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Abstract

A phosphate tether-mediated ring-closing metathesis study towards the synthesis of P-stereogenic 

bicyclo[6.3.1]-, bicyclo[7.3.1]-, and bicyclo[8.3.1]phosphates is reported. This study demonstrates 

expanded utility of phosphate tether-mediated desymmetrization of C2-symmetric, 1,3-anti-diol 

dienes in generating complex medium to large, P-stereogenic bicyclo[n.3.1]phosphates..
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1. Introduction

The development of new methods that allow for the construction of medium and large ring 

systems is a major challenge in modern organic synthesis. In particular, transformations that 

generate these rings via the stereoselective formation of new C–C double bonds are 

fundamentally important in the synthesis of materials, natural products, and biologically 
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active small molecules.1,2 In this regard, olefin metathesis,3 in combination with temporary 

tether strategies (i.e. silicon,4,5,6 ketal,7 carboxylate,8 etc.), has provided an elegant solution 

to the coupling of complex tether-partners, under mild reaction conditions, to provide small, 

medium, and large rings. Over the past decade, our group has utilized phosphate triesters as 

temporary tethers to desymmetrize a number of 1,3-anti-diol-containing dienes via ring-

closing metathesis (RCM).9 Focused on the chemistry of the bicyclo[4.3.1]phosphate,10 this 

method served as the cornerstone in the synthesis en route to several natural products, 

including dolabelide C, 11 salicylihalimide A (formal synthesis), 12 (−)-

tetrahydrolipstatin, 13 (+)-strictifolione, 14 and lyngbouilloside.15 In 2013, we reported16 a 

detailed study of the effects of ring size and stereochemical complexity in the phosphate 

tether-mediated desymmetrization of C2-symmetric 1,3-anti diol dienes 17 via RCM reaction 

to form P-stereogenic 18 , 19 bicyclo[4.3.1]-, bicyclo[5.3.1]-,20 and 

bicyclo[7.3.1]phosphates21 (Figure 1). Herein, we wish to report the continuation of our 

investigation of phosphate tether-mediated RCM studies leading to medium (9-membered) 

and large (10- and 11-membered) ring systems—specifically bicyclo[6.3.1]-,22 

bicyclo[7.3.1]-, and bicyclo[8.3.1]phosphates.23 In combination with the previous work, this 

report highlights the potential of phosphate triesters to couple both simple and complex 

olefin-containing alcohols to provide structurally interesting bicyclic phosphate 

intermediates with potential synthetic and biological utility (Figure 1).

2. Results and Discussion

In 2013, we investigated the effect of ring-size, olefin substitution and the stereochemistry 

of coupling partners (tether-partners) upon the outcome of the phosphate tether-mediated 

RCM reactions. The purpose of the current study described herein is to further expand the 

scope of the substrates and to demonstrate the utility of phosphate tethers in the generation 

of complex medium to large ring systems. While the formation of small rings via RCM is 

usually facile, the synthesis of larger ring systems is significantly more challenging due to 

competitive oligomerization reactions, as well as the lack of stereoselectivity for the newly 

formed C–C double bond. In this regard, temporary tether strategies, coupled with high 

dilution to prevent undesired intermolecular reactions, can be efficiently utilized to address 

these issues in the synthesis of larger ring systems—provided the behavior of the tether is 

fully understood within the context of each ring system.

2.1 Synthesis of P-stereogenic bicyclo[6.3.1]phosphates

Investigations commenced with the study of RCM reactions to form 

bicyclo[6.3.1]phosphates, which requires the generation of a 9-membered ring. Trienes 1.1 
and 1.2 were derived from the coupling of alcohol (S)-1.3 with monochlorophosphates 

(S,S)-1.4 and (R,R)-1.5, respectively. Upon treatment with Grubbs second generation 

catalyst [G-II, (ImesH2)(PCy3)(Cl)2Ru=CHPh]24 in refluxing dichloromethane (CH2Cl2) 

both bicyclo[6.3.1]phosphates cis-1.6 and trans-1.725 were formed in good yields (Scheme 

1). These examples suggest that—like in the formation of bicyclo[5.3.1]phosphates (8-

membered ring formation)—stereochemistry at the C3-position of the tether-partner (ring 

numbering, Figure 1) does not affect the efficiency of the phosphate tether-mediated RCM 

reaction to bicyclo[6.3.1]phosphates.26
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To further probe substrate scope of the 9-membered ring formation, we extended the method 

to include tether-partners with greater stereochemical complexity. Thus, methyl-substituted 

homologated monochlorophosphate (S,S)-2.1 was coupled with homoallyl alcohol (R)-2.2 to 

generate triene 2.3 (Scheme 2). Upon treatment with G-II (3 mol %, single addition), RCM 

successfully provided bicyclo[6.3.1]phosphate cis-2.4 in modest yield with exclusive Z-

selectivity. In addition, the effect of the allylic methyl substituent in the corresponding 

alcohol tether-partner on the success of RCM was studied. For this purpose, methyl-

substituted homologated monochlorophosphate (S,S)-2.1 was coupled with anti- and syn-

crotylated alcohols 2.5 and 2.6 to generate trienes 2.7 and 2.8, respectively.

When subjected to the G-II catalyst (3 mol % in one portion), triene 2.7 underwent RCM to 

provide the corresponding product cis,anti-2.927 (62% yield); however, the 

bicyclo[6.3.1]phosphate (cis,syn-2.10) resulting from the RCM of triene 2.8 was not 

observed. It should be noted that this reactivity was unexpected, as the RCM reactions of 

homologous systems (with identical crotylated alcohol tether partners) to form 

bicyclo[5.3.1]phosphates provided selective cis,syn-product formation (2.11 in Figure 3); the 

corresponding cis,anti-product (2.12) was not observed.

To rationalize this seeming “flip” in reactivity, we developed plausible structures for high-

energy Ru-metallocyclobutane intermediates based upon X-ray crystallographic analysis of 

the observed products cis-2.4 and cis,anti-2.9 (Figures 2 and 3).2829 As shown in the second 

depiction of the X-ray structures in Figure 2, the conformation of bicyclo[6.3.1]phosphates 

cis-2.4 and cis,anti-2.9 is such that the Ru-metallocyclobutane would presumably form on 

the more sterically accessible endo-face of the forming olefin. While unfavorable 1,3-steric 

interactions are present in both proposed intermediates (cis-2.4 and cis,anti-2.9), the 

successful formation of products implies that this interaction is not insurmountable, though 

longer reaction times were required to generate product.

Taken collectively, these results—in combination with observations gathered from the 

studies involving the formation of bicyclo[5.3.1]phosphates—have led to the proposed 

mechanistic rationale shown in Figure 3. In the case of bicyclo[5.3.1]phosphate formation, 

the concave nature of the bicyclic phosphate would suggest that Ru-metallocyclobutane 

formation is only energetically feasible when the Ru-metallocycle forms on the exo-face of 

the bicyclic phosphate (e.g. successful formation of cis,anti-2.11 via high energy 

intermediate cis,anti-2.11a, Figure 3) Based upon this assumption, bicyclic phosphate 

formation is impeded in cis,anti-2.12 where an unfavorable 1,2-steric interaction is present 

(e.g. cis,anti-2.12a), as well as in cis-2.13 where an unfavorable 1,3-steric interaction is 

present (e.g. cis-2.13a) between the exo-intermediate Ru-metallocyclobutane and 

substituents on the olefinic tether-partner. Likewise, in the case of cis,syn-2.10, an 

unfavorable 1,2-steric interaction is present (e.g. cis,syn-2.10a) between the endo-Ru-

metallocyclobutane and the C4-methyl substituent of the olefinic tether-partner, preventing 

the formation of product. However, subtle differences in the ring dynamics of the 9-

membered ring (i.e. bicyclo[6.3.1]phosphate) versus the 8-membered ring (i.e. 

bicyclo[5.3.1]phosphate) may be responsible for the successful formation of cis,anti-2.9 (via 

cis,anti-2.9a), even in the presence of an unfavorable 1,3-steric interaction between the exo-
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methyl substituent on the Ru-metallocyclobutane and the C4-methyl substituent of the 

alcohol tether-partner.

2.2 Synthesis of P-stereogenic bicyclo[7.3.1]phosphates

Studies next focused on the formation of bicyclo[7.3.1]phosphates via an RCM reaction to 

provide a 10-membered ring. While Z-selectivity for resultant olefin formation in RCM 

reactions to provide 9-membered rings is high, extension to 10-membered ring formation 

often leads to the opposite selectivity (E-olefin formation). 30 However, in monocyclic 

silicon tether systems, reported Z-selectivity was high, even in 10- and 11-membered ring 

formation.5,6 As such, it was unclear what selectivity would be observed in the context of 

bicyclo[7.3.1]phosphate generation prior to experimental confirmation. In 2013, we reported 

the synthesis of two, diastereomeric bicyclo[7.3.1]phosphate intermediates en route to a 

proposed synthesis of dictyostatin, which provided the E-configured products in good yield 

and high selectivity (dr > 20:1) [see Figure 1]. Thus, it was expected that other 

bicyclo[7.3.1]phosphates would have similar stereoselectivities.

To confirm this, trienes (S,S,S)-3.1 and (R,R,S)-3.2 were synthesized via the coupling of 

chiral, non-racemic alcohol (S)-3.3 with monochlorophosphates (S,S)-1.4 and (R,R)-1.5 
(Scheme 3). In the case of (S,S,S)-3.1, subsequent RCM afforded the corresponding product 

cis-3.4 as a single diastereomer (E-configured olefin) in good yield. However, attempts at 

RCM with diastereomeric (R,R,S)-3.5—even under forcing conditions (12 mol % G-II 
catalyst, refluxing toluene, 24 h)—were unsuccessful. This result was interesting, as 

stereochemistry in the side-chain of the olefin tether-partner (excluding the C3-position) did 

not inhibit RCM in the previous examples of bicyclo[7.3.1]phosphates en route to 

dictyostatin (see bicyclo[7.3.1]phosphates in Figure 1). Thus, we postulate that the 

stereochemistry at C3 of the olefin tether-partner is most influential in the success of the 

RCM reaction for 10-membered ring formation.

To confirm the effect of C3-stereochemistry of the olefin tether-partner on the RCM reaction 

for bicyclo[7.3.1]phosphate formation, triene (R,R)-4.1 was synthesized via an analogous 

coupling of 5-hexen-1-ol with monochlorophosphates (R,R)-1.5 (Scheme 4). Initial studies 

with the G-II catalyst provided only dimer formation even at high dilution (1 mM) within 

very short reaction times (30–45 minutes). Gratifyingly, treatment of triene (R,R)-4.1 with 

the G-I catalyst (added in 1 mol % portions over 6 h) in refluxing dichloromethane provided 

the desired product 4.2 in moderate yield (74% yield brsm). This stark difference in 

reactivity implicates that C3-stereochemistry is a crucial factor in the successful formation 

of bicyclo[7.3.1]phosphates, presumably by long-range stereochemical induction.

This reasoning was further bolstered by X-ray crystallographic analysis of cis-3.4, where a 

1,5-interaction was observed between the C–H substituent of the formed, endocyclic double 

bond and the C–H bond at the C3-position of the tether-partner (Scheme 4). While previous 

mechanistic arguments for the RCM reaction involved the interaction of the intermittent 

ruthenium metallocyclobutane with another substituent on the ring (vide infra, see Figure 3), 

the analogous argument for larger ring systems may be too simplistic, given the complexity 

of large ring dynamics, as well as the stereochemistry of the forming double bond. However, 
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based solely on the conformations of the product, a pronounced 1,5-steric interaction 

between the substituents on the endocyclic olefin and the C3-position of the olefin tether-

partner could be responsible for the observed reactivity. When the C3-substituent of the 

olefinic tether-partner is hydrogen, the reaction proceeds—presumably because this 1,5-

interaction is minimized when both interacting groups are hydrogen; however, when the 

substituent is larger than hydrogen, this unfavorable 1,5-interaction is large enough to 

prevent the reaction from proceeding.

2.3 Synthesis of P-stereogenic bicyclo[8.3.1]phosphates

Studies were extended to include RCM of 11-membered rings to generate 

bicyclo[8.3.1]phosphates. In a similar fashion, diastereomeric trienes 5.1 and 5.2 were 

formed via the coupling of alcohol 5.3 with monochlorophosphates (S,S)-1.4 and (R,R)-1.5. 

While RCM of (S,S,S)-5.1 proceeded smoothly in the presence of the G-II (69% yield) 

catalyst to provide bicyclo[8.3.1]phosphate 5.4, the corresponding RCM of (R,R,S)-5.2 did 

not provide the desired product. Though the source of this observed reactivity is still under 

investigation, the complex ring dynamics of these larger ring systems within the context of 

the bicyclic phosphate framework may be responsible for stark differences in reactivity with 

respect to stereochemistry at the C3-position of the alcohol tether-partner.

3. Conclusion

In summary, a number of simple and complex P-stereogenic bicyclo[n.3.1]phosphates have 

been generated via phosphate tether-mediated desymmetrization of C2-symmetric 1,3-anti 

diol dienes via RCM. This work augments previous reports in highlighting the ability of 

phosphate tethers to mediate the coupling of simple and complex olefin tether-partners with 

a variety of C2-symmetric diene-diol substrates. In addition, a mechanistic rationale for the 

observed reactivity based upon proposed Ru-metallocyclobutane intermediate structures was 

developed, which may aid in predicting successful outcomes for complex couplings of 

similar substrates for natural product synthesis. Further investigation of the importance of 

the bicyclic framework, as well as complexity of ring dynamics due to ring size, on the 

success of RCM facilitated by phosphate tethers is in progress and will be reported in due 

course.

4. Experimental Section

4.1 General

All reactions were carried out in oven- or flame-dried glassware under argon atmosphere 

using standard gas-tight syringes, cannulae, and septa. Stirring was achieved with oven-

dried magnetic stir bars. Et2O, THF and CH2Cl2 were purified by passage through a 

purification system (Solv-Tek) employing activated Al2O3 (Grubbs, R. H.; Rosen. R. K.; 

Timmers, F. J. Organometallics 1996, 15, 1518–1520). Et3N was purified by passage over 

basic alumina and stored over KOH. Butyllithium was purchased from Aldrich and titrated 

prior to use. All olefin metathesis catalysts were acquired from Materia and used without 

further purification. Flash column chromatography was performed with Sorbent 

Technologies (30930M-25, Silica Gel 60A, 40-63 m) and thin layer chromatography was 
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performed on silica gel 60F254 plates (EM-5717, Merck). Deuterated solvents were 

purchased from Cambridge Isotope laboratories. 1H and 13C NMR spectra were recorded in 

CDCl3 (unless otherwise mentioned) on a Bruker DRX-500 spectrometer operating at 500 

MHz, and 125 MHz, respectively and calibrated to the solvent peak. 31P NMR spectra was 

recorded on Bruker DRX-400 spectrometer operating at 162 MHz. High-resolution mass 

spectrometry (HRMS) was recorded on a LCT Premier Spectrometer (Micromass UK 

Limited) operating on ESI (MeOH). Observed rotations at 589 nm, were measured using 

AUTOPOL IV Model automatic polarimeter. IR was recorded on Shimadzu FTIR-8400S 

instrument.

4.2 General procedure for preparation of monocyclic phosphate triesters

To a solution of alcohol (1.1 mmol) in THF (2.9 mL), at −40 °C under argon, was added n-

BuLi (2.5 M, 1.0 mmol), dropwise. The mixture was allowed to stir for 5 minutes, at which 

point a solution of phosphate monochloride (1.5 mmol) in THF (1 mL) was slowly 

cannulated to the reaction vessel. The mixture was stirred at −40 °C for 2 hours (monitored 

by TLC) and was quenched with 3 mL of aqueous NH4Cl (sat.). The biphasic solution was 

separated, and the aqueous layer was extracted EtOAc (3 × 5 mL). The combined organic 

layers were washed with brine, dried (Na2SO4), and concentrated under reduced pressure. 

Purification via flash chromatography (Hexanes:EtOAc eluent) provided triene-containing 

monocyclic phosphate triester product.

4.3 General procedure for ring-closing metathesis reactions to bicyclo[6.3.1]phosphates

To a flask containing monocyclic phosphate triester (1 mmol) in CH2Cl2 (dry, degassed, 

0.007 M), equipped with an argon inlet and reflux condenser, was added (ImesH2)(PCy3)

(Cl)2Ru=CHPh (G-II) (3 mol %),24 and the reaction mixture was heated to reflux. Upon 

completion (monitored by TLC), the reaction was cooled to room temperature and 

concentrated under reduced pressure. Purification via flash chromatography 

(Hexanes:EtOAc eluent) provided bicyclo[6.3.1]phosphate.

4.4 General procedure for ring-closing metathesis reactions to bicyclo[7.3.1]- and 
bicyclo[8.3.1]phosphates

To a flask containing monocyclic phosphate triester (1 mmol) in CH2Cl2 (dry, degassed, 

0.001 M), equipped with an argon inlet and reflux condenser, was added p-benzoquinone 

(10 mol %). Then, G-I or G-II catalyst [see reaction schemes, vide supra] was added to the 

reaction [portion-wise over the allotted reaction time], and the reaction mixture was heated 

to reflux. Upon completion (monitored by TLC), the reaction was cooled to room 

temperature and concentrated under reduced pressure. Purification via flash chromatography 

(Hexanes:EtOAc eluent) provided the corresponding bicyclic phosphate.

4.5 Characteristic of new compounds

4.5.1 (4S,6S)-2-(((S)-1-(benzyloxy)hex-5-en-2-yl)oxy)-4,6-divinyl-1,3,2-
dioxaphosphinane 2-oxide (1.1)—Yield: 60%. FTIR (neat): 2917, 2359, 1641, 1454, 

1281, 1119, 991, 926, 750, 698, 667 cm−1; [α]D = +48.94 (c = 0.66, CHCl3); 1H NMR (500 

MHz, CDCl3) δ 7.31–7.21 (m, 5H, aromatic), 6.01 (dddd, J = 17.0, 10.7, 6.2, 0.8 Hz, 1H, 
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H2C=CHCHO(P)CH2), 5.82–5.70 (m, 2H, H2C=CHCHO(P)CH2, H2C=CHCH2CH2), 5.33–

5.30 (m, 1H, H2C=CHCHO(P)CH2), 5.29–5.27 (m, 1H, H2C=CHCHO(P)CH2), 5.22 (dt, J = 

10.6, 1.2 Hz, 1H, H2C=CHCHO(P)CH2), 5.17 (dt, J = 10.6, 1.2 Hz, 1H, 

H2C=CHCHO(P)CH2), 5.01–4.89 (m, 4H, H2C=CHCH2CH2, H2C=CHCHO(P)CH2), 4.60–

4.54 (m, 1H, CHO(P)CH2OBn), 4.52 (d, J = 12.0 Hz, 1H, OCH2Ph), 4.45 (d, J = 12.0 Hz, 

1H, OCH2Ph), 3.56 (ddd, J = 10.7, 3.9, 1.3 Hz, 1H, CHO(P)CH2OBn), 3.52 (dd, J = 10.6, 

5.6 Hz, 1H, CHO(P)CH2OBn), 2.18–2.07 (m, 2H, H2C=CHCH2CH2), 2.08–2.02 (m, 1H, 

H2C=CHCHO(P)CH2CHO[P]), 1.96 (dddd, J = 14.7, 5.6, 3.8, 1.8 Hz, 1H, 

H2C=CHCHO(P)CH2CHO[P]), 1.86 – 1.76 (m, 1H, CH2CH2CHO[P] CH2OBn), 1.76–1.68 

(m, 1H, CH2CH2CHO[P] CH2OBn); 13C NMR (126 MHz, CDCl3) δ 137.9, 137.5, 135.3 (d, 

JCP = 5.9 Hz), 135.2 (d, JCP = 1.8 Hz), 128.4 (2 C), 127.7 (2 C), 127.68, 117.9, 117.1, 

115.2, 77.9 (d, JCP = 6.7 Hz), 77.6 (d, JCP = 6.2 Hz), 75.8 (d, JCP = 6.2 Hz), 73.2, 71.7 (d, 

JCP = 4.1 Hz), 35.3 (d, JCP = 7.4 Hz), 31.4 (d, JCP = 5.0 Hz), 29.2; 31P NMR (162 MHz, 

CDCl3) δ –7.9; HRMS calcd. for C20H27O5PNa (M+Na)+ 401.1494; found 401.1485 (TOF 

MS ES+).

4.5.2 (1S,3S,8S,10S,Z)-3-((benzyloxy)methyl)-10-vinyl-2,11,12-trioxa-1-
phosphabicyclo[6.3.1]dodec-6-ene 1-oxide (1.6)—Yield: 60%. FTIR (neat): 2924, 

2359, 1718, 1452, 1283, 1117, 1092, 989, 852, 565 cm−1; [α]D = −5.03 °(c = 0.78, 

CHCl3); 1H NMR (500 MHz, CDCl3) δ 7.31–7.20 (m, 5H, aromatic), 5.83–5.78 (m, 1H, 

H2C-HC=CHCHO(P)CH2), 5.78–5.72 (m, 1H, H2CHC=CHCHO(P)CH2), 5.39–5.28 (m, 

2H, H2C=CHCHO[P], HC=CHCHO(P)CH2), 5.20 (dt, J = 10.6, 1.2 Hz, 1H, 

H2C=CHCHO[P]), 5.10 (d, J = 11.8 Hz, 1H), 5.02 (ddd, J = 11.8, 5.5, 1.4 Hz, 1H, 

H2C=CH-CHO(P)CH2), 4.83–4.74 (m, 1H, CHO(P)CH2OBn), 4.55 (d, J = 12.1 Hz, 1H, 

OCH2Ph), 4.47 (d, J = 12.1 Hz, 1H, OCH2Ph), 3.49 (dd, J = 10.4, 4.5 Hz, 1H, 

CHO(P)CH2OBn), 3.45 (dd, J = 10.4, 5.3 Hz, 1H, CHO(P)CH2OBn), 2.92–2.83 (m, 1H, 

HC=CHCH2CH2), 2.19–2.13 (m, 1H, H2C=CHCHO(P)CH2CHO[P]), 2.13–2.07 (m, 1H, 

HC=CH-CH2CH2), 1.85–1.77 (m, 1H, CH2CH2CHO[P]CH2OBn), 1.76–1.65 (m, 2H, 

HC=CHCHO(P)CH2CHO[P], CH2CH2CHO[P]CH2OBn ); 13C NMR (126 MHz, CDCl3) δ 

138.0, 137.3, 135.2 (d, JCP = 9.8 Hz), 128.3 (2C), 127.7 (2C), 127.6, 124.2, 117.3 (d, JCP = 

1.4 Hz), 79.7 (d, JCP = 5.6 Hz), 77.02 (d, JCP = 7.7 Hz), 76.8 (d, JCP = 6.5 Hz), 73.2, 72.7 

(d, JCP = 4.7 Hz), 37.4 (d, JCP = 6.5 Hz), 29.3 (d, JCP = 2.3 Hz), 25.4; 31P NMR (162 MHz, 

CDCl3) δ –8.4; HRMS calcd. for C18H23O5PNa (M+Na)+ 373.1181; found 373.1161(TOF 

MS ES+).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Summary of previous work and current work.
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Scheme 1. 
Effect of C3-stereochemistry of alcohol tether-partner in the formation of 

bicyclo[6.3.1]phosphates.

Maitra et al. Page 11

Tetrahedron. Author manuscript; available in PMC 2016 September 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 2. 
Synthesis of stereochemically complex bicyclo[6.3.1]phosphates.
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Figure 2. 
X-ray crystal structures of bicyclo[6.3.1]phosphates and plausible Ru-metallocyclobutane 

intermediates in the formation of cis-2.4 and cis,anti-2.9.

Maitra et al. Page 13

Tetrahedron. Author manuscript; available in PMC 2016 September 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Plausible mechanistic rationale for the formation of bicyclo[5.3.1]- and 

bicyclo[6.3.1]phosphates.
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Scheme 3. 
Synthesis of branched bicyclo[7.3.1]phosphates.
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Scheme 4. 
Synthesis of simple bicyclo[7.3.1]phosphate 4.2 and X-ray analysis and effect of 

transannular ring strain in the formation of bicyclo[7.3.1]phosphates.
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Scheme 5. 
Synthesis of P-stereogenic bicyclo[8.3.1]phosphates.
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