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Abstract

Upon exposure to shaking stress, an IgG1 mAb formulation in both liquid and lyophilized state 

formed subvisible particles. Since freeze-drying is expected to minimize protein physical 

instability under these conditions, the extent and nature of aggregate formation in the lyophilized 

preparation was examined using a variety of particle characterization techniques. The effect of 

formulation variables such as residual moisture content, reconstitution rate, and reconstitution 

medium were examined. Upon reconstitution of shake-stressed lyophilized mAb, differences in 

protein particle size and number were observed by Microflow Digital Imaging (MFI), with the 

reconstitution medium having the largest impact. Shake-stress had minor effects on the structure 

of protein within the particles as shown by SDS-PAGE and FTIR analysis. The lyophilized mAb 

was shake-stressed to different extents and stored for 3 months at different temperatures. Both 

extent of cake collapse and storage temperature affected the physical stability of the shake-stressed 

lyophilized mAb upon subsequent storage. These findings demonstrate that physical degradation 

upon shaking of a lyophilized IgG1 mAb formulation includes not only cake breakage, but also 

results in an increase in subvisible particles and turbidity upon reconstitution. The shaking-

induced cake breakage of the lyophilized IgG1 mAb formulation also resulted in decreased 

physical stability upon storage.
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Introduction

When a protein therapeutic is appropriately lyophilized with stabilizing excipients, the solid 

dosage form typically displays increased physicochemical stability during storage and 

shipping, compared to a liquid formulation counterpart, resulting in a longer shelf life 

including a lower propensity toward aggregation.1-3 Many proteins, including monoclonal 

antibodies (mAbs), have been shown to be more stable during exposure to elevated 

temperatures in the lyophilized than in the liquid state1,4-7, although there are some 

exceptions to this general rule.6 Despite protein lyophilization being a relatively well-

established formulation technology, there remains numerous challenges both in terms of 

developing an improved understanding of protein degradation pathways in the solid state as 

well as better optimizing lyophilization process design and scale-up 1,5,8,9.

The lyophilization process typically consists of freezing, primary and secondary drying, and 

reconstitution steps, each of which may structurally damage proteins10-14. Freezing of bulk 

water in a protein solution can cause cryoconcentration of protein and excipients, pH 

changes, and/or adsorption of protein to the surface of ice crystals10,13,14. Primary drying 

removes the frozen bulk water and further concentrates the protein and stabilizers, allowing 

the possibility of unfavorable interactions 5,11. Protein instability is also possible during 

secondary drying, during which the non-frozen water bound to the protein or excipients is 

removed. The composition of the reconstitution medium and it's rate of addition may also 

affect the stability of a lyophilized protein upon reconstitution back into the liquid state15. 

For example, if the reconstitution medium is added too rapidly, the dried protein may not be 

given sufficient time to rehydrate and assume its native conformation, and the presence of 

this improperly rehydrated protein may lead to aggregation. 6,16. The aggregation of 

monoclonal antibodies in the lyophilized state, and/or upon reconstitution, has also been 

correlated with formation of non-native intermolecular disulfide bonds17 as well as the 

appearance of aggregates of different sizes including an increased number of subvisible 

particles18.

A freeze-dried cake's physical structure and moisture level are typically optimized as part of 

protein lyophilization development, since either can potentially affect the extent to which a 

protein may aggregate in the solid state 6,19-21. These parameters can be interrelated since 

changes in residual moisture content may affect not only protein structure, but also the 

physical integrity of the lyophilized cake itself (i.e., a change from a viscous to a rubbery 

state where molecular mobility increases7). Some lyophilized protein preparations with high 

moisture content have shown increased chemical degradation due to increased mobility and 

the ability of water to participate in chemical reactions.22,23 However, a bell shaped 

relationship between moisture content and physical stability (aggregation) has also been 

observed, e.g., lyophilized recombinant human albumin displayed maximum aggregation at 

∼50% moisture content. 24 In terms of the effect of the physical integrity of a freeze-dried 

cake on protein stability, it has been shown that when a lyophilized cake of an IgG1 mAb is 

physically collapsed to different extents by using different amounts of stabilizers and 

bulking agents during the freeze-drying process, the mAb can still remain stable in the 

different preparations.19-21 The method of cake collapse, however, either during the freeze-
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drying cycle or during storage at elevated temperatures, has been shown to potentially be an 

important factor in determining protein stability during subsequent storage.21

The effect of mechanical stress on the stability of lyophilized proteins has not been as 

widely examined. In this work, to examine the potential of shipping stress to cause protein 

aggregation, we implemented a stress shipping test based on considering guidelines in the 

vibration testing document D999 proposed by ASTM International Standard Test Methods 

for Vibration Testing of Shipping Containers25. Currently, there are no guidance documents 

available that are specific for pharmaceutical products that outline the testing criteria to use 

when evaluating product quality impact of shipping-related stress. Initially, we examined the 

physical stability of an IgG1 mAb formulation in both a liquid and lyophilized state after 

exposure to shaking stress with the expectation that the protein in the lyophilized state 

would be more stable in terms of aggregation and particle formation. Surprisingly, the 

lyophilized preparation also displayed mAb physical instability (upon reconstitution).

The focus of this work was to better understand the effect of shaking stress, used to mimic 

extreme shipping conditions, on the physical stability of a lyophilized mAb preparation. A 

wide variety of analytical characterization techniques were used to size and count protein 

aggregates and particles across a wide size range including size-exclusion chromatography 

(SEC), dynamic light scattering (DLS), Nanoparticle Tracking Analysis (NTA), Resonant 

Mass Measurement (Archimedes), Microflow-Imaging (MFI), and turbidity. We also used 

data visualization tools (e.g., radar plots) to display and compare the number and size of 

protein particles formed under different conditions. The composition of the protein found in 

particles was further examined using SDS-PAGE and FTIR Microscopy. We determined 

how formulation variables such as residual moisture content, reconstitution speed, and 

composition of the reconstitution medium affected the formation of subvisible particles and 

solution turbidity when the lyophilized mAb was exposed not only to shaking stress, but also 

to subsequent storage for three months at various temperatures.

Materials and Methods

Materials

Lyophilized IgG1 mAb samples prepared at 0.6% and 6.8% moisture content, and their 

corresponding matching placebos without protein, were supplied in stoppered 20 mL glass 

vials by Human Genome Sciences (currently GlaxoSmithKline). Upon reconstitution with 5 

mL of deionized water from Water Pro PS Station (Labconco, Kansas City, MO), the target 

concentration was approximately 30 mg/mL protein, in a formulation consisting of 0.08 

mg/mL citric acid monohydrate (Avantor Performance Materials, JT Baker 0115, Center 

Valley, PA), 1.6 mg/mL sodium citrate dihydrate (Avantor Performance Materials, JT Baker 

3647), 11 mg/mL glycine (Avantor Performance Materials, JT Baker 0581), 3 mg/mL 

sucrose (Avantor Performance Materials, JT Baker 4005), and 0.12 mg/mL polysorbate-80 

(Croda International, SR48833, England) at pH 6.5. Lyophilized samples were stored at 4 

°C unless otherwise indicated. The IgG1 mAb has a pI of ∼8.4 and protein concentrations 

were determined by UV spectroscopy at 280 nm with an extinction coefficient of ε 0.1% 

=1.58 (g/100mL)-1 cm-1.
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Methods

Shaking stress studies—Glass vials containing lyophilized and liquid IgG1 protein 

samples and corresponding placebo controls were taped horizontally inside of a lightweight, 

cryogenic box (13 × 13 × 5 cm), which was then taped to the cuphead of a 4.9 mm orbit 

Fisher Scientific Analog Vortex Mixer (Waltham, MA) and shaken vigorously at 3200 rpm 

for different periods of times at ambient temperature. Depending on the experiment, the 

shake-stressed samples were either in the lyophilized (solid) state or in the reconstituted 

(liquid) state. Unstressed and stressed samples of lyophilized protein and placebos were 

reconstituted with 5 mL of deionized water (Labconco) over 10 s, unless otherwise noted. 

To prepare the liquid samples, the lyophilized protein formulation was reconstituted with 5 

mL of deionized water (Labconco) prior to shaking.

To study the effect of reconstitution medium type and addition rate, shake-stressed (for 24 h) 

and unstressed lyophilized IgG1 mAb samples were reconstituted by adding 5 mL of four 

different diluents (deionized water, 150 mM NaCl, 150 mM NaCl + 0.05% polysorbate 80, 

and 500 mM NaCl) at two rates (5 mL injected over 10 s and 5 mL injected over 2.5 min). 

To study the effect of shake-stress on subsequent storage stability, lyophilized mAb samples 

in stoppered glass vials were shaken for 2.5 min or 24 h and placed at 4, 40, or 55°C for up 

to 3 months at ambient humidity. Intact, unstressed samples (no cake breakage) were also 

stored up to 3 months at these temperatures. At time zero in the stability study, intact cake 

samples, 2.5 min shaking, and 24 h shaking samples were analyzed immediately (no 

storage). Placebos were also analyzed after 3 months storage at 55°C.

Turbidity—To monitor solution turbidity of samples, a HACH 2100 AN turbidimeter 

(HACH, Loveland, CO) was used. Prior to analyzing the experimental samples, StableCal 

calibration standards (Hach, Loveland, CO), ranging from <0.1 to 4000 Nephelometric 

Turbidity Units (NTU), containing hexamethylenetetramine and demineralized water, were 

used for generating a standard curve. The method is based on comparing intensity of light 

scattered by a sample under defined conditions with the intensity of light scattered by a 

standard reference suspension. Samples were not centrifuged or diluted for analysis.

Size-exclusion HPLC (SE-HPLC)—A Shimadzu UFLC HPLC system equipped with a 

diode-array detector and a Tosoh Bioscience (Tokyo, Japan) TSK-Gel G3000SWXL (7.8 

mm ID × 30.0 cm, 5μm) and the corresponding guard column (TSK-Gel Guard Column 

SWXL, 6.0 mm ID × 4.0 cm, 7μm) were used to monitor for the presence of soluble 

aggregates (< 100 nm). Prior to sample runs, the columns were rinsed for 60 min with 

deionized water followed by equilibration at 30°C for 1 h using mobile phase (10 mM 

sodium phosphate, 450 mM sodium chloride, pH 7.4) at a flow rate of 0.5 ml/min. 

Molecular weight standards (Biorad Laboratories, Hercules, CA) were run to test for 

efficacy of separation and resolution. Samples were centrifuged at 16,000 × g for 5 min and 

10μL of supernatant was injected for analysis and monitored at 280 nm for each 35 min 

sample run. Aggregates, monomers, and fragment peaks were quantified using the LC 

Solutions data analysis software provided with the instrument.
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Nanoparticle Tracking Analysis—Submicron sized particles (50-1000 nm) were 

measured using a Nanosight LM-14 (Nanosight, Amesbury, UK) with a CCD camera. 

Stressed samples and controls were centrifuged at 16,000 × g for 5 min, to separate larger 

aggregates outside the instrument sizing range. The supernatant was diluted 100 fold in 

formulation buffer (η=1.08 mpa. S for formulation buffer and η=1.36 mpa. S for the 

unstressed sample). Three hundred microliters of the 100 fold diluted supernatants were 

injected into the sample holder. Three 30 s movies were taken at ambient temperature for 

each sample. All samples were corrected for dilution. Data analysis was performed using the 

NTA 2.3 software, provided with the instrument, with detection threshold of 16, a screen 

gain of 7, and a minimum expected particle size of 50 nm.

Dynamic Light Scattering (DLS)—DLS measurements were performed to monitor 

small nanometer sized particles (1-1000nm) using a DynaPro™ Plate Reader (Wyatt 

Technologies, Santa Barbara, CA). Prior to analysis, the protein samples and controls were 

centrifuged at 16,000 × g for 5 min to remove large aggregates. The supernatant was 

separated and 30μL of the supernatant was loaded into a clear bottom 384 well assay plate 

(Corning Incorporated, Corning, NY). The plate was then centrifuged at 1177 × g for 3 min 

to remove air bubbles. Measurements were performed at 20°C with auto attenuation using 

the globular protein model and with the viscosity values determined using an Anton Parr 

Stabinger Viscometer 3000 (Anton Parr Inc., Ashland, VA). The data were collected using 

the Dynamics V 7.1.6 software, provided with the instrument, and analyzed using 

multimodal analysis.

Resonant Mass Measurements—Analysis of 0.25 to 3 micron sized particles was 

accomplished using an Archimedes particle metrology system (Affinity Biosciences, Santa 

Barbara, California). The instrument was first calibrated with NIST standard 1 μm 

polystyrene beads prior to analyzing experimental samples. To prevent clogging of the Hi-Q 

micro sensors, samples were centrifuged at 16,000 × g for 5 min and supernatants were 

analyzed. Triplicates of each sample were allowed to run until 500 particles were counted to 

obtain statistically significant data. Particle Lab software, provided with the instrument, was 

used to obtain particle size and concentration.

Micro-flow Digital Imaging and Radar Chart Analysis—Micron sized subvisible 

particles (2-100 μm) were analyzed and imaged using an MFI DPA-4200 (Protein Simple, 

Santa Clara, CA). See the method described in Telikepalli et al. 201426 for further details. 

Protein containing samples were diluted 100 fold prior to analysis and this dilution factor 

was accounted to determine particle concentration. MFI's MVAS 1.3 software was used to 

collect particle imaging data, which was then analyzed by radar plots to assess the particle 

size and concentration distribution for the unstressed and stressed samples using in-house 

software (Middaugh Suite) as described in detail elsewhere26-28. Additional radar plot 

analysis was performed in which the particle concentrations in each size bin for the stressed 

samples were normalized relative to its “control,” an unstressed sample that is similar in all 

other parameters. This normalization helps in visualizing and rank ordering the relative 

impact of a particular formulation parameter (e.g., stress) on the relative extent and size 

distribution of particle formation.
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SDS-PAGE—Samples were mixed with 4× NuPAGE LDS sample buffer (Life 

Technologies, Carlsbad, CA) with and without, 50mM dithiothreitol (BioRad Laboratories, 

Hercules, CA) and incubated at 80°C for 90 s. Approximately 10 μg of each sample was 

separated on a 3-8% Tris-Acetate gel using Tris-Acetate Buffer (Life Technologies, 

Carlsbad, CA). Hi-Mark Unstained Protein Standard (Life Technologies, Carlsbad, CA) was 

used as a molecular weight ladder. Protein bands were visualized by staining the gels with 

Bio-safe Coomassie Blue G250 stain (BioRad Laboratories, Hercules, CA).

FTIR—Unstressed lyophilized mAb, after being reconstituted with 5 mL deionized water 

over 10 s, was analyzed for overall secondary structure content as a function of temperature 

by Fourier transform infrared spectroscopy (FTIR) using instrumentation and methodology 

presented in Telikepalli et al. 201426.

FTIR Microscopy-15× Objective-Reflectance mode—The method from Telikepalli 

et al. 201426 was used to prepare and isolate protein particles from stressed samples, and 

then to perform overall secondary structure analysis of proteins within individual isolated 

particles using a Bruker Hyperion FTIR Microscope (Bruker Biosciences, Billerica, MA) 

with a 15× objective in reflectance mode to image individual particles on gold coated filters 

(Pall Corporation, Port Washington, NY).

Results

Comparison of the physical stability of an IgG1 mAb formulation in the solid and liquid 
state during shaking

Samples of the IgG1 mAb were shaken (to simulate extreme shipping stress conditions) in 

the same formulation in the liquid or solid state for 5 min, 2h, 6h, and 15 h. Upon shaking, 

the solid state lyophilized cake increasingly turned into a finer, broken down powder after 

each of these shaking conditions. The physical stability of the mAb was assessed by a 

combination of analytical techniques including SE-HPLC, DLS, NTA, MFI, and turbidity. 

These techniques were used to determine differences in the aggregation behavior of protein 

from lyophilized and liquid shake-stressed samples across a wide aggregate size range of 

nanometers to hundreds of microns29. Aggregate formation in the size range of 1-1000 nm 

(detectable by a combination of SE-HPLC, DLS, and NTA) was minimal with similar 

results in both types of stressed samples (data not shown). For example, with SE-HPLC, 

approximately 99% monomer and 1% aggregate was noted at time zero with no change after 

shake-stress. Additionally, no changes in the total area of the SEC peaks were observed, 

suggesting no detectable change in the total protein concentration by this method. DLS 

showed predominantly monomers (approximately 5 nm radius), with no changes in 

hydrodynamic size of protein in these samples after shake-stress. For NTA analysis, 

submicron sized particles in the range of 100-300 nm were observed in the samples with no 

changes noted in particle concentration and size distribution as a function of shake-stress 

(data not shown).

In contrast, differences in solution turbidity and micron size particle concentrations 

(detected by MFI) were observed between the liquid and lyophilized mAb samples after 

shaking as shown in Figure 1A and 1B, respectively. The turbidity of the liquid sample does 
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not appear to change even after 15 h of shaking. In contrast, for the lyophilized sample, the 

turbidity of the solution (upon reconstitution) increases as a function of shaking time (Figure 

1A). After stressing the liquid and lyophilized samples for 5 min up to 15 h, the liquid and 

lyophilized samples both showed a small increase in the total number of micron sized 

particles as measured by MFI (Figure 1B). Given the variability in the particle concentration 

determinations, it was concluded that both the liquid and lyophilized stressed samples 

generated similar levels of micron particles, with the 15 h time point showing a trend such 

that the lyophilized stressed sample may actually produce a greater number of micron sized 

particles than the liquid stressed samples.

The relative instability of the lyophilized protein was not anticipated. In fact, it was assumed 

that the protein in liquid state would be more susceptible to physical degradation by shaking, 

compared to the lyophilized state, even though the formulation contained polysorbate 80, a 

non-ionic surfactant which is known to stabilize against shaking-induced degradation in 

liquid formulations. To better understand these observations, a series of experiments were 

performed as described below to examine the effect of shaking the lyophilized formulation 

on the physical stability of the IgG1 mAb (measured upon reconstitution) as determined by 

solution turbidity and formation of micron sized particles (MFI).

Characterization of particle formation in shake stressed lyophilized mAb samples

In an initial set of experiments, the effect of moisture content on the physical stability of the 

lyophilized mAb after shaking was assessed. Both “low” moisture (0.6%) and “high” 

moisture (6.8%) freeze-dried samples were prepared and then shaken for 24 h, turning both 

lyophilized samples into broken apart, finer powders, prior to reconstitution. No increases in 

size or in concentration of soluble aggregates or submicron particles were observed as a 

function of stress or moisture content by SE-HPLC and NTA, respectively (data not shown). 

In addition, DLS analysis did not show the presence of species other than the monomer 

across the four samples (data not shown). Twenty-four hours of shaking increased the 

solution turbidity and micron sized particle counts for both samples (Figure 2). The shake-

stressed 6.8% moisture lyophilized mAb sample showed somewhat increased levels of 

turbidity and particle counts when compared to the 0.6% moisture samples.

The MFI total particle concentration data displayed in Figure 2 were further analyzed and 

displayed as a radar chart to better visualize the particle size distributions in the four samples 

as shown in Figure 3. Two different scales, shown on the right side of the figure, are used to 

analyze these MFI data. The “particle number” scale, used to display the actual MFI particle 

size and concentration data for samples at time 0 and after 24 hours of shaking, has the 

innermost circle representing the lowest particle concentration of ∼0 particles/mL and the 

outermost corresponding to the highest concentration of ∼2.5 × 106 particles /mL. The 2-5 

μm size bin starts at the top and increases clockwise up to a 25-40 μm size bin. The 

“normalized” scale shows particle concentrations of the stressed sample relative to its 

unstressed control for each size bin. Thus the scale increases from 0× (innermost circle) to 

50× (outermost circle), where the latter indicates the number of particles in a size bin after 

shake-stressing are 50× greater than the number of particles in the same size bin at time 0 

(no shaking).
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For both the low and high moisture samples, the lyophilized mAb shows a low number of 

micron-sized particles upon reconstitution. After 24 h of shaking, the number of 2-5 μm 

particles increased (along with a small increase in 5-10 μm particles) in both moisture level 

samples. However, the 6.8% moisture samples formed more 2-5 μm particles than the 0.6% 

samples after shaking. This effect is more clearly reflected in the normalized radar plots 

where, it can be seen that the shake-stressed 6.8% moisture sample shows a larger relative 

increase in particles compared to its control than the shake-stressed 0.6% moisture sample. 

For example, there is an ∼40 fold increase in the formation of 2-5 μm particles compared to 

the unstressed control for the 6.8% moisture sample, but only about a 10 fold increase of the 

2-5 μm for the shaken 0.6% moisture sample. Similarly, a larger relative increase is 

observed for the formation of 5-10 μm sized particles, with an almost 35 fold increase for 

the higher moisture sample after shaking.

In addition to sizing and counting particles, the nature of the protein within the particles 

formed was examined by SDS-PAGE and FTIR analysis. In both the control and shake-

stressed lyophilized samples at the two different moisture levels, non-reduced and reduced 

SDS-PAGE gels were compared. In the non-reduced gel, mostly IgG1 monomers with some 

fragments and dimers were observed. Upon reduction with dithiothreitol, however, dimers 

were reduced and only heavy and light chains of the IgG1 can be seen (see Supplemental 

Figure S1). However, it appeared that these dimers were not forming as a function of the 

shake-stress and were present in all of the samples. Additionally, upon centrifugation of 

samples into supernatant and pellet components, no notable differences were seen in both 

the non-reduced and reduced SDS-PAGE gels for the supernatant, pellet, or the non-

centrifuged samples.

FTIR and FTIR Microscopy were used for the evaluation of overall secondary structure of 

the mAb in solution and of the mAb within the particles formed as a function of shaking 

stress in the lyophilized samples, respectively. Representative FTIR spectra, and 

corresponding wavenumber positions from triplicate measurements, are shown for two 

control samples and for the 0.6% and 6.8% moisture lyophilized mAb samples in Figures 

4A and 4B, respectively. The solid black line corresponds to the FTIR second derivative 

spectrum of the Amide I band of the unstressed, control mAb in solution and shows spectra 

with minima around 1636 and 1690 cm-1, which correspond to the intramolecular beta 

sheets that are in the main secondary structure of antibodies. To determine the extent of 

secondary structure loss that is possible with this mAb, the mAb solution was extensively 

heated and the resulting isolated particles were analyzed by FTIR Microscopy. The second 

derivative spectra, depicted as blue dotted graphs, possess minima at 1622 cm-1 and 1619 

cm-1 and 1692 cm-1 and 1693 cm-1 indicating loss of intra-molecular beta sheets and 

formation of inter-molecular beta sheets (i.e., aggregation). The red dotted lines are the 

second derivative spectra of the isolated protein particles obtained from each of the two 

shake-stressed samples by FTIR Microscopy (after reconstitution of the low and high 

moisture lyophilized mAb samples followed by filtration and capture of particles on a gold 

filter). Compared to the two control samples (unstressed sample in solution and heat 

control), the IgG1 in the protein particle from the T=24 h shake-stressed sample has similar 

overall secondary structure to the unstressed control. However, these isolated protein 

particles may have a slightly altered overall secondary structure content compared to the 
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protein in the unstressed sample since their spectra show a small shift in the average minima 

around 1633 cm-1 and 1691 cm-1. Importantly, the particles obtained from the 0.6 and 6.8% 

moisture samples showed similar levels of change in protein secondary structure indicating 

that for this IgG1 mAb, moisture content in conjunction with shake stress do not seem to 

largely impact the secondary structure of the protein within the particles.

Characterization of particle formation in shake stressed lyophilized mAb samples as 
function of reconstitution medium type and addition time

For both the low and high moisture containing lyophilized mAb samples, the control 

(unstressed) vials fully reconstituted in about 30 s, while the shake-stressed vials took ∼ 1.5 

min. This was similar regardless of the medium type or medium addition rate. There was no 

difference in reconstitution time as a result of moisture content, so the effect of medium type 

and addition rate were further examined with the low moisture lyophilized sample. The 

0.6% moisture lyophilized sample was shaken for 24 h and reconstituted with 5 mL of 

different mediums at two different rates and then monitored for their effects on physical 

stability of the mAb by measuring solution turbidity and the concentration of micron-sized 

particles. As shown in Figures 5A and 5B, the shake stressed lyophilized samples were more 

turbid and contained higher concentrations of micron-sized particles than the non-shaken 

samples upon reconstitution. Reconstitution with water consistently led to higher solution 

turbidity and higher micron-sized particle concentrations than reconstitution with the other 

diluents. In addition, the role of medium addition rate was examined and no effects were 

observed for most of the conditions with two exceptions: (1) for the 24 h shake-stressed 

lyophilized samples reconstituted at a slow rate with 150 mM NaCl + 0.05% polysorbate 80, 

higher turbidity and increased particle counts were observed compared to the fast addition of 

this medium, and (2) while the turbidity did not change, reconstituting the shake-stressed 

lyophilized sample slowly with 150 mM NaCl solution produced more micron-sized 

particles than the same sample reconstituted at the fast rate.

Radar plot analysis of the MFI particle data showed some distinct relative changes in 

particle size distribution depending on the medium selection and the rate of addition 

(Figures 6 for water as the medium and Figure 7 for the other diluents; note the scale 

differences in the two figures). Regardless of medium type, predominantly 2-5 μm particles 

are formed upon shake-stress lyophilized samples upon both the slow and fast medium 

addition. When water was used as the reconstitution medium (Figure 6), there was almost a 

15 fold increase in the formation of 5-10 μm particles upon slow reconstitution compared to 

the unstressed sample similarly reconstituted. In contrast, rapid addition of water resulted in 

a smaller relative increase in particles formed in this same size range. For the other medium 

types, the addition rate was found to have some effect on the micron particle concentration 

as shown in Figure 7. Slow reconstitution of the shake-stressed lyophilized samples with 

150 mM NaCl and 150 mM NaCl+0.05% polysorbate 80 produced a larger relative increase 

(as seen by the normalized plot) in the formation of micron particles across the size bins. 

Such a relative increase in particle formation was not observed upon more rapid addition of 

these reconstitution media.
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Effect of shake stressing lyophilized mAb samples on subsequent storage stability

A three month stability study was performed using the lyophilized mAb samples (0.6% 

moisture) after exposure to different amounts of shake stress. Intact lyophilized cakes 

(unstressed controls), slightly broken cakes (shaken for 2.5 min) and completely broken 

lyophilized cakes (shaken for 24 h) were stored at 4, 40, and 55°C for 3 months (at ambient 

humidity) in stoppered glass vials. Representative pictures of the physical integrity of these 

lyophilized cakes corresponding to the varying levels of shake stress are shown in Figure 

8A. Upon fast addition with 5 mL deionized water, samples were analyzed by a combination 

of NTA, MFI, and turbidity. NTA showed no changes in aggregation due to stress (data not 

shown). In contrast, solution turbidity (Figure 8A) and micron-sized particles measured by 

MFI (Figure 8B) did reveal some stability differences as a function of shake stress and 

storage temperature (in addition, at the higher temperatures and longer time periods, slight 

yellow color changes were noted in all of the samples upon reconstitution; data not shown). 

As shown in Figure 8A, all samples showed an increase in turbidity with increasing storage 

temperature (4°C < 40°C < 55°C). If samples stored for identical time periods are 

considered, turbidity did not significantly increase in the intact and 2.5 min shaken samples. 

The samples stored at 55°C were the most turbid, followed by the samples stored at 40°C 

(4°C < 40°C < 55°C). Figures 8C and 8D show normalized turbidity and normalized micron 

particle concentrations obtained by taking a ratio of turbidity (or micron particle 

concentration) of the stressed sample to its control (T=0) for a given shaking duration. This 

shows the change in turbidity or number of micron particles in a sample relative to its 

unstressed control. At 40°C, after three months of storage, the relative change in turbidity 

and total subvisible particle concentration for all shaken samples is approximately 1.5× and 

2-3×, respectively. At 55°C after three months, the relative change for the shaken samples is 

about 3.5-5× and 7-15× for turbidity and total micron particle concentration, respectively.

In summary, Figures 8A and 8B show increasing turbidity and particle counts with 

increasing shaking duration, storage time, and temperature. However, the T=0 samples 

themselves show an increase in turbidity and micron sized particle counts with increasing 

shaking duration (T=0 Intact cake < T=0 2.5 min shaking < T=0 24 h shaking). Higher 

temperatures and longer storage show an increase in turbidity and particle counts relative to 

the control (4°C < 40°C < 55°C and T=0 ∼ T=1 month < T=3 months) within each shaking 

time. When different shaking times are compared, in terms of relative changes versus time 

zero (Figures 8C and 8D), however, both relative turbidity and relative micron particle 

concentration changes stay constant or even decrease, especially for the samples stored at 

55°C for three months as the cake structure is increasingly collapsed.

Discussion

The focus of this work was to better characterize how shaking of a freeze-dried IgG1 mAb 

formulation can affect protein stability upon reconstitution. We first examined the 

lyophilized IgG1 mAb control (no shake-stress), which showed minimal levels of physical 

instability after reconstitution. These initial results indicated the formulation composition 

and lyophilization cycle resulted in a stable protein preparation. While there is a plethora of 

literature on how to effectively formulate and stabilize protein drugs during the 
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lyophilization process and subsequent long term storage,1,5,17,24,35 the effect of subsequent 

mechanical stresses applied to the lyophilized dosage form on physical stability and 

aggregation of mAb, which could potentially occur during shipping and handling, has not 

been examined to the same extent.

Physical Stability of Shake-stressed mAb in Lyophilized State

In this work, mechanical shaking-stress was applied to the liquid and lyophilized state of an 

IgG1 mAb formulation, and a variety of analytical techniques were used to assess the 

physical stability of the mAb. These results highlight the need to examine protein 

aggregation across a wide size range since no one analytical approach covers the different 

size ranges of protein aggregates and particles that may form26,29,36. SEC and DLS, two 

very commonly used techniques to monitor soluble, nanometer sized aggregates, along with 

NTA, to detect submicron sized particles, showed no differences in particle levels between 

control (unstressed) and shake-stressed samples across the various experiments. 

Interestingly, although the shaking stress had minimal effects on the formation of soluble 

aggregates and smaller submicron sized particles, physical instability was detected by 

turbidity measurements and by formation of larger micron size particles (as shown by MFI). 

Thus, shake-stressing the lyophilized mAb, followed by reconstitution, led to increased 

levels of protein particles in the subvisible size range (∼2-100 microns) but not in the 

smaller, submicron size ranges. These results highlight the need to examine protein 

aggregation across a wide size range since no one analytical approach covers the different 

size ranges of protein aggregates and particles that may form26,29,36

The shake-stress had minor effects on the conformation and composition of the protein 

contained within these particles as evidenced by SDS-PAGE and FTIR analysis. Upon shake 

stressing freeze-dried cakes, the resulting protein particles, formed in two different moisture 

level samples, showed similar levels of non-native disulfide crosslinks (SDS-PAGE) and the 

presence of slightly altered overall secondary structure content compared to the native 

protein (FTIR analysis). In contrast, the role of non-native disulfide bond formation in the 

generation of aggregates appears less influential than has been observed previously with 

other lyophilized mAbs17. A recent study performed in our laboratory studied the 

aggregation behavior of a mAb undergoing shaking stress. While this was a different IgG1 

mAb, in a liquid solution and in a different formulation, shake stress also led to formation of 

particles with only minor changes in overall conformational integrity of the protein within 

the particles as seen by SDS-PAGE, FTIR and by ANS fluorescence spectroscopy26.

The effect of the residual moisture content of the lyophilized cake on the physical stability 

of the mAb after shake-stress was also evaluated. There is an abundance of literature 

describing the effects of moisture content on the stability of lyophilized protein 

therapeutics19-22 Improved protein stability is often observed at lower moisture contents of a 

lyophilized cake, with values not exceeding 2.0% 6, however, exceptions have been noted. 

For example, when the stability of a lyophilized humanized mAb produced with varying 

moisture contents and stored at elevated temperatures up to a year was analyzed,22 no cake 

collapse or changes in protein secondary structure were observed22 but the intermediate 

moisture level samples were more resistant to aggregation. The relationship between 
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moisture content and protein aggregation potential is complex and may be very dependent 

on the protein itself, formulation composition and freeze-drying conditions1,5-7,22. In our 

study with an IgG1 mAb, the physical stability of the 6.8% moisture sample was not 

drastically different than the 0.6% moisture sample during lyophilization or upon exposure 

to subsequent mechanical stress.

Effect of Reconstitution on Shake-Stressed Degradation of Lyophilized mAb

The choice of medium used to reconstitute the lyophilized IgG mAb was an important factor 

in this study6,37. Using water as the diluent for both the unstressed and shake-stressed 

lyophilized mAb samples resulted in higher solution turbidity, and in an increased 

concentration of micron sized particles, compared to the use of other diluents. The addition 

of sodium chloride solutions partially inhibited the formation of micron particles in our 

studies probably because the sodium chloride reduces protein-protein colloidal 

interactions.638 Previous studies have shown the importance of ionic strength in 

reconstitution solutions where either increased or decreased ionic strength of the 

reconstitution medium inhibited protein aggregation, highlighting the protein and 

formulation specific nature of these observations. 33,37-40 However, sodium chloride 

containing diluents result in reconstituted mAb solutions with higher solution osmolality, 

which might be a concern depending on the route of administration (e.g., subcutaneous 

injection into the patient). The presence of polysorbate 80 in the reconstitution buffer 

perhaps had a small stabilizing effect on the formation of subvisible particles upon 

reconstitution. Numerous studies have shown that polysorbate can decrease aggregation 

when used in the reconstitution medium38,39,41-43. It has been suggested that surfactants 

may increase wettability of powders leading to increased dissolution rate of lyophilized 

powders, inhibit surface induced denaturation during reconstitution, or stabilize the native 

state of the protein by increasing the free energy of unfolding. 39,41,43 Stabilizing 

compounds, such as polysorbate 80 or NaCl, in the diluent may prevent or reduce protein-

protein interactions, and/or the physical dilution imparted by their addition can lead to 

separation of protein molecules and hinder aggregation7.

Upon reconstitution, the type of diluent and the rate of diluent addition can affect not only 

protein stability, 6,40 but also reconstitution times. The rate of diluent addition on the 

physical stability of the reconstituted, lyophilized IgG1 mAb in this study was, in general, 

not an important factor. However, the time required for reconstitution was longer for the 

shake-stressed lyophilized samples than the unstressed vials (approx. 0.5 vs. 1.5 minutes), 

regardless of the rate of addition or the type of diluent used. Since the physical state of the 

lyophilized mAb impacts dissolution time upon reconstitution, it is possible this results in 

differences in local protein or excipient concentrations and subsequently to the observed 

differences in subvisible particle formation. The higher surface area and porosity present in 

the lyophilized cake, compared to the finer powder formed after shaking, may allow it to 

dissolve faster than the powder44. However, disruption of lyophilized cake structure may not 

be the only destabilizing mechanism. Vibrational forces, or local heating effects generated 

from shaking itself, can potentially increase the contact area of powder particles allowing 

increased interactions between them45 leading to a cohesive powder that is “sticky.”46
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These differences in reconstitution time did not change, however, when the samples were 

reconstituted at different rates and with different diluents. While this lyophilized protein 

formulation had a relatively short reconstitution time, for other lyophilized protein samples 

in which the reconstitution time is longer and may be problematic during clinical 

administration, techniques mentioned by Cao et al15 could be beneficial. For example, 

reconstituting under vacuum, adding wetting agents, and/or using low diluent volumes were 

observed to be methods that can decrease reconstitution times in a high concentration 

lyophilized formulation of a Fc-fusion protein15. Additionally, three reconstitution 

procedures were described, in which the reconstitution medium is added and the vial is 

gently swirled for different periods of time, resulting in different reconstitution times15. In 

addition to reconstitution time, such reconstitution procedures could be evaluated in the 

future to assess their ability to minimize subvisible particle formation during reconstitution 

of shake stressed lyophilized protein powders.

Storage of Shake-stressed Lyophilized mAb Samples

The effects of the extent of shaking stress on subsequent storage stability of the freeze dried 

IgG1 formulation were also analyzed in this work. Lyophilized mAb samples were prepared 

as follows: (1) unstressed, physically intact cakes, (2) brief shaking (2.5 min) resulting in 

some cake breakage, and (3) extensive shaking (24 h) resulting in the cake being broken 

down to a powder. These samples were stored at different temperatures over a three month 

period, and at each time point, were reconstituted rapidly with 5 mL of water. Increasing 

shaking stress on the freeze dried cake showed some small differences with increased levels 

in turbidity and subvisible particles. Solution turbidity and subvisible particle concentration 

increased with increasing storage (T=0 < T=1 month <T=3months), especially for the 

samples stored at 40°C and 55°C. Similar to Schersch et al19-21, we also noticed a color 

change during storage of the lyophilized protein at higher temperatures in this formulation, 

which they reasonably attributed to the well-known non-enzymatic browning (Malliard-

type) reaction between reducing end sugars (potentially due to degraded sucrose) and lysine 

residues in the protein. The turbidity levels and subvisible particle concentrations are highest 

for the 24h shaken samples compared to the intact and 2.5 min shaken samples (Intact ∼ 2.5 

min shaking < 24 h shaking). Even though Figures 8A and 8B show increasing turbidity and 

particle counts with increasing shaking duration, storage time, and temperature, comparing 

samples to appropriate controls provides fuller understanding of the importance of shaking 

stress in inducing turbidity and micron particle formation. Figure 8C and Figure 8D compare 

a particular sample with its relevant control (T=0). Within each shaking time, higher 

temperatures and longer storage show increase in turbidity and particle counts relative to the 

control (4°C < 40°C < 55°C and T=0 ∼ T=1 month < T=3 months). When different shake 

times are compared, however, both turbidity and micron particle counts stay relatively 

constant or decrease, especially for the samples stored at 55°C for three months. This is 

largely because the controls themselves (T=0) increase in both turbidity and particle counts 

with increasing shaking duration so the instability associated with storage temperature and 

storage duration appear less profound.

In comparison, Schersch et al. have examined the effect of cake collapse (due to a variety of 

causes) during freeze-drying and subsequent storage at elevated temperatures on the stability 
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of a different IgG1 mAb.19-21 For example, when lyophilized cakes were collapsed by using 

different amounts of excipients or by using different freeze-drying protocols, the stability of 

protein in the collapsed and non-collapsed cakes were not different from one another. In 

addition, conformational integrity of the IgG1, as measured by FTIR analysis of the overall 

secondary structure, was also not affected by cake collapse.19 Additionally, when the effect 

of cake collapse on long-term storage at various temperatures ranging from 2-50°C up to 6 

months was analyzed, protein stability was retained in the collapsed and non-collapsed cakes 

after storage.20 In addition, the stability of the freeze-dried samples that were collapsed 

during freeze-drying vs. samples collapsed only during subsequent storage at 40 and 50°C 

for 3 months were compared to determine if the method of collapse affected protein 

stability. In this case, the stability of the protein in the collapsed lyophilized cakes (collapse 

due to freeze-drying) was better than the stability of protein in the storage-collapsed 

samples. Overall, the authors concluded that the collapse (freeze-dried) samples appeared to 

be more stable than the collapsed (storage) samples.21

The method of cake collapse could be another important parameter to consider as well in 

terms of effects on storage stability. In this work, we mechanically stressed the samples to 

alter the cake integrity to different extents and then stored the cakes (with varying levels of 

physical collapse) at different temperatures. In comparison, Schersch et al. have examined in 

detail the effect of different methods of cake collapse on the stability of a different IgG 

mAb.19-21 The stability of the samples collapsed during freeze-drying compared to samples 

during subsequent storage at elevated temperatures showed that the stability of the protein in 

the freeze-drying collapsed cake was better than the protein in the storage-collapsed 

samples. Overall, the authors concluded that the collapse (freeze-dried) samples appeared to 

be more stable than the collapsed (storage) samples21.

Conclusions

This case study highlights that post-lyophilization mechanical stresses, potentially 

encountered during shipping and transportation excursions, can result in physical instability 

of a lyophilized protein upon reconstitution. For this particular IgG1 mAb formulation, a 

liquid dosage form (5 mL of a 30 mg/mL protein solution in a 20 mL stoppered glass vial) 

showed instability due to shaking stress, despite the presence of stabilizers including 

polysorbate 80. The common sense approach of lyophilization did not successfully address 

the issue since the lyophilized dosage form of the same formulation was also shake-

sensitive. The increase in subvisible particle formation seen with the shake-stressed 

lyophilized IgG1 mAb upon reconstitution correlated with the formation of a finer powder 

and increased dissolution times, while no major differences in the structural integrity of the 

protein within the particles was noted. Thus, local differences in protein and excipient 

concentrations, upon the wetting and dissolution of the shake-stressed vs. control lyophilized 

cakes, likely contribute to these observations.

It is acknowledged that the level of shake stress that the cakes were exposed to in this study 

was relatively high, but this was a useful means of rapidly characterizing various conditions 

with respect to product quality impact (e.g., cake moisture, reconstitution rate, medium type, 

etc). The level of mechanical stress that a product will be exposed to during typical shipping 
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and handling can be variable, and it is easier to interpret their effects by comparing to 

stressed, worst-case study designs. In addition, within the general ASTM shipping guidance 

documents25, which are not specific for pharmaceutical products, the level of stress these 

documents suggest may be relatively high based on the schedule rating a user chooses to 

analyze.

The observations highlight the importance of considering shake sensitivity of lyophilized 

cakes in terms of protein stability as part of formulation development activities including the 

formulation composition, lyophilization process and reconstitution medium selection. 

Potential degradation is expected to be manageable by implementing an appropriate 

packaging and shipping configuration that will minimize or prevent extensive cake 

breakage. The use of orthogonal subvisible particle counting and sizing techniques such as 

light obscuration (HIAC) and/or coulter counters are suggested for future work for 

comparison to the MFI analytical results. Additional work is also required to further 

elucidate the nature of the physical degradation pathway(s) leading to protein particle 

formation during reconstitution of shake-stressed lyophilized mAb preparations, as well as 

to evaluate how this physical instability may vary with different IgG mAbs, other proteins 

and in the presence of different excipients and stabilizers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Physical instability of an IgG1 mAb formulation after shaking in the solid (freeze-dried 

cake) or liquid state for 5 min, 2h, 6h, and 15h. Samples were monitored by (A) solution 

turbidity and (B) total concentration of subvisible particles (≥2 μm as measured by MFI). 

Lyophilized samples were reconstituted prior to analysis. Each graph represents the average 

of three separate experiments (n=3) and error bars represent one standard deviation. Placebo 

samples were measured after 15 h of shaking showed negligible turbidity and concentration 

of micron sized particles compared to the protein containing samples.
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Figure 2. 
Physical instability of a lyophilized IgG1 mAb samples prepared with 0.6% and 6.8% 

moisture content and shake-stressed for 24 h in the solid state. Samples were reconstituted 

with water and monitored for solution turbidity (left Y- axis) and subvisible particles by 

MFI (right Y-axis). Placebo samples were measured after 24 h of shaking and showed 

negligible turbidity and concentration of micron sized particles compared to the protein 

containing samples. The graph represents the average of three separate experiments (n=3) 

and error bars represent one standard deviation.
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Figure 3. 
Radar plot analysis of MFI particle concentration and size distribution results before and 

after shake-stressing lyophilized mAb samples. IgG1 mAb lyophilized samples were 

prepared with 0.6% and 6.8% moisture content, shake-stressed for 24 h, reconstituted with 

water, and subvisible particle levels were measured by MFI (See Figure 2). The “particle # 

scale” radar plot shows actual particle concentration values in different size ranges and the 

“normalized scale” radar plot shows relative change in subvisible particle concentration and 

size distribution of shake stressed samples compared to the corresponding T=0 sample 

(unstressed control).
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Figure 4. 
Representative second-derivative FTIR spectra of protein particles isolated from lyophilized 

IgG1 mAb samples containing 0.6% and 6.8% moisture levels after shake-stress. Samples 

include: native, unstressed protein in solution (T=0); protein particles isolated from shake 

stressed lyophilized mAb (a) 0.6% and b) 6.8% moisture) after reconstitution (T=24h); and 

particles isolated from mAb solution heated at 80°C for 20 min (heat control). The 

characteristic peaks in the Amide I region indicative of intra and inter molecular beta sheet 

secondary structure are shown in the table. Values in table represent the average of three 

separate experiments (n=3) along with one standard deviation.
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Figure 5. 
Effect of reconstitution medium and addition rate on the physical instability of a lyophilized 

IgG1 mAb samples reconstituted after shaking. Lyophilized IgG1 mAb samples were shake-

stressed for 24 h and reconstituted slow (5 mL over 2.5 minutes) or fast (5 mL over 10 

seconds) conditions with the following mediums: (1) deionized H20, (2) 150 mM NaCl, (3) 

150 mM NaCl containing 0.05% polysorbate 80, and (4) 500 mM NaCl. The resulting (A) 

solution turbidity and (B) total concentration of subvisible particles (≥2 μm as measured by 

MFI) values are shown. Each graph represents the average of three separate experiments 

(n=3) and error bars represent one standard deviation.
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Figure 6. 
Radar plot analysis of MFI particle concentration and size distribution results as a function 

of the rate of reconstitution of shaking-stressed lyophilized mAb samples. Lyophilized IgG1 

mAb samples (without shaking, T=0) and 24 h of shaking (T=24) were reconstituted with 

deionized H20 slowly (5 mL over 2.5 min) or rapidly (5 mL over 10 s) are shown. The 

“particle # scale” radar plot shows actual particle concentration values in different size 

ranges and the “normalized scale” radar plot shows relative change in subvisible particle 

concentration and size distribution of shake stressed samples compared to the corresponding 

T=0 sample (unstressed control).
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Figure 7. 
Radar plot analysis of MFI particle concentration and size distribution results as a function 

of diluent type used to reconstitute shake-stressed lyophilized mAb samples. Lyophilized 

IgG1 mAb samples (without shaking, T=0) and 24 hours of shaking (T=24) were 

reconstituted with various mediums under slow (5 mL over 2.5 min) or fast (5 mL over 10 s) 

conditions as indicated in the figure. Reconstitution diluents included: (1) 5 mL of 150 mM 

NaCl, (2) 5 mL of 150mM NaCl + 0.05% Polysorbate 80, and (3) 5 mL 500 mM NaCl. The 

“particle # scale” radar plot shows actual particle concentration values in different size 

ranges and the “normalized scale” radar plot shows relative change in subvisible particle 

concentration and size distribution of shake stressed samples compared to the corresponding 

T=0 sample (unstressed control).
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Figure 8. 
Storage stability of lyophilized IgG1 mAb samples as a function of cake integrity. 

Lyophilized samples included unstressed control (Intact cake), shake stressed for 2.5 min, 

and shake stressed for 24 hrs. Representative pictures of intact cake, 2.5 min shaking, and 

24h shake stressed cakes at time zero are shown. Samples were then stored for up to 3 

months at three different temperatures (4, 40, 55°C), reconstituted and monitored for (A) 

solution turbidity and (B) total concentration of subvisible particles (≥2 μm as measured by 

MFI). Stressed samples, which have been shaken for a certain amount of time and stored at 

different temperatures, were compared to controls (T=0, but with shaking) and resulting C) 

normalized turbidity or D) normalized subvisible particle concentrations are shown. The y-
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axis values for both (C) and (D) were obtained by dividing the turbidity values (or micron 

particle concentration) of a stored sample by its relevant control at time zero experiencing 

similar duration of shaking. Each graph represents the average of three separate experiments 

(n=3) and error bars represent one standard deviation. Placebo samples were measured after 

3 months storage at 55°C h and showed low turbidity (∼1 NTU) and a relatively low 

number of micron sized particles (∼12,000 particles/mL).
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