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Abstract
Kappa opioid receptor (KOPr) activation antagonizes many cocaine-related behaviors but adverse
side effects such as sedation, dysphoria and depression limit their therapeutic use. Recently,
salvinorin A (Sal A), a naturally occurring KOPr agonist, has been shown to attenuate cocaine-
induced drug-seeking in a model of relapse in rats. The present study evaluated the effects of acute
Sal A exposure on cocaine-induced hyperactivity and cocaine sensitization in rats. Acute treatment
with the dose of Sal A that decreased drug-seeking in a previous study (0.3 mg/kg), significantly
attenuated the expression of cocaine sensitization. This dose of Sal A failed to affect spontaneous
locomotion or to produce a conditioned taste aversion to a novel-tasting saccharin solution.
However, Sal A decreased climbing and swimming time and increased time spent immobile in the
forced swim test. These findings indicate that Sal A, just like traditional KOPr agonists, attenuates
cocaine-induced behavioral sensitization but does not produce the adverse effect of conditioned
aversion, suggesting improved potential compliance. However, pro-depressive effects were also
produced and these effects may limit the therapeutic potential.
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Introduction
Kappa opioid receptor (KOPr) agonists have previously been shown to antagonize several
cocaine-induced behaviors such as self-administration (Glick et al., 1995; Kuzmin et al.,
1997), reinstatement of drug-seeking (Schenk et al., 1999; 2000, Morani et al., 2009; Sun et
al., 2010), hyperactivity (Heidbreder et al., 1993; Vanderschuren et al., 2000; Collins et al.,
2001) and sensitization to conditioned rewarding effects (Shippenberg et al., 1996;
Heidbreder et al., 1995). These potential anti-addictive properties of this class of compounds
have prompted studies aimed at developing KOPr ligands as anti-addiction
pharmacotherapies (Mello and Negus, 2000; Prisinzano et al., 2005; Shippenberg et al.,
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2007; Tomasiewcz et al., 2008). However, adverse effects produced by traditional KOPr
agonists (U504885, U69593, bremazocine, ethylketazocine, Mr2033) such as depression
(Todtenkopf et al., 2004; Mague et al., 2003), aversion (Mucha and Herz, 1985;
Shippenberg and Herz, 1986), sedation (Wadenberg, 2003; Mello and Negus, 2000) and
dysphoria (Walsh et al., 2001) have limited their clinical utility.

Salvia divinorum has been abused as a recreational hallucinogen, particularly among
adolescents and young adults (Griffin et al., 2008; Kelly, 2011). Although, salvia use is
banned in some countries such as Australia, Italy, Denmark and Sweden, it is legally
available in most parts of the United States and New Zealand (Vorthermes and Roth, 2006;
Griffin et al., 2008; Kelly, 2011). Recent studies show that Sal A, an active component of
the plant Salvia divinorum is a potent and selective KOPr agonist (Roth et al., 2002; Yan
and Roth, 2004). Sal A has a rapid onset and short duration of action (Schmidt et al., 2005;
Hooker et al., 2008; 2009; Butelman et al., 2007). It has a unique structure but shares many
pharmacological properties with traditional KOPr agonists, including antinociception
(McCurdy et al., 2006; John et al., 2006), discriminative stimulus effects (Willmore-
Fordham et al., 2007; Baker et al., 2009), sedation (Fantagoressi et al., 2005; Zhang et al.,
2005) and depression (Carlezon et al., 2006). Sal A has also been shown to dose-
dependently and selectively attenuate cocaine-induced drug seeking (Morani et al., 2009).
These findings support the development of novel neoclerodane diterpene KOPr agonists as
potential pharmacotherapies for cocaine dependence (Prevatt-Smith and Prisinzano, 2010).
Despite these promising findings, few studies have described other behavioural effects of
Sal A.

Previous studies have shown that the conditioned and locomotor behavioral response to
cocaine becomes sensitized following either self-administered (Hooks et al., 1994; Phillips
and Di Ciano, 1996) or experimenter-administered (Shippenberg et al., 1996; Shippenberg
and Heidbreder, 1995; Heidbreder et al., 1996) exposures. The mesocorticolimbic
dopaminergic system has been implicated in cocaine-produced sensitization, as an increase
in extracellular DA levels has been observed following cocaine exposure in the VTA
(Kalivas and Duffy., 1993b; Reith et al. 1997) and NAc (Di Chiara and Imperato, 1988;
Kalivas and Duffy., 1990; 1993a,b; Cadoni et al., 2000). Development of behavioral
sensitization is a paradigm that highlights the ability of cocaine to alter neural circuits
underlying its psychomotor effects (Robinson and Berridge, 1993; 2001; 2003; Kalivas et
al., 1998; Vanderschuren and Pierce, 2010). Therefore, finding pharmacological
interventions to counter cocaine sensitization in animals could be a useful tool in identifying
anti-cocaine agents. To the best of our knowledge, no work has been reported on the effect
of Sal A on cocaine induced behavioral sensitization. Therefore, one of the aims of the
current study was to investigate the effects of acute systemic Sal A on cocaine locomotor
sensitization in rats.

Traditional KOPr agonists have been shown to produce aversion (Mucha and Herz, 1985;
Bals-Kubik et al., 1993) and depression (Todtenkopf et al., 2004) in animal models. Sal A
produced place aversion and sedation in C57BL/6J mice (Zhang et al., 2005). In zebrafish
and Wistar rats, a low dose of Sal A produced place preference, whereas at a higher dose,
Sal A produced place aversion (Braida et al., 2007; 2008). Sal A produces hallucinations in
humans (Valdes et al., 1983; Valdes, 1994; Johnson et al., 2011) and non-human primates
(Butelman et al., 2009) and causes motor suppression in mice (Zhang et al., 2005;
Fantagrossi et al., 2005). However, the aversive and sedative effects of doses of Sal A that
selectively attenuated cocaine seeking (0.3 mg/kg) unknown. Therefore, we evaluated the
aversive effect of Sal A using a conditioned taste aversion (CTA) paradigm (Smith et al.,
1964; Fenu et al., 2005) and also measured effects on spontaneous locomotor activity
(Hooker et al., 2009). Recent reports on the effects of Sal A on depression have been
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equivocal with both pro- (Carlezon et al., 2006) and anti-depressant effects (Braida et al.,
2009) reported. The forced swim test (FST) is a widely used behavioral method to measure a
depression-like effect (Porsolt et al., 1979; Carlezon et al., 2006) that has been used to
screen anti-depressant drugs in laboratory tests (Detke et al, 1995). Therefore, we also
evaluated the effects of a single injection of Sal A (0.3 mg/kg) on swimming behaviors,
using the FST in rats.

Methods
Subjects

Male Sprague-Dawley rats were bred in the vivarium at The School of Psychology, Victoria
University. All animals (200-250 g) were housed individually in polycarbonate cages at least
5 days prior to the experiment at the animal facility under controlled temperature (20 ± 1°C)
and humidity conditions (55% Relative Humidity). Lights were maintained at a 12:12 h,
with lights on at 07.00 h. All rats used for the experiments were drug naive and were
handled by the experimenter for at least 5 days prior to the commencement of experiments
to avoid handling stress. For cocaine-induced locomotion tests, spontaneous open field
activity and FST experiments, rats had free access to food and water except during testing.
For the CTA experiments, rats were water deprived for 23 h during the habituation period
and for 23 h 20 min during the saccharin sessions. Food was freely available. All
experimental procedures were approved by the Animal Ethics Committee of Victoria
University of Wellington.

Apparatus for locomotion tests
Eight open field chambers (Med Associates, ENV-520) equipped with two banks of sixteen
photocells on each wall were used to measure horizontal locomotion. Interruption of 3
adjacent photobeams, equivalent to the size of the rat, defined one horizontal activity count.
Stereotypic counts during the sensitization experiments were determined by measuring
repetitive beam breaks obtained from the activity monitoring software (Med Associates).
The open field boxes were interfaced with a microcomputer located adjacent to the boxes.
Testing was conducted in the dark in the continuous presence of white noise. For all activity
experiments, rats were initially habituated to the locomotion chamber for 30 min. The
animals then received drug treatment and were immediately returned to the activity chamber
for 60 min. All experiments were carried out between 10.00 and 17.00 h.

Procedure for spontaneous and cocaine-induced locomotion tests
Drug naïve rats were used (n=14 for spontaneous open field test and n=26 for cocaine-
induced hyperactivity test). For spontaneous activity tests, separate groups of rats were
injected on the test day with either vehicle (75% DMSO) or Sal A (0.3 mg/kg, i.p.) and
locomotor activity was measured for 90 min (30 min habituation + 60 min post treatment).
For the cocaine-induced activity test, animals were initially habituated in the activity
chamber for 30 min. Following this, animals were randomly selected and injected with
either vehicle (75% DMSO) or Sal A (0.3 mg/kg, i.p.). Five min after the first injection rats
received either 0.9% saline or cocaine (20 mg/kg, i.p.) and ambulatory counts wer measured
for 90 min (30 min habituation + 60 min post treatment).

Expression of cocaine sensitization and cocaine produced stereotypy
A total of 27 drug naïve rats were used for this experiment. Rats were treated with either
0.9% saline or cocaine (20 mg/kg, i.p.) once daily for 5 consecutive days and were
immediately returned to their home cage. On days 6-9, the animals were drug free and
remained in the home cage. On day 10, the effect of Sal A on the expression of cocaine
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sensitization and stereotypy were measured. On the test day, animals were habituated in the
activity chamber for 30 min. Rats that were pre-treated with either saline or cocaine for 5
consecutive days were injected with either vehicle (75% DMSO) or Sal A (0.3 mg/kg, i.p.)
followed, 5 min later, by cocaine (20 mg/kg, i.p.). Locomotor activity and stereotypic counts
were measured for 90 min (30 min pre-treatment + 60 min post-treatment). The dose of
cocaine was selected based on previous reports which showed that cocaine administration
(20 mg/kg, i.p.), once daily for 5 consecutive days produced motor sensitization in rats
(Heidbreder et al., 1995; 1996).

Conditioned taste aversion (CTA)
Conditioned taste aversion was performed on 13 drug naïve rats, following modified
methods of Schenk et al., 1987 and Fenu et al., 2005. Rats were initially placed on a 23 h
water deprivation schedule. The amount of water consumed (ml) during the remaining hour
was measured on a daily basis. This process was repeated until the variation in water
consumption was ≤2 ml for three consecutive days. The following day, rats were provided
with a novel tasting 0.1% saccharin solution. During saccharin consumption sessions, rats
were presented with the saccharin solution for 40 min and the total amount of saccharin
consumed was measured. Animals were matched on consumption of saccharin and put into
treatment groups. These animals were injected with either vehicle (75% DMSO) or Sal A
(0.3 mg/kg, i.p.) and returned back to their home cage. On the test day, which was 48 h after
the saccharin consumption session, rats were again presented with the novel saccharin
solution for 40 min. The amounts of saccharin consumed (ml) on the pairing day and test
day by Sal A-treated rats were compared with the vehicle treated animals.

Forced Swim Test (FST)
This test was conducted on 12 drug naïve rats following the method described by Porsolt et
al. (1979) with modifications made by Detke et al. (1995) and Carlezon et al. (2006). On
day 1, drug naive rats were habituated to swimming in a FST chamber (44 cm tall, 20 cm
internal diameter) for 15 min. The following day, rats were injected with either vehicle (75%
DMSO) or Sal A (0.3 mg/kg) and 5 min later, the FST was carried out for a period of 5 min.
Forced swimming behavior was recorded by a camera connected to an adjacent computer
and later scored in 5 sec intervals as climbing, swimming or immobile. The videos were
analyzed by an observer who was blind to the experimental procedures.

Drugs
Cocaine HCl (Merck Pharmaceuticals, Palmerston North, New Zealand) was dissolved in
0.9% saline. Sal A isolated by Dr. Thomas E. Prisinzano (University of Kansas, Kansas,
USA) was suspended in 75% DMSO. All solutions were administered i.p. with the final
volume made up to 1 ml/kg. All drug weights refer to salt.

Statistical analysis
Data are expressed as mean + SEM for locomotion tests, CTA and FST experiments.
Statistical analysis for cocaine-induced locomotion, behavioral sensitization and stereotypy
experiments (for total ambulatory counts) were performed using separate one-way ANOVAs
followed by Tukey post hoc tests. For time course analysis, two-way ANOVAs (treatment ×
time) with repeated measures on time were performed, followed by Bonferroni post hoc
tests. Statistical analysis for stereotypic counts were also performed on total pooled counts
obtained in the 20 min period before and 20 min following cocaine treatment by the
Cocaine/Veh/Coc- and Cocaine/Sal A/Coc-treated groups, using the Mann-Whitney test.
Data from the spontaneous locomotion test were analyzed using Student t-tests. For CTA,
one-way ANOVA followed by Tukey post hoc test was used. Each behavior in the FST
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(climbing, swimming and immobile) was analyzed using the Mann-Whitney test. Statistical
significance was set at p<0.05.

Results
Effect of Sal A on spontaneous locomotion and cocaine induced hyperactivity

No significant difference was observed in spontaneous locomotion between Sal A (0.3 mg/
kg) and vehicle (75% DMSO) pre-treated rats (Fig. 1). A single injection of vehicle or Sal A
pre-treatment had no significant effect on total locomotor activity produced following a
saline (1 ml/kg) injection (Fig. 2a). A significant increase in total locomotor activity was
observed in rats pre-treated with vehicle or Sal A followed by an injection of cocaine (20
mg/kg) [F (3, 22) = 21.52, P < 0.001]. Additional post hoc analysis showed that there was
no significant difference in cocaine produced hyperactivity (total activity) between the Sal A
and vehicle pre-treated groups (Fig. 2a). However, time-course analysis showed a significant
increase in locomotor activity in Sal A-treated rats vs. vehicle-treated controls at 5, 10 and
15 min following cocaine injection (P < 0.05) [F (51, 396) = 5.05, P < 0.001; Fig. 2b]. This
indicates that acute Sal A (0.3 mg/kg) increased locomotor activity during the first 15 min
following cocaine (20 mg/kg) injection without modulating locomotor activity by itself.
Also, post-hoc analysis indicated no significant difference in the locomotion observed
during the initial 30 min habituation period (Fig. 2b).

Effect of Sal A on expression of behavioral sensitization
Animals exposed to vehicle followed by an injection of cocaine on the test day (day 10),
produced a significant increase in total locomotion when compared to animals that received
saline on days 1-5, indicating the expression of cocaine sensitization [F (3,23) = 3.07, P
<0.05; Fig. 3a]. Post-hoc tests revealed no significant difference in the total activity of
animals exposed to Sal A (0.3 mg/kg) on test day when they received either saline or
cocaine from day 1-5 (P > 0.05) (Fig. 3a). However, further time-course analysis showed a
significant reduction in locomotion in Sal A-treated rats vs. vehicle-treated groups at 5, 10,
15 and 20 min following cocaine injection (P < 0.05) [F (51,441) = 4.0, P < 0.001; Fig. 3b].
This indicates that acute exposure to Sal A significantly attenuates the expression of cocaine
sensitization. Post-hoc analysis showed no significant difference in the locomotion observed
during the initial 30 min habituation period for rats that received either saline or cocaine on
days 1-5 (Fig. 3b).

Effect of Sal A on cocaine-induced stereotypic counts
Cocaine-induced stereotypy was analyzed by measuring the number of repetitive beam
breaks collected during the expression of sensitization experiment. No significant difference
in the total number of stereotypic counts produced by cocaine was observed between the Sal
A-pretreated and vehicle-pretreated controls [F (3,23) = 0.36, NS; Fig. 4a]. A further time-
course analysis showed a significant interaction effect on cocaine produced stereotypy [F
(51,414) = 1.54, P < 0.02; Fig. 4b] although post-hoc tests revealed no significant difference
in stereotypic counts between Sal A-pre-treated and vehicle-pre-treated cocaine-sensitized
animals (Fig. 4b). A trend towards an increase in the stereotypic counts was noted in Sal A
treated animals in the 20 min period following cocaine injection (Fig. 4b). Further analysis
on pooled stereotypic counts 20 min pre- and 20 min post-cocaine injection between Sal A-
treated and vehicle-treated sensitized animals also showed no significant difference (Fig.
4c).
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The effect of Sal A on conditioned taste aversion
Statistical analysis indicated no significant difference in the amount of saccharin consumed
by vehicle and Sal A pre-treated animals [F (3,22) = 2.7, NS; Fig. 5]. However, a non-
significant trend towards an increase in the amount of saccharin consumed by vehicle- and
Sal A-treated groups on the pairing day vs. test day was noted (Fig. 5). Post-hoc tests
showed no significant difference in the amount of saccharin consumed (ml) on test day in
rats exposed to Sal A vs. vehicle-treated groups (Fig. 5). Thus, a single injection of Sal A
(0.3 mg/kg) paired with a novel tasting saccharin solution did not produce conditioned taste
aversion in rats.

Effect of Sal A on forced swim test
The effect of Sal A (0, 0.3 mg/kg) on climbing, swimming and immobility behaviors was
measured for 5 min on the test day (Fig. 6). A significant reduction in climbing (p<0.05) and
swimming (p<0.01) time, and a significant increase in time spent immobile (p<0.01) were
observed for Sal A vs. vehicle control rats.

Discussion
An acute treatment of Sal A at 0.3 mg/kg has previously been shown to attenuate cocaine
seeking (Morani et al., 2009). Here we show that Sal A (0.3 mg/kg) also modulates cocaine-
induced locomotor activity in rats. Sal A suppressed the expression of cocaine sensitization
without affecting stereotypic counts, or causing taste aversion. However Sal A induced
depressive-like behaviors in the FST. No change in spontaneous open field activity was
observed. In contrast to its attenuating effect on behavioral sensitization, Sal A was shown
to increase locomotor activity produced by acute cocaine exposure.

Previous studies have shown that conditioning stimuli can play an important role in the
expression of motor sensitized responses in laboratory animals (Post et al., 1981; Beninger
and Herz, 1986). In the present study, rats that received cocaine or saline injections for 5
successive days were returned back to their home cage after drug/vehicle exposures, thereby
limiting conditioned effects. Therefore, the difference in ambulation on the test day (day 10)
was specifically due to the pharmacological effect of the drug on the pre-treatment days (day
1-5) (Fig. 3).

The effects of Sal A on cocaine sensitization might reflect effects on DA neurotransmission.
Both the VTA and NAc have been implicated in the initiation and development of cocaine
sensitization (Kalivas and Duffy, 1993a; Heidbreder et al., 1996; Shippenberg et al., 1996;
Kalivas et al., 1998; Steketee, 2005) and Sal A modulates DA levels in the dorsal (Zhang et
al., 2005; Gherke et al., 2008) and ventral striatum (Carlezon et al., 2006). The role of this
mechanism in the attenuation of cocaine sensitization by Sal A is currently being
investigated. Sedation and motor in-coordination are two of the commonly documented
adverse effects associated with KOPr activation (Mello and Negus, 2000; Walsh et al.,
2001; Wadenberg 2003). Our results show that Sal A did not suppress open field activity in
drug naive rats (Fig. 1), thus suggesting non-sedative effects. This finding also implies that
the suppression of cocaine behavioral sensitization by Sal A was not due to non-selective
effects (Fig. 3), as we have previously suggested (Morani et al., 2009).

Sal A (0.3 mg/kg) potentiates cocaine (20 mg/kg)-induced hyperactivity in drug-naive rats
(Fig. 2). However, at high doses, Sal A (2 mg/kg) has been shown to attenuate hyperactivity
produced by a low dose of cocaine (10.0 mg/kg) (Chartoff et al., 2008). These effects may
be due to prior cocaine exposures, as Sal A (0.3 mg/kg) attenuated behavioral sensitization
(current study) and drug seeking in animals with previous cocaine exposures. It is possible
that the attenuation of cocaine seeking seen with high doses of Sal A may reflect sedative
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effects, whereas, low doses of Sal A are likely to affect the drug-seeking response directly.
This idea is supported by other results that also showed that a high dose of Sal A (2.0 mg/
kg) increased the intracranial self-stimulation (ICSS) threshold, suppressed sucrose
reinforcement and decreased phasic DA release in NAc (Ebner et al., 2010), but a lower
dose had no effect on any of the measures (Ebner et al., 2010). Similarly, high doses (1.0,
3.2 mg/kg) produced conditioned place aversion in mice (Zhang et al., 2005).

The decrease in cocaine-induced behavioural sensitization produced by Sal A may be due to
several factors. It could reflect either a decrease in the ability of cocaine to produce
horizontal activity or an increase in the ability of cocaine to produce the competing
behaviour of stereotypy that follows high-dose psychostimulant administration (Ushijima et
al., 1995; Post et al., 1987). Because the dose-effect curve for activity is in the shape of an
inverted U, with higher doses producing more intense stereotypy, the present data cannot
distinguish between these two possibilities. Detailed studies on cocaine stereotypy and the
role of Sal A in modulating this behavior are therefore required to clarify this point. The data
from other paradigms, however, are consistent with the idea that Sal A decreases the
response to cocaine (Chartoff et al., 2008; Morani et al., 2009).

A single exposure to Sal A does not produce taste aversion when paired with a novel tasting
saccharin solution (Fig. 5). On close observation, acute Sal A exposure induced a non-
significant trend towards taste preference. This trend may be due to the low dose of Sal A
(0.3 mg/kg) tested in this study. Low doses of Sal A have previously been shown to produce
preference to conditioned behaviors in both zebrafish and rats (Braida et al., 2007; 2008).

Previous reports have shown that Sal A produces both anti-depressant (Braida et al., 2007;
2008) and pro-depressive effects in rats assessed by the FST paradigm (Carlezon et al.,
2006). In the current study, acute exposure to Sal A (0.3 mg/kg) produced pro-depressive
behaviour (Fig. 6). Because locomotor activity was not altered with this dose of Sal A (Fig.
1), the effects are probably not attributable to motoric disruption. These results are
consistent with the findings of Carlezon et al., (2006). In contrast to these findings, Braida et
al., (2009) showed that acute Sal A (up to 1 mg/kg) exposure produced anti-depressant
effects in rats using the FST. The observable dissimilarities may be attributed to the
differences in the route of administration for Sal A (i.p. current study, Carlezon et al., 2006
vs. s.c. Braida et al., 2009) and the duration of Sal A pre-treatment (5 min, current study vs.
20 min Braida et al., 2009). Differences in the vehicle used to suspend Sal A are also noted,
which may change the availability of Sal A (75% DMSO, current study, Carlezon et al.,
2006 vs. 1:1:8, Ethanol: Tween 80: water, Braida et al., 2009).

Animals pre-treated with Sal A showed significant reductions in time spent in both climbing
and swimming, as has previously been reported (Carlezon et al., 2006). A decrease in
climbing time has been attributed to effects at the norepinephrine transporter (NET),
whereas modulation of serotonin transporters (SERT) are implicated in the reduction in
swimming time (Detke et al., 1995). There are no reports on whether KOPrs mediate the
modulation of NET. However, previous reports have shown that KOPr activation decreases
serotonin levels in brain regions implicated in depressive behaviours (Tao and Auerbach,
2005; Yilmaz et al., 2006). KOPr activation has also been shown to increase cyclic AMP
response element binding protein (CREB) phosphorylation in the NAc, which is an
important marker for depression (Carlezon et al., 1998; Nestler and Carlezon, 2006). This
effect is antagonised by SERT, NET or KOPr inhibition (Mague et al., 2003; Chartoff et al.,
2009). Thus, these effects might reflect KOPr agonist-induced effects on serotonin and/or
norepinephrine systems.
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The KOPr system has been implicated in the modulation of the hedonic effects produced by
cocaine. It has been suggested previously that activation of KOPr may prevent the
development and progression of cocaine addiction during the initial stages of the addiction
cycle (Shippenberg et al., 2001; 2007; Chefer et al., 2005; Mysels and Sullivan, 2009;
Bruijnzeel, 2009). However, adverse effects such as sedation, aversion and depression have
prevented their clinical development (Walsh et al., 2001). Results from this study establish
the role of Sal A in antagonizing cocaine produced behaviors in the rat with fewer adverse
effects. These findings support the development of novel neoclerodane diterpenes as anti-
cocaine agents. However, further work is necessary to identify the mechanism by which Sal
A produces its anti-cocaine- and depressive- effects.
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Fig. 1.
Effect of salvinorin A (Sal A) on spontaneous locomotion. Animals were habituated to the
locomotion boxes for 30 min followed by vehicle or Sal A treatment and activity counts
were measured for 60 min. Symbols indicate (a) Mean total activity (+ SEM) and (b) mean
(± SEM) locomotor activity measured at 5 min intervals for 90 min. Student t-test. n= 7 per
group.
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Fig. 2.
Effect of salvinorin A (Sal A) on cocaine induced hyperactivity. Drug naive rats were
initially habituated in the locomotion boxes for 30 min. Animals were later injected with
either vehicle (Veh, 75% DMSO) or Sal A (0.3 mg/kg) followed by saline (1 ml/kg) or
cocaine (Coc, 20 mg/kg) and locomotor activity was monitored for 60 min. (a) Data
expressed as mean total activity (+SEM). *p<0.05, data compared with Veh/Saline treated
group, #p<0.05, data compared with Sal A/Saline treated group: one-way ANOVA followed
by Tukey test. (b) Time-course measurement of mean (± SEM) locomotor activity at 5 min
intervals. *p<0.05, vs. Veh/Coc treated group: repeated-measures two-way ANOVA
followed by Bonferroni post hoc test. n= 6-7 per group.
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Fig. 3.
Effect of salvinorin A (Sal A) on the expression of cocaine sensitization. Rats were injected
with saline (1 ml/kg) or cocaine (20 mg/kg) for 5 consecutive days. Animals remained drug
free from day 6-9. On day 10, rats were injected with either vehicle (Veh, 75% DMSO) or
Sal A (0.3 mg/kg) and 5 min later were injected with cocaine (Coc, 20 mg/kg) and activity
was measured. (a) Data expressed as mean total activity (+SEM). *p<0.05, data compared
with Saline/Veh/Coc treated group: one-way ANOVA followed by Tukey test. (b) Time-
course measurement of mean (± SEM) of locomotion activity at 5 min intervals. *p<0.05,
vs. Cocaine/Sal A/Coc treated group: repeated-measures two-way ANOVA followed by
Bonferroni post hoc test. n= 6-8 per group.
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Fig. 4.
Effect of Sal A on cocaine induced stereotypy. Data obtained from rats subjected to the
expression of cocaine behavioral sensitization experiments were also analyzed for cocaine-
produced stereotypic counts. (a) Bars indicate mean total stereotypic counts (+SEM).: one-
way ANOVA followed by Tukey test. (b) Time-course measurements of mean (±SEM)
stereotypic counts at 5 min intervals for 90 min: repeated-measures two-way ANOVA
followed by Bonferroni post hoc test. (c) Bars indicate the pooled average (+SEM) of
stereotypic counts at 20 min pre-and 20 min post-cocaine treatment: ns, non-significant, data
compared with Cocaine/Veh/Coc vs. Cocaine/Sal A/Coc treated group; Mann-Whitney test.
n= 6-8 per group.
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Fig. 5.
Effect of salvinorin A (Sal A) on conditioned taste aversion. Saccharin consumption in ml
(+SEM) by rats treated with either vehicle (Veh) or Sal A (0.3 mg/kg) on pairing and test
day: one-way ANOVA followed by Tukey test. n = 6-7 per group.
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Fig. 6.
Effect of a single injection of salvinorin A (Sal A) on the forced swim test (FST) in drug
naive rats (n=6). On the test day, animals were injected with Sal A and 5 min later were
subjected to the FST. Data expressed as mean time (sec) (+SEM) for climbing, swimming
and immobility behaviours during 5 min of FST. *p<0.05, **p<0.01; data for 0.3 mg/kg
compared with 0 mg/kg for climbing, swimming and immobility: Mann Whitney test. n= 6
per group.
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