
Glassy-State Stabilization of a Dominant Negative Inhibitor 
Anthrax Vaccine Containing Aluminum Hydroxide and 
Glycopyranoside Lipid A Adjuvants

Kimberly J. Hassetta, David J. Vanceb, Nishant K. Jainc, Neha Sahnic, Lilia A. Rabiaa, 
Megan C. Cousinsa, Sangeeta Joshic, David B. Volkinc, Russell Middaughc, Nicholas J. 
Mantisb,d, John F. Carpentere, and Theodore W. Randolpha,*

aDepartment of Chemical and Biological Engineering, Center for Pharmaceutical Biotechnology, 
University of Colorado, Boulder, Colorado 80303, United States

bDivision of Infectious Disease, Wadsworth Center, New York Department of Health, Albany, New 
York 12208, United States

cDepartment of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, 
University of Kansas, Lawrence, Kansas 66047, United States

dDepartment of Biomedical Sciences, University at Albany School of Public Health, Albany, New 
York 12201, United States

eDepartment of Pharmaceutical Sciences, Center for Pharmaceutical Biotechnology, University of 
Colorado Denver, Aurora, Colorado 80045, United States

Abstract

During transport and storage, vaccines may be exposed to temperatures outside of the range 

recommended for storage, potentially causing efficacy losses. To better understand and prevent 

such losses, Dominant Negative Inhibitor (DNI), a recombinant protein antigen for a candidate 

vaccine against anthrax, was formulated as a liquid and as a glassy lyophilized powder with the 

adjuvants aluminum hydroxide and glycopyranoside lipid A (GLA). Freeze-thawing of the liquid 

vaccine caused the adjuvants to aggregate and decreased its immunogenicity in mice. 

Immunogenicity of liquid vaccines also decreased when stored at 40 °C for 8 weeks, as measured 

by decreases in neutralizing antibody titers in vaccinated mice. Concomitant with efficacy losses 

at elevated temperatures, changes in DNI structure were detected by fluorescence spectroscopy 

and increased deamidation was observed by capillary isoelectric focusing (cIEF) after only 1 week 

of storage of the liquid formulation at 40 °C. In contrast, upon lyophilization, no additional 

deamidation after 4 weeks at 40 °C and no detectable changes in DNI structure or reduction in 

immunogenicity after 16 weeks at 40 °C was observed. Vaccines containing aluminum hydroxide 

and GLA elicited higher immune responses than vaccines adjuvanted with only aluminum 

hydroxide, with more mice responding to a single dose.
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1. Introduction

The recommended storage temperature range for vaccines is typically very narrow1 and 

exposure to temperatures either above or below the recommended storage window may be 

detrimental with respect to vaccine potency2. For example, 75–100% of vaccines are 

exposed to freezing temperatures during transport through the cold chain3, which may cause 

vaccine formulations to experience at least one freeze-thaw cycle. Freeze-thawing of 

vaccines has been shown to cause aggregation of aluminum salt adjuvant particles4,5,6, 

perturbations in protein antigen structure4,7, and/or losses in immunogenicity4,8.

In addition to experiencing inadvertent freeze-thawing, vaccines may also be exposed to 

elevated temperatures causing protein antigens to experience physical9,10,11,12 or 

chemical13,14 degradation, resulting in a loss in vaccine potency11,15. To study the thermal 

sensitivity of vaccines, accelerated stability studies are typically conducted at temperatures 

significantly higher than the recommended storage temperatures. Accelerated stability 

studies are also commonly used as a predictor of long term stability and shelf life at optimal 

storage temperatures16.

Maintaining proper cold-chains is challenging, especially in developing countries. To 

alleviate this challenge, vaccines should be formulated to withstand a broad range of 

temperatures. Lyophilization is one strategy that can be applied to protect proteins and other 

therapeutic agents against temperature extremes, thereby relieving the constraints of the cold 

chain17. Formulation of live, attenuated measles vaccines in dry powders9 represents an 

example of this approach. Degradation in lyophilized formulations is inhibited in part 

because of the low water content and high viscosities (>1015 centipoise) found in glassy 

lyophilized formulations17.

Many vaccines require administration of multiple doses to confer adequate protection. 

Especially in developing countries, this requirement is problematic, and often patients do not 

complete multidose regimens18, 19. Presumably, better patient compliance would be 

obtained if vaccines required fewer doses. Adjuvants are often added to vaccines to increase 

vaccine potency, and offer the potential to decrease the required number of vaccine doses20. 

Aluminum salts, and aluminum hydroxide combined with monophosphoryl lipid A (MPL) 

have been approved for use as adjuvants in FDA-approved vaccines21. However, no FDA-

approved vaccines that contain adjuvants currently are marketed in lyophilized 

formulations22, in part because of the loss of vaccine efficacy that may occur during the 

requisite freezing step in the lyophilization process. Recent work has shown that by 

controlling the kinetics of freezing and glass formation through judicious choice of 

formulation and process conditions, highly stable, efficacious lyophilized vaccines 

containing aluminum salt adjuvants may be produced23, 24, 25,15.
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Aluminum salt adjuvants are known to stimulate primarily a humoral response. To produce 

a more robust cellular immune response to a vaccine, other adjuvants typically must be 

added26. One such co-adjuvant is monophosphoryl lipid A (MPL), a non-toxic derivative of 

lipopolysaccharide (LPS) that can act as a toll-like receptor-4 agonist26. Glycopyranoside 

lipid A (GLA) is a synthetic version of MPL that is more homogenous and active than 

MPL26. To date, there are no reports of commercial lyophilized vaccine formulations that 

combine both an aluminum hydroxide adjuvant and a cellular immunity stimulant such as 

GLA.

To examine the possibility of creating stable lyophilized vaccines containing both aluminum 

hydroxide and GLA, the anthrax vaccine candidate, Dominant Negative Inhibitor (DNI), 

was used as a model recombinant protein antigen. During Bacillus anthracis infection, 

bacteria secrete protective antigen (PA), lethal factor (LF) and edema factor (EF)27. PA 

forms complexes on the surface of host cells with LF (a zinc protease) and EF (an adenylate 

cyclase), giving rise to lethal toxin (LT) and edema toxin (ET), respectively. LT exerts its 

cytotoxic effects by interrupting mitogen-activated protein kinase kinase signaling, while ET 

influences intracellular cAMP levels. DNI is a recombinant version of PA (rPA) that 

contains the two point mutations: K397D and D425K. These mutations do not affect 

heptemerization or subunit binding, but do impair translocation of EF and LF into the 

cytoplasm of host cells28, 29. Previous studies have shown DNI to be an effective candidate 

vaccine antigen with respect to eliciting high PA antibody titers30, and the biophysical and 

immunological stability properties of the DNI antigen have been evaluated31. In addition, 

rPA is known to undergo chemical degradation via deamidation of specific Asn residues, 

including six labile sites out of the 68 total Asn residues in rPA33, which leads to loss of the 

antigen’s biological activity and immunogenicity32, 33, 34.

In this study we first tested the hypothesis that both heat and freeze-thaw stresses damage 

adjuvanted liquid vaccine formulations of DNI, decreasing their immunogenicity due to 

losses in protein structure and/or agglomeration of aluminum hydroxide adjuvant particles. 

Second, we evaluated the possibility that glassy-state, lyophilized formulations of DNI-

based vaccines are more robust against thermal stress, especially as reflected in slower rates 

of Asn deamidation, a known major chemical degradation pathway for rPA32, 33, 34. Finally, 

we tested the hypothesis that incorporation of the Toll-like receptor-4 (TLR4) agonist GLA 

together with microparticulate aluminum hydroxide in DNI vaccine formulations will confer 

additional potency, and that this additional functionality can also be protected against 

thermal stresses through lyophilization.

2. Materials and Methods

2.1 Materials

High purity α,α-trehalose dihydrate and sulfuric acid were purchased from Mallinckrodt 

Baker (Phillipsburg, NJ). Ammonium acetate, triethanolamine, and bovine serum albumin 

(BSA) were purchased from Sigma-Aldrich (St. Louis, MO). Two percent Alhydrogel® 

(aluminum hydroxide adjuvant, “alum”) was obtained from Accurate Chemicals and 

Scientific Corp (Westbury, NY). Lyophilized synthetic monophosphoryl lipid A 

(glycopyranoside Lipid A (GLA) adjuvant) was purchased from Avanti Polar Lipids, Inc. 
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(Alabaster, AL). Three mL 13 mm glass lyophilization vials, caps and seals were from West 

Pharmaceutical Services (Lititz, PA). Concentrated 10× phosphate buffered saline (PBS), 

and Tween 20 were from Fischer Scientific (Fair Lawn, NJ). Water for injection was 

purchased from Baxter Healthcare Corporation (Deerfield, IL). Peroxidase-conjugated 

affinipure donkey anti-mouse IgG (H+L) was from Jackson ImmunoResearch Laboratories, 

Inc. (West Grove, PA). 3,3’,5,5’tetramentylbenzidine (Ultra TMB) was from Thermo 

Scientific (Rockford, IL).

2.2 Vaccine formulation

Dominant negative inhibitor (DNI) protein manufactured by Baxter Pharmaceutical 

Solutions LLC (Bloomington, IN) was received as a lyophilized formulation containing 25 

mg DNI, 113 mg mannitol, 33 mg sucrose, and 2.4 mg dibasic phosphate. Lyophilized DNI 

was reconstituted in 3 mL of filtered DI water and dialyzed overnight with three buffer 

exchanges in a 10 mM ammonium acetate buffer pH 7 using 3,500 MWCO Slide-A-Lyzer 

dialysis cassettes from Thermo Scientific (Rockford, IL).

All vaccines were formulated to contain 10 mM ammonium acetate pH 7 with 0.2 mg/mL 

DNI and 0.5 mg/mL aluminum as Al(OH)3 (Alhydrogel). For isotonicity, 9.5 w/v% 

trehalose was added. In addition to aluminum hydroxide, 0.05 mg/mL GLA was added as a 

second adjuvant to half of the vaccine formulations. GLA was prepared at 1 mg/mL by 

suspending lyophilized GLA in a 0.5% triethanolamine pH 7 solution using probe 

sonication35. To create the vaccine formulations containing GLA, suspended GLA was 

added to Alhydrogel suspensions, vortexed for 5 seconds and then rotated end over end for 

30 minutes at 4 °C. 0.2 mg/mL DNI protein antigen was added to buffered adjuvant 

solutions and rotated end over end for 30 minutes to allow protein to adsorb completely to 

adjuvant particles.

2.3 Protein adsorption

Protein adsorption was measured by mass balance after centrifuging the vaccine formulation 

at 9,000×g for 4 min at 4 °C to remove particles and adsorbed protein, and measuring the 

unbound protein concentration in the supernatant through use of the Bradford assay. A 

standard curve was created using known concentrations of DNI. The amount of protein 

adsorbed to adjuvant was calculated by subtracting the amount of unbound protein from the 

known amount of protein in the vaccine.

2.4 Lyophilization

Vaccine formulations were lyophilized with 1 mL of formulation per vial. Lyophilizer 

shelves were pre-cooled to −10 °C (FTS Systems Lyophilizer, Warminster, PA) and vials 

were placed on the shelves. Vaccine formulations were surrounded by vials filled with DI 

water to minimize radiative heat transfer effects for vials near the edge of the lyophilizer 

shelves. The shelf temperature was decreased at a rate of 0.5 °C/min to −40 °C and then held 

at −40 °C for 1 hour to allow the samples to freeze completely. Primary drying was initiated 

by decreasing the chamber pressure to 60 mTorr and increasing the shelf temperature to −20 

°C at a rate of 2 °C/min. Samples were held at −20 °C for 20 hours. Secondary drying was 

conducted by increasing the shelf temperature to 0 °C at a rate of 0.2 °C/min followed by an 
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increase to 30 °C at a rate of 0.5 °C/min and holding the shelf temperature at 30 °C for 5 

hours. After drying, the shelf temperature was returned to 25 °C and the chamber was back-

filled with nitrogen until atmospheric pressure was reached. Chlorobutyl rubber stoppers 

were inserted into vials under a nitrogen atmosphere. Vials were sealed with aluminum caps, 

and then were stored at −80 °C. Lyophilized vaccines were stored at this low temperature to 

minimize molecular mobility and any resulting degradation in the formulations prior to their 

analysis or their use in accelerated stability studies.

2.5 Freeze-thaw study

Freeze-thaw stability was examined for liquid vaccine formulations. Formulations were 

cycled between −20 °C and 4 °C, leaving formulations at each temperature for one day to 

permit complete freezing or thawing. Vaccines experienced 0, 1, or 5 freeze-thaw cycles.

2.6 Elevated temperature incubation study

To test the stability of vaccines at elevated temperatures, liquid and lyophilized vaccines 

were stored at 4, 40 or 70 °C for 0, 1, 2, 4, 8, or 16 weeks. Time 0 lyophilized vaccines refer 

to vaccines reconstituted and used immediately after removal from storage at −80 °C.

2.7 Particle size analysis

Particle size distributions from 0.04–2,000 µm were measured using laser diffraction particle 

size analysis (LS 230, Beckman Coulter, Miami, FL). Initial liquid, and reconstituted 

lyophilized placebo vaccine formulations with and without GLA were measured. For each 

run, laser diffraction intensities were recorded three times for 90-sec each and averaged. 

Triplicate samples of each formulation were analyzed.

Particles in the size range of 2–2,000 µm were measured and counted by microflow image 

analysis (FlowCAM®, Fluid Imaging Technologies, Yarmouth, ME). Particle levels in the 

initial liquid formulations and in reconstituted formulations of lyophilized vaccines that had 

been incubated at 40 °C were measured in triplicate. 0.2 mL of samples diluted 10 times 

were run with a 100-µm flow cell using a 10× objective and collimator. Dark and light 

settings of 15 and 16 were used, respectively. For freeze-thaw studies, triplicate 1 mL of 

vaccine formulation diluted 100 times were analyzed with a 300-µm flow cell with a 4× 

objective. Dark and light settings of 20 were used.

2.8 Differential interference contrast microscopy

A Zeiss Axiovert 200M widefield microscope was used to take differential interference 

contrast images of vaccine formulations after 0, 1, or 5 freeze-thaw cycles. A 20× objective 

was used.

2.9 Differential scanning calorimetry (DSC)

Onset glass transition temperatures of placebo lyophilized formulations were obtained using 

differential scanning calorimetry (Diamond DSC, Perkin Elmer, Waltham, MA). Triplicate 

samples were prepared inside an aluminum pan under dry nitrogen. The temperatures in the 

pans were cycled twice between 25 °C and 150 °C at a scan rate of 10 °C/min. The second 

heating scan was used to determine the onset glass transition temperature.
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2.10 Fluorescence analysis

Intrinsic tryptophan fluorescence was measured by adding seven hundred µL of vaccine 

formulations from the freeze-thaw and incubation studies to 2×10 mm pathlength quartz 

cuvettes. The vaccine formulations were left in the cuvettes overnight at 4 °C to allow 

settling so that intrinsic fluorescence measurements could be performed in a fluorometer 

(Photon Technology International, Birmingham, NJ). For all vaccines, an excitation 

wavelength of 295 nm was used for fluorescence measurements, and the emission spectra 

were collected from 305–410 nm in 1 nm increments while the temperature was ramped 

from 10–70 °C in 2.5 °C increments. An equilibration time of 1 min was used at each 

temperature. Slit widths were set at 3 nm for excitation and emission. The intrinsic 

fluorescence peak positions as a function of temperature were calculated by a mean spectral 

center of mass method using in-house data analysis software (Middaugh Suite).

Extrinsic SYPRO orange fluorescence was measured by adding eighty nine µL of each 

vaccine formulation and one µL of 350× SYPRO Orange dye (Molecular Probes, Inc., 

Eugene, OR) to PCR tubes. PCR tubes were transferred to a Stratagene RT-PCR instrument 

(Agilent Technologies, Inc., Santa Clara, CA) and SYPRO Orange fluorescence was 

measured at 610 nm upon excitation at 492 nm while the temperature was ramped from 25 

to 70 °C in 1 °C intervals. An equilibrium time of 90 s was used at each temperature. The 

fluorescence intensity was normalized using a maxima-minima method using Microsoft 

Excel where the results are generated by fitting the data equal to one at the maxima and to 

zero at the minima.

All intrinsic and extrinsic fluorescence experiments were performed in duplicate and the 

signals of the samples were corrected for their respective blanks. The transition temperatures 

(Tm) were calculated using the second-order derivative of the peak position (intrinsic 

fluorescence) or SYPRO orange fluorescence intensity (extrinsic fluorescence) versus 

temperature data. Only the major transition (Tm) was analyzed for vaccine formulations, 

which showed more than one transition. Due to some irreversibility, these values are not 

thermodynamic Tm’s, but should be referred to as apparent Tm’s and used in a comparative 

manner only.

2.11 Deamidation study

Vaccine formulations subjected to freezing and thawing, and high temperature incubation 

were tested for changes in charge heterogeneity profiles, presumably due to Asn 

deamidation. Each formulation contained 1 mg/mL DNI protein in 10 mM ammonium 

acetate pH 7 with 9.5 w/v% trehalose. Formulations contained either 0 or 0.5 mg/mL 

aluminum as Al(OH)3 from Alhydrogel®. Liquid vaccine formulations from the freeze-thaw 

study were frozen and thawed in the presence of aluminum hydroxide adjuvant. Vaccine 

formulations for the thermal incubation study were in liquid or lyophilized forms during 

incubation at 40 °C with or without aluminum hydroxide adjuvant.

Analysis of charge heterogeneity profiles of DNI protein formulated with aluminum 

adjuvant required the DNI protein to be desorbed from aluminum hydroxide particles. The 

adjuvant-DNI complexes first were pelleted by centrifugation at 10,000×g for 3 minutes 
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(Sorvall Centrifuge, Thermo Scientific). The supernatant was removed and assayed for 

protein content by UV-visible absorption spectroscopy to confirm the absence of unbound 

protein. The pellet was resuspended in 1 mL of desorption media (10 mM ammonium 

acetate, 1 M phosphate and 5 M guanidine hydrochloride, pH 7.0). The resulting suspension 

was incubated at room temperature for 3 hours, followed by centrifugation at 10,000×g for 3 

min. The supernatant was collected and assayed for DNI content. These steps were repeated 

2 more times. The percent desorption was calculated by dividing the total content of protein 

in the collected supernatant by the initial amount of protein initially bound to the aluminum 

hydroxide particles. The supernatants were combined and buffer exchanged into 10 mM 

ammonium acetate, pH 7.0 using Amicon centrifugation filters (10 kDa MWCO). The 

protein content was again determined by UV-visible absorption spectroscopy to measure the 

final protein concentration prior to cIEF analysis.

To characterize changes in the distribution of DNI charge variants, which presumably result 

from asparagine deamidation events known to occur with recombinant PA32, 33, 34, cIEF 

experiments were performed on an iCE280 instrument from Protein-Simple (Toronto, 

Canada). All experiments were performed with duplicate samples at 4 °C using a 

temperature-controlled auto-sampler, with each sample measured in triplicate. Samples of 

DNI protein (final concentration 0.1 mg/ml) were mixed with Pharmalyte® 3.0–10.0 (final 

concentration of 4%, obtained from GE Healthcare), acidic and basic pI markers of 4.65 and 

8.18 (Protein-Simple, Canada), and methyl cellulose (final concentration of 0.35%, Protein-

Simple, Canada). In addition, 6M urea was added since it was found to provide better 

separation of the rPA charge variants. The optimized separation conditions included pre-

focusing at 1500V for 1 minute followed by 8 minutes of focusing at 3000V. Quantification 

of charge variants was performed using Chrom Perfect® software. The total number of 

deamidated residues per protein molecule was calculated by (1) determining the fraction of 

the total area for each cIEF peak, (2) multiplying each peak by the presumed number of 

deamidated Asn residues represented by each of the peaks, and (3) summing the obtained 

values for each peak in the cIEF electropherogram profile to determine the total number of 

deamidation events, as described in detail elsewhere36 using an analogous IEF gel system.

2.12 Vaccine immunogenicity

Murine studies were conducted under the University of Colorado at Boulder Institutional 

Animal Care and Use Committee (IACUC) protocol #1209.02. Female BALB/c mice 5–6 

weeks old from Taconic (Hudson, NY) were allowed to acclimate at least one week before 

use. Ten mice were in each group. Blood samples were collected from the mice under 

isofluorane anesthesia on days 0, 14 and 28 through the retro orbital cavity. The collected 

serum was separated by centrifugation at 10,000 rpm for 14 minutes at 4 °C and stored at 

−80 °C until analysis. On days 0 and 14, mice were injected subcutaneously behind the neck 

with various formulations. To study the effects of freeze-thawing on the immunogenicity of 

DNI vaccines, formulations in the presence or absence of GLA were subjected to 1 or 5 

freeze thaw cycles prior to administration to mice. To study the effects of incubation of DNI 

vaccine formulations at elevated temperatures, mice were injected with liquid vaccine 

formulations as positive controls, placebo lyophilized formulations as negative controls, 

liquid vaccine formulations that had been stored for 8 weeks at 40 °C, and lyophilized 
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vaccine formulations that had been incubated at 40 °C for 0, 1, 4, 8 and 16 weeks prior to 

reconstitution.

2.13 Total antibody enzyme linked immunosorbent assay (ELISA)

Nunc MaxiSorb 96 well plates (Thermo Fischer Scientific, Rochester, NY) were coated with 

50 µL/well of 1µg/mL DNI diluted in PBS and incubated at 2–8 °C overnight. Plates were 

washed 3 times with PBS containing 0.05% Tween 20. Plates were blocked with 300 µL/

well of PBS with 1% BSA, incubated at room temperature for 2 h, and washed again. Serum 

was initially diluted in PBS with 1% BSA, 0.05% Tween 20. 50-fold dilutions were used for 

serum collected on days 0 and 14, and 750-fold or 250-fold dilutions were used for serum 

collected on Day 28 for mice injected with or without GLA, respectively. A series of in-

plate 2-fold dilutions were made for each sample. Plates were incubated for 1.5 h at room 

temperature and washed. Forty µL of HRP-conjugated donkey anti-mouse antibody diluted 

10,000 times was added to each well and incubated for 1.5 h at room temperature with 

shaking, followed by washing. 40 µL TMB was added to each well and incubated for 15 

min, followed by quenching with 40 µL of 2N sulfuric acid. Plates were measured at 450 nm 

on a Molecular Devices Kinetic Microplate Reader (Sunnyvale, CA). Each serum sample 

was analyzed in triplicate.

To determine titers, average OD 450 values as a function of dilution were fit to a 4-

parameter logistic equation using SigmaPlot software (Systat Software Inc., San Jose, CA). 

The constraints 0 < min < 0.15 and max < 3.3 were used. The cutoff value was calculated 

individually for each mouse as five times the value given on day 0 at a dilution of 100. To 

evaluate statistically significant differences between groups, a t-test was used for normally 

distributed groups and a Mann-Whitney Rank Sum Test on non-normally distributed groups.

2.14 Neutralizing antibodies

J774 cells grown in DMEM plus 10% FBS were seeded (5×103 per well) in white 96 well 

cell culture plates and incubated at 37 °C overnight. Serum samples were mixed at a 1:100 

dilution into media containing lethal toxin (300 ng/mL, 1:1 PA:LF), then diluted two-fold in 

a separate dilution plate into toxin-containing media, down to a 1:12,800 dilution. The 

media was removed from the cell wells, and toxin-serum mixtures were transferred into 

them and incubated for 24 h at 37 °C. Some cells received media or toxin-containing media 

only, and served as live and dead controls, respectively. Cell viability was assessed using 

Cell Titer Glo (Promega, Madison, WI) and a Spectramax L Luminometer (Molecular 

Devices, Sunnyvale, CA). Neutralizing titers were defined as the inverse titer that protected 

at least 50% of the cells from lethal toxin.

3. Results

3.1 Freeze thaw studies – Vaccine characterization

Initially, all liquid vaccine formulations appeared identical based on differential interference 

contrast microscopy regardless of adjuvant present (Figure 1). After one freeze-thaw cycle 

loose clumping of adjuvant particles was observed. After five freeze-thaw cycles, large 
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particles (>10 µm) were seen in all formulations, irrespective of the presence or absence of 

GLA.

The concentration of particles of size greater than 5 microns in each formulation was 

measured using a FlowCAM microflow imaging instrument (Figure 2). All vaccine 

formulations started with particles of similar mean particle diameters (~7–10 µm) and 

concentrations (~1 million particles/mL). After one freeze-thaw cycle, a small increase in 

mean particle size (to ~12 µm) was observed. After five freeze-thaw cycles, the mean 

particle size in each of the formulations was approximately 20 µm. Concomitant with the 

formation of larger particles, there were decreases in the number of smaller particles found 

in the formulations. Both formulations had particle concentrations that were of the same 

order of magnitude throughout the freeze-thaw study.

DNI was found to be adsorbed completely to adjuvant in all vaccine formulations tested, 

both initially and after 1 or 5 freeze-thaw cycles (data not shown). After formulations 

containing DNI adsorbed to aluminum hydroxide particles were pelleted by centrifugation 

and resuspended in PBS for 1 hour at 37 °C, ~20% of the DNI desorbed.

3.2 Effect of freeze-thawing on antigen structure

Intrinsic tryptophan and extrinsic SYPRO Orange fluorescence studies were conducted to 

examine protein structure after 0, 1, and 5 freeze-thaw cycles. DNI in all formulations, 

regardless of the number of freeze-thaw cycles, or the presence of adjuvants, exhibited a 

cooperative thermal transition at approximately 45 °C suggesting negligible effect of freeze 

thaw stress on conformational/structural stability of DNI. In addition, no increase in 

deamidation events was detected by cIEF after 1 or 5 freeze thaw cycles in vaccine 

formulations (data not shown).

3.3 Freeze thaw studies - Immunogenicity

Liquid vaccine formulations were subjected to 0, 1 or 5 freeze-thaw cycles and injected into 

mice. All mice responded with anti-DNI antibodies after two injections of the vaccine 

regardless of the number of freeze-thaw cycles, but more non-responders were seen after 

one injection of the Alum+DNI formulation that had been subjected to five freeze-thaw 

cycles. After one injection, a significant decrease in titer was seen for both the Alum+DNI 

and Alum+GLA+DNI vaccines exposed to 5 freeze-thaw cycles when compared to vaccines 

not exposed to freezing and thawing (p=0.007 and p=0.011, respectively) (Figure 3A). 

Neutralizing titers in sera collected after the second immunization elicited by the various 

formulations were not significantly reduced as compared to the initial vaccine for any of the 

formulations (Figure 3B). Neutralizing titers were not measured after the first immunization.

3.4 Elevated temperature studies – Vaccine characterization

To ensure that lyophilized vaccines were stored in a glassy state, glass transition 

temperatures were measured in lyophilized placebo formulations (without protein). The 

glass transition temperature for placebo vaccine formulations without and with GLA were 

115.5 ± 1.6 °C and 117.3 ± 3.8 °C, respectively. The glass transition temperatures of the 

formulations were very similar to that of pure trehalose, 110–120 °C37, showing that the 
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water content of the formulations was minimal. Previous work with similar formulations and 

lyophilization cycles suggests that the water content was below 1%15. If water were present 

in the formulation, the glass transition temperature would be drastically reduced because 

water acts as a potent plasticizer37. Since the glass transition temperatures were significantly 

higher than the storage temperatures tested in this study (4, 40 and 70 °C), the lyophilized 

vaccine formulations remained in a glassy state during storage. Due to the associated large 

increases in molecular mobility, degradation rates typically increase dramatically when 

lyophilized formulations are stored above their glass transition temperatures.

Previous work showed that formulations containing aluminum salt adjuvants can be 

lyophilized and reconstituted without significant changes to the initial liquid particle size 

distribution, provided that sufficient amounts of trehalose are used in combination with rapid 

cooling methods before lyophilization23,15. Particle size distributions were determined for 

initial liquid and reconstituted lyophilized placebo formulations with and without GLA 

(Figure 4). Vaccine formulations without GLA had similar particle size distributions before 

and after lyophilization and reconstitution, whereas vaccine formulations containing GLA 

exhibited slight increases in particle size after lyophilization and reconstitution.

For each lyophilized and reconstituted formulation, a significant increase compared to the 

initial liquid formulations in the number of particles greater than 2 microns in size was 

observed by FlowCAM analysis (Figure 5). A greater number of particles were detected in 

formulations containing GLA, and even more particles were observed when DNI was added 

to the formulation. After the initial increase in particles following lyophilization, no further 

increase in particle counts could be detected after incubation at 40 °C for up to 16 weeks.

DNI adsorption to adjuvant particles was measured in liquid formulations prior to 

lyophilization, in reconstituted lyophilized formulations, and in lyophilized and reconstituted 

vaccine formulations that had been incubated at 40 °C for up to 16 weeks. Essentially 

complete (90–100%) adsorption of the DNI protein to aluminum hydroxide adjuvant was 

observed for all conditions tested (data not shown). When aluminum hydroxide particles 

with adsorbed DNI were collected by centrifugation, resuspended in PBS and incubated at 

37 °C for one hour, only 70% of DNI remained adsorbed, suggesting that DNI may at least 

partially desorb in vivo after injection.

3.5 Effect of elevated temperatures on antigen structure

Prior to storage at elevated temperatures, cooperative thermal transitions were observed in 

all DNI samples when analyzed by either intrinsic tryptophan or extrinsic SYPRO Orange 

fluorescence spectroscopy. In all of the formulations, the main structural transition for DNI 

occurred at a temperature of ~45 °C. Intrinsic fluorescence spectra of DNI adsorbed to 

adjuvant in liquid suspensions showed ~2 nm red-shift in peak positions compared to those 

for DNI in solution, potentially indicating conformational perturbation in DNI upon 

adsorption to the adjuvant surface (data not shown). Examples of thermal scans of intrinsic 

and extrinsic fluorescence of DNI samples used to calculate thermal melting temperature 

(Tm) values are shown in Figure 6.
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After storage at 4 °C for 1, 2, 4, 8, and 16 weeks, analysis of the protein’s conformational 

stability showed thermal transitions at ~45 °C for all DNI samples (Figure 6 and Table 1). 

However, when liquid samples (with adjuvant) were stored at 40 or 70 °C, no thermal 

transitions were observed by fluorescence analysis, suggesting that unfolding of the protein 

had occurred during storage at these elevated temperatures. In liquid samples containing 

DNI (without adjuvant), clear thermal transitions were observed after incubation at 40 °C for 

up to 4 weeks, a weak transition was detected after 8 weeks of incubation, and no transitions 

could be detected after 16 weeks (Table 1). These results demonstrate the loss of structural 

integrity of DNI during storage in solution at 40 °C over several months. No structural 

transitions were detected for liquid DNI samples (with or without adjuvant) that had been 

stored at 70 °C for any length of time. In contrast, after storage at any of the tested 

temperatures for a period of up to 16 weeks, lyophilized vaccine formulations displayed 

cooperative thermal transitions, indicating improved storage stability, as measured by 

conformational stability analysis, of the DNI in the lyophilized dosage form compared to the 

liquid formulations.

Deamidation of the DNI protein was significantly slowed in the lyophilized state compared 

to the liquid state at elevated temperatures as shown in Figure 7 (with representative 

electropherograms shown in Supplemental Figure S1). Both liquid and lyophilized 

formulations showed no increase in new DNI deamidation events during storage at 4 °C for 

up to 4 weeks. However, when liquid formulations were stored at 40 °C, increased charge 

heterogeneity with additional acidic peaks, consistent with the known Asn deamidation 

events in rPA protein32,33,34, was detected by cIEF analysis after 1 week of storage. In 

contrast, as shown in Figure 7, no increase in deamidation events was detected in 

lyophilized formulations (with or without aluminum adjuvant) for up to 4 weeks at 40 °C. 

Moreover, liquid formulations containing aluminum hydroxide adjuvant showed 

significantly faster deamidation than DNI formulations without adjuvant at 40 °C over 1–2 

weeks. Interestingly, for liquid formulations stored at either 4°C or 40 °C for 4 weeks, the 

charged isoforms of DNI displayed a reduced total area by cIEF analysis in the presence vs. 

the absence of aluminum adjuvant (Supplemental Figure S1B). Although the nature of this 

effect requires more study (e.g., it may reflect more extensive deamidation of the multiple 

Asn residues, or other structural alterations, in the DNI protein), it was not observed with 

lyophilized DNI formulations further supporting the stabilizing effects of lyophilization. In 

summary, we conclude that lyophilized DNI formulations were highly resistant to 

deamidation (as measured by formation of new acidic peaks by cIEF) compared to the 

corresponding liquid formulations.

3.6 Elevated temperature studies – Immunogenicity

The immunogenicity of the vaccine formulations were evaluated based on serum anti-DNI 

IgG titers as well as serum LT-neutralizing activity in a mouse macrophage cytotoxicity 

assay. Immunization of mice with liquid vaccines that had been stored at 40 °C resulted in 

the production of anti-DNI antibodies, but very few mice responded with neutralizing titers 

(Figure 8). Although the protein antigen in the liquid vaccine stored for 8 weeks at 40 °C 

was able to produce antibodies that recognize native DNI by ELISA, these antibodies were 
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not effective at neutralizing LT, which is consistent with the structural data indicating the 

loss of antigen physicochemical structure when stored at 40 °C.

Lyophilization did not acutely affect the immunogenicity of the vaccines. Liquid vaccines 

and vaccines reconstituted immediately after lyophilization produced equivalent immune 

responses, both in the presence and absence of GLA (p=0.307 and p=0.775, respectively). 

However, unlike the liquid formulations, lyophilized formulations stored at 40 °C up to 16 

weeks with (p=0.793) and without GLA (p=0.347) were as effective as unstressed liquid 

vaccine formulations at eliciting DNI antibodies and LT neutralizing activity. Moreover, 

after two injections, the liquid vaccine formulation containing GLA produced significantly 

higher anti-DNI serum IgG antibody titers and toxin-neutralizing activities than the 

formulations without GLA (p≤0.02). In addition, a single injection of vaccine formulations 

containing GLA resulted in significant levels of DNI-specific antibodies, whereas 

formulation without GLA often typically required two injections in order to elicit a 

significant antigen-specific response.

4. Discussion

Since all lyophilized vaccines experience freezing once during the lyophilization process 

and a large fraction of vaccines experience freezing temperatures at least once during 

passage through the cold chain, freeze-thaw studies were conducted. Vaccine formulations 

were first exposed to one freeze-thaw cycle to mimic damage that might be caused due to 

freezing during the lyophilization process. The structure of DNI within these formulations 

appeared to be unaffected by freeze-thawing, or by lyophilization and reconstitution based 

on structural (Tm values for DNI determined from fluorescence scanning) and chemical 

(DNI charge heterogeneity profile by cIEF to monitor deamidation) integrity of the protein. 

Freezing and thawing the vaccine formulations one time caused an increase in the number of 

particles as well as an increase in larger sized particles. Since the rate of freezing used in the 

freeze-thaw study was different from the lyophilization cycle, the increase in particle 

formation was different for each study. After vaccines were frozen and thawed once, their 

immunogenicities were similar to that of the initial liquid vaccine. Additionally, lyophilized 

and reconstituted versions of the same vaccine formulation generated immune responses 

similar to those of the initial liquid form. These results demonstrate that the freezing stage of 

lyophilization should not cause damage to the vaccine.

Vaccine formulations were frozen and thawed five times to mimic more extensive damage 

that could happen as a result of thermal excursions during shipping and storage. After five 

freeze-thaw cycles, vaccine formulations exhibited no physicochemical alterations to protein 

antigen as measured by protein melting temperatures and charge heterogeneity profiles. 

Larger particles were formed at the expense of smaller particles with more freeze-thaw 

cycles. Although no differences in immunogenicity (compared to responses resulting from 

administration of comparable vaccine formulations that were not subjected to freeze-

thawing) were detected after two injections, reduced anti-DNI antibody titers were observed 

after administration of single doses of both the vaccine formulations containing alum and 

DNI, and formulations containing alum, GLA and DNI. After five freeze-thaw cycles, the 

fraction of mice responding with anti-DNI antibodies to the alum-containing DNI vaccine 
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after a single injection decreased from 80% to 20%, although 100% responded after two 

injections. The exact cause of the reduced immune response to the first dose is still 

debatable, although it may be associated with changes in aluminum hydroxide particle size 

resulting from the multiple freeze-thaw cycles.

Liquid vaccine formulations lost potency following exposure to higher temperatures. The 

protein structure in liquid formulations was perturbed after 1 week of storage at 40 °C. In 

contrast, DNI structure was preserved in lyophilized vaccine formulations, even after storage 

at 70 °C for 16 weeks. Additionally, in separate studies at 40 °C over 4 weeks, 

lyophilization was shown to prevent deamidation of the DNI protein, even in the presence of 

aluminum hydroxide particles. Previous studies have shown that protein antigens such as 

rPA and Botulinum neurotoxin deamidate faster in the presence of an aluminum salt 

adjuvant presumably due to higher surface pH of the adjuvant13, 34. The immunogenicity of 

liquid vaccines was compromised by 8 weeks of storage at 40 °C, whereas the 

immunogenicity of lyophilized vaccines was retained after storage at 40 °C for 16 weeks.

To administer the vaccine formulations in as few doses as possible, reducing transportation 

needs and cost while increasing patient compliance, GLA could be added to vaccine 

formulations already containing aluminum hydroxide. The immunogenicity of vaccine 

formulations containing GLA was higher after one injection than formulations without 

GLA. The response after one injection with GLA was almost as high as two injections 

without GLA, demonstrating the ability of GLA to increase the immune response and reduce 

the required number of doses. Also, a higher percentage of mice responded after one 

injection to vaccines containing GLA. Similar results were seen when the related MPL 

adjuvant was added to human Papillomavirus vaccines38, 39.

5. Conclusions

Damage can be caused by both elevated and freezing temperatures in liquid vaccine 

formulations. Freeze-thaw cycles were found to be detrimental to a DNI vaccine’s 

immunogenicity and aluminum hydroxide particles. Lyophilized DNI formulations showed 

much better physicochemical stability than the liquid formulations upon incubation for up to 

16 weeks at 4, 40 and 70 °C based on fluorescence structural studies and cIEF deamidation 

measurements. To complement the structural studies, lyophilized vaccines stored at 40 °C 

did not lose immunogenicity for storage up to 16 weeks whereas liquid vaccines lost 

immunogenicity prior to 8 weeks. The immunogenicity of vaccines containing GLA was 

much higher than vaccines that contained only aluminum hydroxide adjuvant. After only 

one injection, vaccines that contained GLA produced a higher percentage of mice that 

responded with anti-DNI and neutralizing antibodies.

In lyophilized vaccine formulations, variations in temperature during transport are less 

detrimental to vaccine potency. In the lyophilized state minimal water is present, avoiding 

any potential damage by freeze-thaw events. Lyophilized vaccines also permit longer 

storage at recommended temperatures and can remain immunogenic for short excursions to 

elevated temperatures if breaks in the cold chain occur.
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Figure 1. 
Aluminum hydroxide adjuvant particles aggregated during freezing and thawing as seen by 

differential interference contrast microscopy images after 0, 1, and 5 freeze-thaw cycles. 

More particle aggregation was observed with increasing the number of freeze-thaw cycles.
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Figure 2. 
Particle concentrations of formulations after 0, 1, 3, and 5 freeze-thaw cycles. With 

increasing numbers of freeze-thaw cycles, a decrease in 5–10 µm particles was detected and 

an increase in larger particles was seen. Particle size ranges are 5–10 µm (black), 10–20 µm 

(dark gray), 20–30 µm (light gray), 30+ µm (white).
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Figure 3. 
Total anti-DNI antibody titers (A) and neutralizing antibody titers (B) after one vaccine 

injection (white circles) and after two vaccine injections (gray circles) for liquid vaccine 

after 0, 1, and 5 freeze-thaw cycles. Reduced immunogenicity was detected with 5 freeze-

thaw cycles after one injection. Toxin-neutralizing endpoint titers were only determined 

using serum samples collected after the second immunization.
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Figure 4. 
Particle size distributions of placebo vaccine (gray) and placebo vaccine with GLA (black) 

before (solid line) and after lyophilization and reconstitution (dashed line). Initial liquid 

particle size distributions were very similar for both formulations. After lyophilization and 

reconstitution, only a slight increase in particle size distribution was seen in the formulation 

containing GLA.

Hassett et al. Page 20

J Pharm Sci. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 5. 
Particle size and concentration for particles greater than 2 microns in liquid and 

reconstituted lyophilized vaccines formulations. Particles 2–5 µm (black), 5–10 µm (dark 

gray), 10–15 µm (light gray) and greater than 15 µm (white). An increase in particle number 

was seen when the formulations were lyophilized and reconstituted but no change was seen 

when the vaccine was incubated at 40 °C for up to 16 weeks.

Hassett et al. Page 21

J Pharm Sci. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 6. 
Examples of intrinsic Trp (top row) and extrinsic SYPRO Orange (bottom row) fluorescence 

thermal melting curves for DNI vaccine formulations after being stored at 4 °C (A), 40 °C 

(B), and 70°C (C) for 4 weeks. DNI samples were liquid formulation (black), liquid 

aluminum formulation (red), lyophilized aluminum formulation (blue), liquid aluminum 

formulation with GLA (purple) and lyophilized aluminum formulation with GLA (green). 

Lyophilized samples were reconstituted prior to analysis.
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Figure 7. 
Extent of DNI deamidation as measured by cIEF increased during storage at higher 

temperatures and in the presence of aluminum hydroxide adjuvant when stored as liquid 

formulations. Lyophilized DNI vaccines showed no increase in deamidation events during 

storage, even at higher temperatures. DNI samples include: liquid formulation at 4 °C 

(black) and 40 °C (blue), liquid aluminum formulation at 4 °C (red) and 40 °C (pink), 

lyophilized formulation at 40 °C (green), and lyophilized aluminum formulation at 40 °C 

(navy). Representative cIEF electropherograms are shown in Supplemental Figure S1. See 

methods section for calculation of deamidation events; duplicate samples were analyzed in 

triplicate (n=6) with error bars showing standard deviation values.
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Figure 8. 
Total anti-DNI antibody titers (A) and neutralizing antibody titers (B) after one vaccine 

injection (white circles) and after two vaccine injections (gray circles) for liquid and 

reconstituted lyophilized Alum (A), Alum+GLA(AG), Alum+DNI (AD) and Alum+GLA

+DNI (AGD) vaccines stored at 40 °C for 0–16 weeks. Lyophilized vaccines remain 

immunogenic even after storage at 40 °C for 16 weeks, where liquid vaccines showed a 

decrease in immunogenicity after 8 weeks of incubation.
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Table 1

DNI-containing vaccines incubated at 4, 40 or 70 °C for 0–16 weeks exhibiting fluorescent melting 

temperatures at 40–50 °C as measured by intrinsic and extrinsic SYPRO Orange methods (●) or only the 

intrinsic method (○). Sample without detectable transitions are denoted with (○) symbols indicating loss of 

structural integrity. Lyophilized vaccines maintained DNI thermal melting temperatures during incubation at 

the three temperatures, where liquid vaccines did not exhibit detectable melting temperatures when stored at 

temperatures above 4 °C.

Storage Temperature

Sample Storage Length
(weeks)

4 °C 40 °C 70 °C

Liquid Unbound DNI

0 ●

1 ● ● ○

2 ● ● ○

4 ● ● ○

8 ● ○ ○

16 ● ○ ○

Liquid Alum+DNI

0 ●

1 ● ○ ○

2 ● ○ ○

4 ● ○ ○

8 ● ○ ○

16 ● ○ ○

Liquid Alum+GLA+DNI

0 ●

1 ● ○ ○

2 ● ○ ○

4 ● ○ ○

8 ● ○ ○

16 ● ○ ○

Lyophilized Alum+DNI

0 ●

1 ● ● ●

2 ● ● ●

4 ● ● ●

8 ● ● ●

16 ● ● ●

Lyophilized Alum+GLA+DNI

0 ●

1 ● ● ●

2 ● ● ●

4 ● ● ●

8 ● ● ●

16 ● ● ●
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