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Abstract
A microwave-assisted, sequential, one-pot protocol has been developed for the synthesis of a variety
of benzothiadiazin-3-one-1,1-dioxides. This protocol utilizes a copper-catalyzed N-arylation of α-
bromo-benzenesulfonamides with a number of amines to generate the corresponding 2-
aminobenzenesulfonamides, which undergo cyclization to the desired sultams using carbonyl
diimidazole (CDI). A range of conditions was evaluated for the key C–N bond formation step with
tolerance toward functionalized amines.

1. Introduction
The development of protocols for the synthesis of skeletally diverse heterocyclic scaffolds is
a critical step in the drug discovery process. The growing demand for libraries of small
molecules as potential small molecule therapeutic agents for high-throughput screening
presents challenging opportunities in this field. One-pot strategies are highly efficient pathways
to rapidly synthesize complex heterocyclic molecules from simple substrates.1 When coupled
with transition metal-catalyzed processes, one-pot processes enable the generation of complex
heterocyclic scaffolds from simple building blocks. In this regard, α-haloarylsulfonamides
represent an attractive building block for the production of benzofused sultams.2,3

Sultams and their sulfonamide precursors possess a number of advantageous chemical
properties making them ideal building blocks for the titled process, the most prominent of these
include: (i) click coupling between starting α-halobenzenesulfonyl chlorides and amines under
mild conditions, (ii) the α-halo group can be utilized in transition metal-catalyzed cross
coupling (iii) the α-halo group enhances the acidity of the aryl sulfonamide N–H enabling
Mitsunobu and conventional alkylation reactions to occur under mild conditions, and (iv) the
commercial availability of a variety of substituted α-halo benzenesulfonyl chlorides. Taken
collectively, these attributes have guided our efforts to develop a microwave-assisted,
sequential one-pot protocol for the synthesis of benzothiazdiazin-3-one-1,1-dioxides based on
a pivotal copper-catalyzed N-arylation strategy.

Traditionally, sultams have been synthesized using a number of classical cyclization protocols
such as Friedel–Crafts, [3+2] cycloadditions, Diels–Alder reactions, and recently the
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application of oxa- and aza-Michael reactions.4 Notably, there have been a number of transition
metal-catalyzed protocols reported for the generation of diverse sultams.3,5

In addition to their inherent chemical properties, sultams have emerged as important targets
for drug discovery due to their potent biological activities. In particular, benzothiadiazin-3-
one-1,1-dioxides and their derivatives have shown promising activity, including
hypoglycemic,6 anti-HIV,7 RSV inhibitory activity,8 as well asand serving as selective
antagonists of CXR2 (Fig. 1).9

2. Results and discussion
Since the observation of copper-catalyzed coupling of a arylbromide with an acetanilide by
Goldberg in 1907,10 copper-catalyzed N-arylation represents an effective reaction for the
formation of C–N and C–O bonds.11 Early reports classically required harsh reaction
conditions and stoichiometric quantities of copper. Seminal work by Buchwald, Hartwig and
Ley reported notable advances in both ligands and reduced reaction temperatures for copper-
catalyzed couplings.12

Traditionally, benzothiadiazin-3-one-1,1-dioxides have been synthesized in a number of linear
protocols.6–9,13 Envisioning a copper-catalyzed approach to benzothiadiazin-3-one-1,1-
dioxides, a variety of conditions were evaluated to probe and subsequently optimize the N-
arylation of allyl amine with N-allyl-2-bromo-4-fluorobenzenesulfonamide 1 to yield N-
allyl-2-(allylamino)-4-fluorobenzenesulfonamide 2 (Scheme 1, Table 1).14 An array of copper
sources (Table 1, entries 1–3) and ligands (Table 1, entries 4–7) were initially evaluated
followed by a survey of reaction solvent. Under conventional heating, the desired sulfonamide
2, could be isolated in 92% yield after 6 h.

Further optimization was achieved using microwave irradiation, which reduced reaction times
to 11 min at 150 °C with comparable yields (Table 1, entry 8 vs 11).15 With these results in
hand, a number of 2-aminobenzenesulfonamide derivatives were synthesized to demonstrate
the versatility of the protocol with a variety of amines, amides, and sulfonamide starting
materials (Scheme 2, Table 2).

With an array of 2-aminobenzenesulonfamides in hand, cyclization to the corresponding
benzothiadiazin-3-one-1,1-dioxides with carbonyl diimidazole (CDI) was achieved in
excellent yields under thermal conditions (Scheme 3, Table 3).13b,17

Finally with both protocols in hand, a sequential, two-step, one-pot approach was achieved
whereby microwave irradiation afforded the desired benzothiadiazin-3-one-1,1-dioxides in
good yield (Scheme 4).18 To achieve this, the CDI cyclization was conducted under microwave
irradiation following the initial copper-catalyzed step in the same microwave vial. This
required a change of solvent to DMF which was the optimum compatible solvent for both the
N-arylation and CDI cyclization steps while maintaining good yields.

In conclusion, we have developed a microwave-assisted, copper-catalyzed, sequential, one-
pot synthesis of benzothiadiazin-3-one-1,1-dioxides. A variety of derivatives of
benzothiadiazin-3-one-1,1-dioxides can be rapidly accessed by combining a copper-mediated
N-arylation followed by cyclization with CDI. Further efforts toward employment of this
method in library production will be published in due course.
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C for 11 min, cooled to rt and concentrated under reduced pressure. The crude oil was diluted in
CH2Cl2, washed with 1 M HCl (aq, 5 mL), water (5 mL) and dried (MgSO4). Subsequent filtration
and concentration yielded a crude oil, which was purified by flash chromatography [hexane/EtOAc,
7:3] to afford the desired product.
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Figure 1.
Biologically active benzofuzed sultams.
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Scheme 1.
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Scheme 2.
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Scheme 3.
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Scheme 4.
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Table 1

Screening conditions for reaction optimization

Entrya,d [Cu] cat. Ligand Solvent Yield (%)

1 CuI L-Proline DMSO 65

2 CuBr L-Proline DMSO 55

3 Cu2O L-Proline DMSO 10

4 CuI (CH2OH)2 DMSO 78

5 CuI 1,10-Phenanthroline DMSO 94

6 CuI DBU DMSO 50

7 CuI (CH2NHMe)2 DMSO 72

8 CuI 1,10-Phenanthroline DMF 92

9 CuI 1,10-Phenanthroline Dioxane 84

10 CuI 1,10-Phenanthroline DMF 96b

11 CuI 1,10-Phenanthroline DMF 94c

a
Reaction conditions: 1 (0.17 mmol), allylamine (0.2 mmol), CuX (0.017 mmol), ligand (0.034 mmol), Cs2CO3 (0.34 mmol) in solvent (0.5 M) at

100 °C for 6 h.

b
Microwave irradiation for 22 min at 140 °C.

c
Microwave irradiation for 11 min at 150 °C.

d
Other bases were also investigated (DBU, K2CO3, Et3N) but Cs2CO3 was preferred.
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