAs were pretreated by heating at 95 °C for 5 min and immediately cooling on ice for 5 

min. For assay optimization and determination of the equilibrium dissociation constant (Kd), 

full-length HuR and 2 nM fluorescein labeled RNA were added to the assay buffer (20 mM 

HEPES pH 7.4, 150 mM NaCl, 1 mM DTT and 0.05% (v/v) pluronic F-68) with a final 

volume of 100 μL and incubated at RT for 30 min. For assay stability testing, a plate was 

measured at different time points over a 24-h period. The Kd was determined from nonlinear 

regression fits of the data according to a one-site binding model in Prism 5.0 (GraphPad). In 

RNA competition assays, increasing concentrations of unlabeled RNAs were added to the 

preformed HuR–AREMsi1 (10 nM HuR and 2 nM Msi1 RNA) complex. For the compound 

competition assay, compounds with six doses (60 nM–20 μM) were added to the wells prior 

to the protein–RNA complex. Anisotropy measurements were taken after incubation at RT 

for 2 h. IC50, the concentration causing 50% inhibition, was calculated via sigmoid fitting of 

the dose response curve using Prism 5.0. Ki was calculated using free online software (http://

sw16.im.med.umich.edu/software/calc_ki/). The percent of inhibition was calculated by 
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comparing to a DMSO control. The FP value of the HuR–AREMsi1 complex with DMSO 

was defined as 0% inhibition; the FP value of labeled Msi1 RNA only was defined as 100% 

inhibition. The HTS was performed in 384-well black plates with a final volume of 50 μL, 

and the screened concentration of compounds was 20 μM (CMLD library) or 1 μM (FDA 

library).

RNA Pulldown and RNP IP

Two assays were carried out as reported previously with minor modifications.36 HCT-116 

cell lysate was isolated using the Immunoprecipitation Kit (Protein G, Roche). For RNA pull 

down, cell lysate was incubated with 16-nt biotinylated Msi1 RNA oligo (1 μM) or random 

RNA oligo (1 μM) for 30 min with or without 10 μM unlabeled Msi1 oligo. Streptavidin 

beads (Roche) were then added to pull-down HuR protein bound to RNAs. Western blot 

analysis was performed to probe HuR protein using the HuR antibody according to our 

previous publication.35 For RNP IP, cell lysate was incubated with CMLD-1, CMLD-2, 

NC-3, or DMSO for 30 min. HuR antibody or mouse IgG (BD Biosciences) was added and 

incubated for another 60 min. Protein G agarose was used to pull-down bound HuR protein. 

After IP, RNA was isolated, and qRT-PCR was performed as we reported previously37 

using the primers listed in Supporting Information Table 2.

Luciferase Reporter Assay

For Wnt signaling assays, HCT-116 cells were infected with 7TFP lentiviral vector38 

(Addgene) to stably express the Wnt-responsive 7xTcf promoter/luciferase construct. 

HCT-116 stable cells were plated in a 96-well plate, and following attachment overnight, 

cells were stimulated with 20 mM LiCl and treated with 20 μM test compounds or DMSO 

for 24 h. Cells were lysed in reporter lysis buffer and assayed using a luciferase assay 

system (Promega). Reporter gene activities were normalized to total protein activity. For the 

Bcl-2 3′-UTR study, HCT-116 cells were seeded in a six-well plate and transfected with 1.6 

μg of luciferase reporter construct bearing the Bcl-2 ARE (NM_000633, ntds 1274–1634) or 

luciferase reporter control; a renilla luciferase plasmid was cotransfected to control for 

transfection effciency. Sixteen hours after transfection, cells were trypsinized and plated in a 

48-well dish. Following attachment, cells were treated with 20 μM test compounds or 

DMSO. Cells were harvested and assayed using the Dual-Glo Luciferase Assay (Promega) 

24 h after treatment. All firefly luciferase values were normalized to the renilla control. The 

relative light unit was calculated for each treated sample by dividing normalized luciferase 

activity by that of the DMSO control, arbitrarily set as 1.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Initial characterization of the FP assay. (A) The fluorescein-tagged ARE oligo derived from 

Msi1 mRNA (Msi1-FITC; 16 nt) and full length HuR protein were titered against each other 

to determine optimal assay concentrations. Based on the binding curve and fluorescence 

intensity, 2 nM Msi1-FITC RNA oligo was optimal. (B) HuR protein titration with 2 nM 

Msi1-FITC or control RNAs, a 16-nt fluorescein-labeled RNA oligo with random sequence 

(Random-FITC), and a 16-nt fluorescein-labeled RNA oligo of APC mRNA (APC-FITC). 

(C) Bcl-xL protein titration with 2 nM Msi1-FITC. (D) Competition experiment with 

unlabeled RNA oligos. Msi1-FITC RNA oligo and HuR protein were kept at 2 nM and 10 

nM, respectively. (E) Pulldown analysis of AREMsi1 oligo binding to endogenous HuR. Cell 

lysate and random oligo were used as a positive control and negative control, respectively. 

(F) HuR protein titration with 2 nM 16-nt ARE oligo derived from Bcl-2 mRNA (Bcl-2-

FITC), XIAP mRNA (XIAP-FITC), or Random-FITC. Mean and standard deviations are 

derived from three independent experiments.
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Figure 2. 
Assay optimization and screen execution. (A) The effect of DMSO on HuR–AREMsi1 

binding was determined: DMSO (up to 4%, v/v) does not affect the binding in the FP assay. 

(B) FP values of positive controls (Msi1-FITC) and negative controls (DMSO) for the 20 

screened plates and the corresponding CVs. Data points are mean ± SD. (C) The Z′ factors 

of the 20 plates were calculated using the following equation: 1 – [3(SDp + SDn)/|Mp – 

Mn|].39 The average Z′ factor was 0.79. (D) HTS was carried out with ~6000 compounds 

from the CMLD and FDA libraries. Shown here is the scattergram of compound activity 

expressed as % of inhibition. Median + 3SD was used as a threshold to pick initial hits.
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Figure 3. 
Structure clustering of candidate compounds. Left panel: initial 38 hits were clustered based 

on structure similarity using the ChemMine tool. The hits are represented by their CID in 

PubChem or ID. Two clusters (A and B) that contain related structures are highlighted. 

Right panel: chemical structures of compounds in the Cluster A, the putative 

pharmacophore, and three negative controls.
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Figure 4. 
Validation of cluster A compounds binding to HuR. (A). Dose–responses curve of Cluster A 

compounds and negative controls disrupting HuR–ARE Msi1 binding in FP assay using 10 

nM HuR protein and 2 nM fluorescein-labeled Msi1 RNA. (B). Dose–response curve of 

Cluster A hits and NCs disrupting HuR–ARE Msi1 binding in ALPHA assay using 100 nM 

HuR RRM1/2 protein and 25 nM biotin-labeled Msi1 RNA. A and B are representative of 

three independent experiments; IC50 and Ki values are mean ± SD from three independent 

experiments. SPR analysis of CMLD-2 binding to immobilized HuR (C) and RRM1/2 (D) 

proteins. Six doses were used (1–50 μM) and duplicated. SPR analysis of NC-3 binding to 

immobilized HuR (E) and RRM1/2 (F) proteins. Six doses were used (1–50 μMM) and 

duplicated.
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Figure 5. 
HuR-mRNA disruptors block HuR function. The cytotoxicity of CMLD1–6 and NC1–3 

against the human colon cancer cell line HCT-116 (A), pancreatic cell line MiaPaCa2 (B), 

and normal fibroblast cell line WI-38 (C). Figures are representative of three independent 

experiments, IC50 values are mean ± SD from three independent experiments. (D) RNP IP 

analysis of HuR bound mRNA affected by CMLD compounds. CMLD-1 and CMLD-2 at 

indicated doses, but not NC-3, potently inhibited HuR-bound Msi1 and XIAP mRNAs in 

HCT-116 cells compared to DMSO (set as 1). IgG was used as a negative control of the 

HuR antibody. Values are mean ± SD from two independent experiments. Luciferase 

reporter assays determining the effect the disruptors have on Wnt signaling pathway (E) and 

Bcl-2 3′-UTR (F). Values are mean ± SD from three independent experiments. *p < 0.05, 

**p < 0.01, ***P < 0.001, one-way ANOVA, comparing to DMSO control.
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Figure 6. 
CMLD-1 and CMLD-2 reduced HuR target mRNA stability and translation. Half-lives of 

Bcl-2 (A), Msi1 (B), and XIAP (C) mRNA in HCT-116 cells treated with 5 μg/mL 

actnomycin D together with 20 μM CMLD-1, CMLD-2, NC-3, or DMSO control were 

determined. Data are representative of two independent experiments. Protein levels of Bcl-2, 

Msi1, XIAP, HuR (D) and PARP, capsase-3, LC3 (E) in HCT-116 cells treated with 

CMLD-1, CMLD-2, NC-3, or DMSO at the indicated doses for 48 h were measured using 

Western Blot. α-Tubulin is a loading control.
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