CORE

Silica-Supported Oligomeric Benzyl Phosphate (Si-OBP) and Triazole Phosphate (Si-OTP) Alkylating Reagents

Pradip K. Maity, Saqib Faisal, Alan Rolfe, Diana Stoianova ${ }^{\dagger}$, and Paul R. Hanson ${ }^{\star}$ Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045-7582, United States, and The University of Kansas Center for Chemical Methodologies and Library Development (KU-CMLD), 2034-Becker Drive, Delbert M. Shankel Structural Biology Center, Lawrence, Kansas 66047, United States

Abstract

The syntheses of silica-supported oligomeric benzyl phosphates $\left(\mathrm{Si}_{\mathrm{i}}-\mathrm{OBP}_{\mathrm{n}}\right)$ and triazole alkylating reagents is reported. Ease of synthesis and grafting onto the surface of norbornenyltagged (Nb-tagged) silica particles has been demonstrated for benzyl phosphate and triazole phosphate monomers. It is shown that these silica polymer hybrid reagents, $\mathrm{Si}^{-\mathrm{OBP}_{\mathrm{n}}}$ and $\mathrm{Si}-\mathrm{OTP}_{\mathrm{n}}$, can be used to carry out alkylation reactions with an array of different nucleophiles to afford the corresponding benzylated and (triazolyl)methylated products in good yield and high purity.

Graphical abstract

INTRODUCTION

The need to rapidly synthesize a wide variety of small molecules in the desired quantities with high purities and yields is an important challenge facing drug discovery and developmental chemistry. ${ }^{1}$ To help address this need, immobilized reagents and scavengers have been developed to provide ease of synthesis and to eliminate time-consuming chromatographic separation protocols. These reagents have found frequent use in the arena of facilitated synthesis and high-throughput chemistry, ${ }^{2,3}$ as well as in the scale-up of advanced pharmaceutical intermediates. ${ }^{4}$ Given the large range of chemistries and conditions in which they need to be employed as reagents, scavengers, or catalysts, the field has seen a number of new innovations regarding immobilized polystyrene resins, ${ }^{5}$ silicas, ${ }^{6}$

[^0]soluble polyethylene glycol (PEG) polymers, ${ }^{7}$ monolith ${ }^{8}$ and fluorous-tagged compounds ${ }^{9}$ to remove impurities or excess reagents from reaction mixtures. Some of the more recent developments reported include silica-supported isocyanide ligands for scavenging ruthenium, ${ }^{10}$ mesocellular silica-supported boronic acids as direct amidation catalysts, ${ }^{11}$ silica-supported rhodium catalysts, ${ }^{12} \mathrm{~N}$-heterocyclic carbenes, ${ }^{13}$ palladium and copper (I) catalysts, ${ }^{14}$ phosphines, ${ }^{15}$, prolinol and TADDOLs. ${ }^{16}$ However, for all of their advantages immobilized reagents are often limited by several factors, including (i) low load levels (ii) heterogeneous reaction kinetics and non-surface diffusion-controlled processes, (iii) immobilized reagent swelling, and (iv) poor solvent tolerance. While some of these issues have been addressed through the development of technologies such as microgels, Janda-gels and micro-porous resins, ${ }^{3}$ there is still a need for additional materials that can deliver the performance of solution-phase reagents with the ease of removal (via filtration, precipitation, extraction, etc.) afforded by their immobilization.

We have previously examined a variety of soluble, high-load, oligomeric reagents and scavengers derived through the use of ring-opening methathesis polymerization (ROMP) of functionalized norbornene and 7-oxanorbornene monomers. ${ }^{17}$ These materials, known as ROMPgels, build on the pioneering efforts of Barrett, ${ }^{18}$ Buchmeiser, ${ }^{19}$ Bolm ${ }^{20}$ and others; ${ }^{21}$ and they have effectively been used to mediate a number of chemical reactions. However, while these ROMPgel materials have the advantage of behaving equivalently to traditional homogeneous reagents and catalysts, they are generally removed from solution via precipitation, which can limit their use in pharmaceutical applications.

As a result, inspired by the seminal work of Buchmeister and coworkers, ${ }^{22}$ efforts were focused on the synthesis and study of a number of hybrid materials that graft several of the ROMPgel materials onto the surface of silica particles. ${ }^{23}$ Through this grafting process, the resulting immobilized ROMP reagents can be removed from solution by simple filtration, thus eliminating the precipitation step. In this fashion, silica-supported ROMPgel acid chloride, dichlorotriazine, and triphenylphosphine reagents were generated with properties nearly identical to the equivalent soluble ROMPgel oligomeric reagents. ${ }^{23}$

We herein describe our efforts to expand the family oligomeric materials that have been grafted onto silica to include ROMP-derived oligomeric benzyl phosphate $\left(\mathrm{OBP}_{\mathrm{n}}\right)$ and triazole phosphate $\left(\mathrm{OTP}_{\mathrm{n}}\right)$, which we previously reported as soluble alkylating reagents that were used in facilitated library generation. ${ }^{24}$ Benzylation and triazolation are useful diversification reactions in medicinal chemistry, high-throughput chemistry, and diversityoriented synthesis (DOS). ${ }^{25}$ The benzylation of amines and alcohols also serves as one of the most utilized protecting group strategies in organic synthesis due to its easy incorporation and removal. ${ }^{26}$ While these uses have spurred development of a number of alternative approaches to benzylation ${ }^{27}$ and triazolation, we believe the generation of the analogous silica-oligomeric benzyl phosphate $\left(\mathrm{Si}^{-\mathrm{OBP}_{\mathrm{n}}}\right.$) and triazole phosphate ($\mathrm{Si}-\mathrm{OTP}_{\mathrm{n}}$) reagents could find efficient, safe, and cost effective applications in chemical synthesis and library production. Key advantages of these reagents, include: (i) their stability at room temperature (ii) safety in handling when compared to commercially available benzyl bromides or iodides, and (iii) ease of purification via simple filtration through Celite ${ }^{\circledR}$.

RESULTS AND DISCUSSION

Initial efforts centered on the synthesis of the silica-grafted oligomeric benzyl phosphate reagent, as outlined in Scheme 1, using a modification of the procedure reported by Buchmeiser. ${ }^{28}$ The activated silica $1(60 \AA, 20 \mu \mathrm{~m})$ was tagged with commercially available norbornene silyl reagent $\left[(\mathrm{MeO})_{3} \mathrm{Si}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{Nb}(2)\right]$ followed by capping with trimethoxymethylsilane and dimethoxydimethylsilane to afford the norbornenefunctionalized silica (Si-Nb) 3 (Scheme 1). It was observed that, the use of (MeO$)_{3} \mathrm{Si}$ -$\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{Nb}(\mathbf{2})$ dramatically increased the norbornene load of Si-Nb (3), compare to 5-(bicycloheptenyl)-triethoxysilane $\left[\mathrm{Nb}-\mathrm{Si}(\mathrm{OEt})_{3}\right]$, which was previously used for silica tagging. ${ }^{23}$ By this optimized method, we prepared norbornene-functionalized silica 3 (SiNb) on gram scale with $0.4 \mathrm{mmol} / \mathrm{g}$ loading (determined by modified bromine titration method). ${ }^{29}$ With this Si-tagged nanoparticle (3) in hand, a metathesis catalyst-armed surface-initiated polymerization was established using the C848 [Grubbs $2^{\text {nd }}$ generation catalyst, G-II) $)^{30}(20 \mathrm{~mol} \%$, based on $\mathrm{Si}-\mathrm{Nb}$ load $)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and toluene as solvents, followed by addition of the Nb -tagged benzyl phosphate monomer $\mathbf{4}$ to rapidly generate the desired hybrid material 5a, silica oligomeric benzyl phosphate ($\mathrm{Si}_{\mathrm{i}} \mathrm{OBP}_{\mathrm{n}}$). The benzyl phosphate monomer 4 was itself easily synthesized in good yield and purity according to previously reported methods. ${ }^{24 \mathrm{a}}$ Norbornene exo-diol 6 was reacted with POCl_{3} and $\mathrm{Et}_{3} \mathrm{~N}$ in the presence of catalytic DMAP to generate the Nb-tagged monochlorophosphate compound 7 in moderate yields as a white solid (Scheme 1). This material was then reacted with benzyl alcohol in NMI, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature to yield 4. The scale-up synthesis of the monomeric reagent, as well as $\mathrm{Si}^{-} \mathrm{OBP}_{\mathrm{n}}$ have been carried out on gram scale as stable, freeflowing powders. The SEM images of $\mathrm{Si}-\mathrm{OBP}_{\mathrm{n}}$ and $\mathrm{Si}-\mathrm{OTP}_{\mathrm{n}}$ silica hybrid materials demonstrate the grafting of the corresponding monomer on silica surface and inherent morphology of hybrid materials (Figure 1).

The utilization of silica oligomeric benzyl phosphate $\mathbf{5 a}\left(\mathrm{Si}_{\mathrm{-}}-\mathrm{OBP}_{\mathrm{n}}\right)$ for benzylation with various N-, O-, S - nucleophiles including anilines, amines, phenols, thiols, and sulfonamides (Table 1), were next examined. The reactions were carried out in a sealed pressure tube with different nucleophiles (1 equiv.), $\mathrm{Si}^{-} \mathrm{OBP}_{\mathrm{n}}$ (1.5 equiv), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (3.0 equiv.) and NaI (0.2 equiv.) in THF at $80^{\circ} \mathrm{C}$ (oil bath temperature) to yield the products after simple filtration via Celite ${ }^{\circledR}$-SPE to remove Si-phosphate by-product. The corresponding benzylated analogs ($\mathbf{8 a}-\mathbf{8 h}$) were isolated in excellent purities ($>90 \%$, determined by LC-MS) and yields. We have screened wide varieties of nucleophile for benzylation. Initially, a variety of amines and phenols (Table 1, entry 1-4) were utilized and then extended to thiophenols and sulfonamides (Table 1, entry 5-8) to yield (>90\%) of the benzylated products.

With these results in hand, an expanded set of $\mathrm{Si}_{\mathrm{-}} \mathrm{OBP}_{\mathrm{n}}$ derivatives was next examined (Figure 2). These high load reagents ($\mathbf{5 b} \mathbf{- 5 d}$) were synthesized in an analogous fashion to the $\mathrm{Si}_{\mathrm{-}} \mathrm{OBP}_{\mathrm{n}}$ reagent in Scheme 1 and were also obtained on gram scales as free-flowing powders. Utilization of these reagents in substitution reaction with O - and S-nucleophiles were next carried out to afford benzylated products ($\mathbf{8 i} \mathbf{i} \mathbf{8 n}$) in good yield ($>90 \%$) and excellent purity after Celite ${ }^{\circledR}$-SPE filtration (Table 2). Diversification of the $\mathrm{Si}^{-} \mathrm{OBP}_{\mathrm{n}}$ reagents via substituting electron withdrawing groups, as well as electron donating groups,
on the aryl moiety were next examined, and in all cases, analogous results to Table 1 were obtained (see Table 2).

Attention was next placed on the gram-scale generation of silica oligomeric triazole phosphate hybrid reagents $\left(\mathrm{Si}-\mathrm{OTP}_{\mathrm{n}}\right)$. Triazoles and their derivatives have demonstrated a wide variety of biological activity, with many reports focusing on antifungal activity. ${ }^{31} \mathrm{We}$ previously reported soluble oligomeric triazole phosphates to construct a wide array of triazole-containing compounds. Silica-immobilized oligomeric triazole phosphate $\mathbf{1 0 a}(\mathrm{Si}-$ $\mathrm{OTP}_{\mathrm{n}}$) was synthesized via grafting of the Nb-tagged benzyl triazole phosphate monomer 9 onto the surface of norbornene-functionalized silica $(\mathrm{Si}-\mathrm{Nb}) 3$ through the same protocol discussed for the synthesis of $\mathrm{Si}-\mathrm{OBP}_{\mathrm{n}}$ in Scheme 1. The product, 10a $\left(\mathrm{Si}-\mathrm{OTP}_{\mathrm{n}}\right)$, was isolated as a free flowing solid in high-load ($1.15 \mathrm{mmol} / \mathrm{g}$) (Scheme 2). The triazole phosphate monomer 9 was synthesized in good yield and purity according to previously reported methods. ${ }^{24}$ Phosphorylation of propargyl alcohol with Nb-tagged phosphonyl chloride 7, followed by a "Click"-capture event of the corresponding azide, yields the desired monomer 9 in an efficient fashion (Scheme 2). The triazole phosphate monomer, as well as silica oligomeric triazole phosphate reagents $\left(\mathrm{Si}_{-}-\mathrm{OTP}_{\mathrm{n}}\right)$ have been synthesized on gram scale as stable, free-flowing solids.

With $\operatorname{Si-OTP} \mathrm{n}_{\mathrm{n}}$ 10a in hand, the hybrid material was evaluated for (triazolyl)methylation on various nucleophiles including amines, phenols, thiophenols and sulfonamides in good yields and high purity with chromatography-free purification. The reaction was carried out in a pressure tube with different nucleophiles (1 equiv.), $\mathrm{Si}^{-} \mathrm{OTP}_{\mathrm{n}}$ (1.5 equiv.), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (3.0 equiv.) and NaI (0.2 equiv.) in DMF at $90^{\circ} \mathrm{C}$ for overnight. The reaction mixture was diluted with EtOAc and filtered through a pad of Celite ${ }^{\circledR}$ to give the corresponding (triazolyl)methylated products. Optimal results were achieved in DMF compared to THF. A variety of N-, $O-, S$-nucleophiles were utilized for nucleophilic substitution reaction with Si $\mathrm{OTP}_{\mathrm{n}}$ triazolating reagent gave the (triazolyl)methylated products (11a-11g) in excellent yield and high purity ($>85 \%$, determined by LC-MS) (Table 3). In all cases, similar results (Table 3) were obtained as compared to $\mathrm{Si}-\mathrm{OBP}_{\mathrm{n}}$ in THF in Table 1.

Building on these results, the project was expanded to the synthesis of additional variants of Si-OTP ${ }_{n}$ hybrid reagents ($\mathbf{1 0 b} \mathbf{- 1 0 d}$, Figure 3) on gram scales as free-flowing powders in an analogous fashion to the $\mathrm{Si}^{-} \mathrm{OTP}_{\mathrm{n}}$ reagent in Scheme 2. These $\mathrm{Si}^{2}-\mathrm{OTP}_{\mathrm{n}}$ hybrid reagents were utilized for (triazolyl)methylation of O - and S-nucleophiles. In all cases, (triazolyl)methylated products (11h-11m) were isolated in excellent yield and high purity after passing thru a Celite ${ }^{\circledR}$ SPE (Table 4).

In conclusion, the combination of Nb -tagged silica particles and functionalized Nb -tagged monomers efficiently yields high-load, hybrid Si-ROMP benzylating and (triazolyl)methylating reagents. A metathesis catalyst-armed surface (CAS)-initiated polymerization was key to functionalization of units off the silica particle surface. With this technology, we developed Si-immobilized oligomeric benzyl phosphate $\left(\mathrm{Si}_{-} \mathrm{OBP}_{\mathrm{n}}\right)$ as a benzylating reagent and triazole phosphate $\left(\mathrm{Si}_{\mathrm{i}}-\mathrm{OTP}_{\mathrm{n}}\right)$ as a (triazolyl)methylating reagent on gram scale as stable, free-flowing powders in all cases, utilizing ROMP of Nb-tagged phosphate monomers. SEM imaging was utilized to demonstrate the successful grafting of
the corresponding oligomer and the inherent morphology of the hybrid materials. Utilization of these reagents for representative small molecule synthesis, under purification free protocols, was demonstrated to afford corresponding products in excellent yield and with high purity. Since benzylation is a key transformation in many synthetic processes, we are currently working on expanding the scope of nucleophiles (i.e., alcohols, bis-nucleophilic, etc), as well as the scale on which these transformations can be carried out.

EXPERIMENTAL SECTION

General Information

All reactions were carried out under argon atmosphere. Stirring was achieved with ovendried magnetic stir bars. $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were purified by passage through the Solv-Tek purification system employing activated $\mathrm{Al}_{2} \mathrm{O}_{3}$ (Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Safe and Convenient Procedure for Solvent Purification Organometallics 1996, 15, 1518-1520). CHCl_{3} was passed through basic alumina and dried over molecular sieves. $\mathrm{Et}_{3} \mathrm{~N}$ was purified by passage through basic alumina or distilled over CaH_{2} and stored over KOH. For Celite-SPE 6 mL empty cartridges were used. All the solvents for routine isolation of products and chromatography were reagent grade. Flash chromatography was performed using silica gel (300-400 mesh) with the indicated solvents. Melting points were recorded on an Electrothermal digital melting point apparatus and were uncorrected. IR spectra were recorded on a spectrophotometer using KBr optics. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on 400 or $500 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right.$ NMR) and 100 or 125 MHz $\left({ }^{13} \mathrm{C}\right.$ NMR) spectrometers using CDCl_{3} as the solvent and TMS as the internal standard. The ${ }^{1} \mathrm{H}$ NMR data are reported as the chemical shift in parts per million, multiplicity (s, singlet; d , doublet; t , triplet; q , quartet; m , multiplet), coupling constant in hertz, and number of protons. High-resolution mass spectra were obtained using a high-resolution ESI-TOF mass spectrometer.

General Procedure for Silica Oligomeric Benzyl Phosphate (Si-OBP ${ }_{n}$) and Triazole Phosphate (Si-OTP ${ }_{\mathrm{n}}$)

$\mathrm{Si}-\mathrm{Nb}$ (load $\sim 0.4 \mathrm{mmol} / \mathrm{g}, 1$ equiv.) was heated with C 848 (G-II, 0.2 equiv.) at $45{ }^{\circ} \mathrm{C}$ in dichloromethane for 2 hrs under argon. The OBP or OTP monomer was added (50 equiv. w/r to cat. G-II) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and toluene to the reaction mixture and heated at $45^{\circ} \mathrm{C}$ for overnight. The reaction mixture was cooled to room temperature and EVE was added, with stirring for an additional 1 hour at room temperature. The reaction mixture was filtered and washed with mixture of toluene: $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1)$, and dried over high vacuo pump.

Procedure A: General procedure for different nucleophilic substitution with $\mathbf{S i - O B P} \mathbf{n}$

In a sealed pressure tube was added $\mathrm{Si}_{\mathrm{i}}-\mathrm{OBP}_{\mathrm{n}} \mathbf{5 a}$ (1.5 equiv.), followed by addition of sodium iodide (0.2 equiv.), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (3.0 equiv.), and solvent THF (0.2 M). The mixture was stirred rapidly and then nucleophiles were added. The reaction was sealed under argon and heated to $80^{\circ} \mathrm{C}$ with stirring for 12 h . After such time, the reaction was cooled to rt and the crude mixture was filtered via a Celite ${ }^{\circledR}$-packed SPE and rinsed several times with a mixture of hexanes:EtOAc (1:2). The resulting eluent was concentrated in vacuo to yield the benzylated products in good to excellent yields and purities.

Procedure B: General procedure for different nucleophilic substitution with $\mathrm{Si}^{-\mathrm{OTP}_{\mathbf{n}}}$

In a pressure tube was added $\mathrm{Si}^{-\mathrm{OTP}_{\mathrm{n}}} \mathbf{1 0 a}$ (1.5 equiv.), followed by addition of $\mathrm{NaI}(0.2$ equiv.), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (3.0 equiv.), and solvent DMF (0.2 M). The nucleophile was added and the resulting mixture was stirred rapidly. The reaction was sealed under argon and heated to $90^{\circ} \mathrm{C} \mathrm{w} /$ stirring for ($12-14 \mathrm{hrs}$) after which time, DMF was removed in vacuo. The crude mixture was filtered via celite ${ }^{\circledR}-$ SPE and rinsed with EtOAc. The resulting eluent was then concentrated in vacuo to yield the products in good to excellent yields and purities.

1-(benzyloxy)-4-(tert-butyl)benzene (8c)

Utilizing general procedure $\mathbf{A}, \mathbf{8 c}(18.5 \mathrm{mg}, 0.077 \mathrm{mmol}, 97 \%)$ was isolated as a white solid. MP: $65^{\circ} \mathrm{C}$; FTIR (neat): $3056,3024,2960,2866,1610,1512,1456,1242,1182,1024$ $\mathrm{cm}^{-1 ;}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $87.46-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.30(\mathrm{~m}$, 3H), 6.92-6.96 (m, 2H), 5.06 (s, 2H), 1.33 ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 156.6$, 143.7, 137.3, 128.5 (2C), 127.9, 127.5 (2C), 126.2 (2C), 114.2 (2C), 70.0, 34.1, 31.4 (3C); GC-MS (EI ${ }^{+}$) calculated for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O} 240.15$; found $240.1\left(\mathrm{M}^{+} 7\right), 91.0(100) .{ }^{32 \mathrm{a}}$

1-(benzyloxy)-2,4-dichlorobenzene (8d)

Utilizing general procedure $\mathbf{A}, \mathbf{8 d}(30 \mathrm{mg}, 0.119 \mathrm{mmol}, 98 \%)$ was isolated as a thick liquid. FTIR (neat): $3031,2931,2835,1597,1481,1452,1382,1290,1249,1060 \mathrm{~cm}^{-1 ;}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.47-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.18$ (dd, J $=2.6,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 153.0, 136.1, 130.1, 128.7 (2C), 128.1, 127.5, 127.1 (2C), 126.0, 124.1, 114.8, 71.2; GC-MS $\left(\mathrm{EI}^{+}\right) \mathrm{C}_{13} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}$ calculated 252.01; found $251.9\left(\mathrm{M}^{+} 4\right), 91.0(100) .{ }^{32 \mathrm{~b}}$

Benzyl(2,4,6-trichlorophenyl)sulfane (8e)

Utilizing general procedure $\mathbf{A}, \mathbf{8 e}(21 \mathrm{mg}, 0.07 \mathrm{mmol}, 98 \%)$ was isolated as a yellow solid. MP: $112{ }^{\circ} \mathrm{C}$; FTIR (neat): $3087,2935,2850,1583,1454,1321,1116,1054 \mathrm{~cm}^{-1.1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.39(\mathrm{~m}, 2 \mathrm{H}), 4.15(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 136.3,135.3,132.0,131.3,130.6,130.0,129.5,128.9$ (2C), 128.8 (2C), 127.8, 37.6; GC-MS (EI $\left.{ }^{+}\right) \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{Cl}_{3} \mathrm{~S}$ calculated 301.95; found 301.9 (32), 169 (7), 91.0 (100).

Benzyl(3,4-dimethoxyphenyl)sulfane (8f)

Utilizing general procedure $\mathrm{A}, \mathbf{8 f}(22 \mathrm{mg}, 0.085 \mathrm{mmol}, 98 \%)$ was isolated as a thick liquid. FTIR (neat): 2933, 2833, 1595, 1504, 1251, 1228, 1135, $1026 \mathrm{~cm}^{-1 .}{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.31-7.19(\mathrm{~m}, 5 \mathrm{H}), 6.95(\mathrm{dd}, J=8.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.0-6.74(\mathrm{~m}, 2 \mathrm{H}), 4.02(\mathrm{~s}, 2 \mathrm{H})$, $3.88(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.7$ (2C), 138.2, 129.0 (2C), 128.4 (2C), 127.0, 126.2, 125.3, 115.9, 111.3, 55.9, 55.8, 41.2; GC-MS (EI $\left.{ }^{+}\right) \mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}$ calculated 260.09; found 260.0 (32), 169 (30), 91.0 (100).

N-benzyl-4-bromo- N-butyl-2-fluorobenzenesulfonamide (8g)

Utilizing general procedure $\mathbf{A}, \mathbf{8 g}(24 \mathrm{mg}, 0.060 \mathrm{mmol}, 99 \%)$ was isolated as a thick liquid. FTIR (neat): 3089, 3025, 2958, 2931, 1589, 1472, 1456, 1396, 1344, 1161, $1135 \mathrm{~cm}^{-1.1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.79(\mathrm{t}, J=7.70 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.28(\mathrm{~m}$,
$5 \mathrm{H}), 4.47$ (s, 2H), 3.19 (t, $J=7.60 \mathrm{~Hz}, 2 \mathrm{H}), 1.35-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.16-1.11(\mathrm{~m}, 2 \mathrm{H}), 0.76(\mathrm{t}, J$ $=7.45 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.44\left({ }^{1} J_{C-F}=259 \mathrm{~Hz}\right), 136.1,131.8$, $128.6(2 \mathrm{C}), 128.2(2 \mathrm{C}), 128.0,127.8(3 \mathrm{C}), 120.7\left({ }^{2} J=25.0 \mathrm{~Hz}\right), 51.4,47.3,29.7,19.7,13.5$. GC-MS (EI $\left.{ }^{+}\right) \mathrm{C}_{17} \mathrm{H}_{19} \mathrm{BrFNO}_{2} \mathrm{~S}$ calculated 399.3; found $399.0\left(\mathrm{M}^{+} 3\right), 401.2(\mathrm{M}+2$ 2), 355.8 (60), 357.8 (60), 91 (100).
(S)-2,3-dibenzyl-7-bromo-3,4-dihydro-2H-benzo[b][1,4,5]oxathiazepine1,1-dioxide (8h)

Utilizing general procedure $\mathrm{A}, \mathbf{8 h}(30 \mathrm{mg}, 0.066 \mathrm{mmol}, 97 \%)$ was isolated as a white solid. MP: $170^{\circ} \mathrm{C}$. FTIR (neat): $3026,2921,2852,1595,1552,1325,1153,700 \mathrm{~cm}^{-1.1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.74$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.33-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 5 \mathrm{H}), 7.17$ (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.85(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=14.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.26(\mathrm{dd}, J=4.5,13.42 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{~m}$, 2H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 156.1,137.4,135.2,129.8,130.8,129.0$ (2), 128.7 (2), 128.6 (2), 128.1 (2), 127.1 (2), 126.7, 126.4, 124.4, 73.7, 62.4, 55.2, 37.9. HRMS calculated for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{BrNO}_{3} \mathrm{SNa}(\mathrm{M}+\mathrm{Na})^{+} 480.0245$; found 480.0258 (TOF MS).

1-((4-bromobenzyl)oxy)-2,4-dichlorobenzene (8i)

Utilizing general procedure A, $\mathbf{8 i}(29 \mathrm{mg}, 0.088 \mathrm{mmol}, 98 \%)$ was isolated as a yellow solid. MP: $87^{\circ} \mathrm{C}$. FTIR (neat) $3070,2923,2866,1585,1571,1480,1456,1290,1262,1103$ $\mathrm{cm}^{-1 .}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.52-7.54(\mathrm{~m}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.32-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.18$ (dd, $J=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.8,1 \mathrm{H}), 5.10(\mathrm{~s}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.7,135.0,131.8$ (2C), 130.1, 128.7 (2C), 127.5, 126.3, 124.1, 122.1, 114.7, 70.3. GC-MS (EI $\left.{ }^{+}\right) \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrCl}_{2} \mathrm{O}$ calculated 329.92; found 331.9 (M+2, 2), 169 (100), 90 (25). ${ }^{32 \mathrm{~b}}$

(4-bromobenzyl)(2,4,6-trichlorophenyl)sulfane (8j)

Utilizing general procedure $\mathrm{A}, \mathbf{8 j}(25 \mathrm{mg}, 0.066 \mathrm{mmol}, 94 \%)$ was isolated as a white solid. MP: $54{ }^{\circ} \mathrm{C}$. FTIR (neat) 2923, 1590, 1487, 1452, 1433, 1323, 1116, 1058, $1012 \mathrm{~cm}^{-1 .}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.44-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.20-7.22(\mathrm{~m}, 2 \mathrm{H}), 4.08(\mathrm{~s}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 135.6,134.5,132.4,131.9$ (2C), 131.4, 130.7, 130.5 (2C), 130.4, 129.9, 121.7, 37.1. GC-MS $\left(\mathrm{EI}^{+}\right) \mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{3} \mathrm{BrS}$ calculated 379.86; found 379.8 $\left(\mathrm{M}^{+} 5\right), 381.8(\mathrm{M}+2,7), 169(100), 90(25)$.

2,4-dichloro-1-((4-fluorobenzyl)oxy)benzene (8k)

Utilizing general procedure $\mathrm{A}, \mathbf{8 k}(24 \mathrm{mg}, 0.088 \mathrm{mmol}, 96 \%)$ is isolated as a thick liquid. FTIR (neat) 2931, 1604, 1510, 1483, 1379, 1226, 1060, 823, $730 \mathrm{~cm}^{-1 .}{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.41-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.18(\mathrm{dd}, J=8.6,2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.07-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=7.5,1 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $162.5\left({ }^{1} J_{C-F}=246.5 \mathrm{~Hz}\right) 152.8,131.8,130.1,129.1\left({ }^{3} J=8.4 \mathrm{~Hz}, 2\right), 127.5,126.6,124.2$, $115.6\left({ }^{2} J=21.6 \mathrm{~Hz}, 2\right) 114.9,70.5$. GC-MS $\left(\mathrm{EI}^{+}\right) \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{FO}$ calculated 270.00; found $269.9\left(\mathrm{M}^{+} 2\right), 109$ (100).

4-fluorobenzyl)(2,4,6-trichlorophenyl)sulfane (8I)

Utilizing general procedure A, $\mathbf{8 1}(21 \mathrm{mg}, 0.065 \mathrm{mmol}, 95 \%)$ was isolated as a thick liquid. FTIR (neat) 2933, 1600, 1505, 1433, 1323, 1228, 1116, 1058, $837 \mathrm{~cm}^{-1.1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 7.01-7.05(\mathrm{~m}, 2 \mathrm{H}), 4.13(\mathrm{~s}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 163.3,\left({ }^{1} J_{C-F}=247.5 \mathrm{~Hz}\right) 135.8,132.3,131.3,131.1$ $\left({ }^{4} J_{C-F}=3.6 \mathrm{~Hz}\right), 130.7,130.5\left({ }^{3} J=8.5 \mathrm{~Hz}, 2\right) 130.4,129.9,115.7\left({ }^{2} J=22.3 \mathrm{~Hz}, 2\right), 36.9$. GC-MS (EI^{+}). $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{3} \mathrm{FS}$ calculated 319.94; found 319.9 (M+ 5), 109 (100).

2,4-dichloro-1-((3,5-dimethoxybenzyl)oxy)benzene (8m)

Utilizing general procedure A, $\mathbf{8 m}(28 \mathrm{mg}, 0.089 \mathrm{mmol}, 98 \%)$ was isolated as a yellow solid. MP: $55^{\circ} \mathrm{C}$; FTIR (neat): 2935, 2825, 1598, 1483, 1456, 1292, 1157, $1060 \mathrm{~cm}^{-1 ;{ }^{1} \mathrm{H}}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38$ (d, $\left.J=2.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.14-7.16$ (dd, $J=8.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), $6.88-6.85(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.42(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H})$, $3.80(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta 161.0$ (2C), 152.9, 138.5, 130.0, 127.5, 126.1, 124.0, 114.8, 104.7 (2C), 99.8, 70.9, 55.3 (2C). GC-MS (EI $\left.{ }^{+}\right) . \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{Cl}_{3} \mathrm{O}_{2} \mathrm{~S}$, calculated 312.03; found $312.0\left(\mathrm{M}^{+}, 3\right), 151.1(100)$.

(3,5-dimethoxybenzyl)(2,4,6-trichlorophenyl)sulfane (8n)

Utilizing general procedure A, $8 \mathbf{n}(20 \mathrm{mg}, 0.055 \mathrm{mmol}, 94 \%)$ was isolated as a white solid. MP: $84^{\circ} \mathrm{C}$; FTIR (neat): 2956, 2931, 2830, 1610, 1596, 1454, 1431, 1323, 1205, 1157, 1158 $\mathrm{cm}^{-1 ;}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=2.25 \mathrm{~Hz}, 2 \mathrm{H})$, $6.38(\mathrm{t}, J=2.3, \mathrm{~Hz} 1 \mathrm{H}), 4.08(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 160.1$ (2C), 137.5, 136.3, 131.9, 131.3, 130.6, 130.0, 129.4, 106.9 (2C), 99.8, 55.4 (2C), 37.8. GC$\mathrm{MS}\left(\mathrm{EI}^{+}\right) . \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{Cl}_{3} \mathrm{O}_{2} \mathrm{~S}$, calculated 361.97 found $361.9\left(\mathrm{M}^{+} 3\right)$, 151.1 (100).

1-benzyl-4-((3-chlorophenoxy)methyl)-1H-1,2,3-triazole (11a)

Utilizing general procedure $\mathrm{B}, 1$-benzyl-4-((3-chlorophenoxy)methyl)-1 H-1,2,3-triazole 11a ($50 \mathrm{mg}, 0.167 \mathrm{mmol}, 91 \%$) was isolated as a white solid. MP: $96^{\circ} \mathrm{C}$; FTIR (neat): 2960, $2358,1610,1511,1463,1250,1184,1031 \mathrm{~cm}-1 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.53$ (s, $1 \mathrm{H}), 7.43-7.35$ (m, 3H), 7.29 (dd, $J=4.8,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.93$ $(\mathrm{m}, 2 \mathrm{H}), 6.89-6.84(\mathrm{~m}, 1 \mathrm{H}), 5.55(\mathrm{~s}, 2 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $158.9,144.1,134.9,134.4,130.3,129.2$ (2C), 128.9, 128.2 (2C), 122.7, 121.5, 115.4, 113.1, 62.2, 54.3. HRMS calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClN}_{3} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+} 300.0904$; found 300.0906 (TOF MS ES+).

1-benzyl-4-((naphthalen-1-yloxy)methyl)-1 H-1,2,3-triazole (11b)

Utilizing general procedure $\mathrm{B}, \mathbf{1 1 b}(53 \mathrm{mg}, 0.168 \mathrm{mmol}, 90 \%)$ was isolated as a light brown solid. MP: $94{ }^{\circ} \mathrm{C}$; FTIR (neat): $3409,2918,1583,1458,1390,1267,1238,1155,1095$ $\mathrm{cm}-1 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.23(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62$ $(\mathrm{s}, 1 \mathrm{H}), 7.54-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.43-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.25(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.57(\mathrm{~s}, 2 \mathrm{H}), 5.41(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.9,144.8,134.5,129.2$ (2C), 128.8, 128.1 (2C), 127.5, 126.5, 125.8, 125.6, 125.3, 122.6, 122.0, 120.9, 105.4, 62.5, 54.3. HRMS calculated for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}(M+\mathrm{H})^{+} 316.1450$; found 316.1427 (TOF MS ES+).

1-benzyl-4-(pyrrolidin-1-ylmethyl)-1 H-1,2,3-triazole (11c)

Utilizing general procedure $\mathrm{B}, 11 \mathrm{c}(48 \mathrm{mg}, 0.198 \mathrm{mmol}, 84 \%)$ was isolated as a light brown thick liquid. FTIR (neat): $3307,2923,1581,1448,1420,1396,1238,1215,1121,1008$ $\mathrm{cm}-1 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 2 \mathrm{H})$, $5.52(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 2 \mathrm{H}), 2.74-2.67(\mathrm{~m}, 4 \mathrm{H}), 1.89-1.81(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , CDCl_{3}): $\delta 144.6,134.6,129.1$ (2C), 128.7, 128.1 (2C), 122.9, 54.2, 53.9 (2C), 50.5, 23.4 (2C). HRMS calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{4}(\mathrm{M}+\mathrm{H})^{+} 243.1610$; found 243.1631 (TOF MS ES+).

1-benzyl-4-(((2,4,6-trichlorophenyl)thio)methyl)-1H-1,2,3-triazole (11e)

Utilizing general procedure $B, 11 e(63 \mathrm{mg}, 0.164 \mathrm{mmol}, 92 \%)$ was isolated as a white solid. MP: $137{ }^{\circ} \mathrm{C}$; FTIR (neat): $3369,2923,1699,1456,1433,1363,1242,1116,1049,721$ $\mathrm{cm}-1 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 2 \mathrm{H})$, $5.52(\mathrm{~s}, 2 \mathrm{H}), 4.25(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 143.8,135.1,134.4,132.3$, 131.5, 130.7, 130.6, 130.0, 129.2 (2C), 128.9, 128.0 (2C), 122.1, 54.3, 27.8. HRMS calculated for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 383.9896$; found 383.9912 (TOF MS ES+).

1-benzyl-4-(((3,4-dimethoxyphenyl)thio)methyl)-1H-1,2,3-triazole (11f)

Utilizing general procedure B, $\mathbf{1 1 f}(53 \mathrm{mg}, 0.155 \mathrm{mmol}, 94 \%)$ was isolated as a white solid. MP: $101^{\circ} \mathrm{C}$; FTIR (neat): 2952, 1581, 1502, 1438, 1253, 1228, 1135, $1024 \mathrm{~cm}-1 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.58-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{dd}, J=6.7,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 6.89$ (dt, $J=5.1,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{~s}, 2 \mathrm{H}), 4.14(\mathrm{~s}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H})$, $3.79(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta 149.0,148.7,145.5,134.6,129.1$ (2C), 128.7, 127.9 (2C), 125.7, 124.8, 121.9, 115.2, 111.4, 55.9, 55.9, 54.1, 30.8. HRMS calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+} 364.1096$; found 364.1063 (TOF MS ES+).

N-((1-benzyl-1 H-1,2,3-triazol-4-yl)methyl)-2-bromo-N-isopropylbenzenesulfonamide (11g)

Utilizing general procedure $\mathrm{B}, \mathbf{1 1 g}(47 \mathrm{mg}, 0.104 \mathrm{mmol}, 89 \%)$ was isolated as a colorless thick liquid. FTIR (neat): $3134,2923,2846,1703,1604,1487,1456,1411,1328,1220$, $1049 \mathrm{~cm}-1 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.14(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.70,(\mathrm{dd}, J=7.7$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 2 \mathrm{H}), 5.52(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H})$, 4.71 (s, 2H), $4.03-3.82(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 147.1, 139.3, 135.6, 134.7, 133.5, 132.5, 129.1 (2C), 128.7, 127.9 (2C), 127.5, 123.6, 120.3, 54.2, 49.9, 38.6, 21.1 (2C). HRMS calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{BrN}_{4} \mathrm{NaO}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 471.0466$; found 471.0478 (TOF MS ES+)

4-((4-bromophenoxy)methyl)-1-(4-methylbenzyl)-1H-1,2,3-triazole (11h)
Utilizing general procedure $\mathrm{B}, \mathbf{1 1 h}(52 \mathrm{mg}, 0.145 \mathrm{mmol}, 85 \%)$ was isolated as a white solid. MP: $103{ }^{\circ} \mathrm{C}$; FTIR (neat): $3087,2920,1589,1490,1384,1282,1242,1022,825,757$ $\mathrm{cm}^{-1.1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~m}, 4 \mathrm{H})$, $6.85(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.49(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , CDCl_{3}): $\delta 157.3,144.1,138.8,132.3$ (2C), 131.3, 129.8 (2C), 128.2 (2C), 122.6, 116.6 (2C), 113.5, 62.2, 54.1, 21.2. HRMS calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrN}_{3} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+} 358.0555$; found 358.0558 (TOF MS ES+).

1-(4-methylbenzyl)-4-(((2,4,6-trichlorophenyl)thio)methyl)-1H-1,2,3-triazole (11i)

Utilizing general procedure B, 11i ($48 \mathrm{mg}, 0.120 \mathrm{mmol}, 87 \%$) was isolated as a white solid. MP: $136{ }^{\circ} \mathrm{C}$; FTIR (neat): $3083,2920,1515,1434,1323,1151,1116,1058,871 \mathrm{~cm}^{-1.1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.45(\mathrm{~s}, 2 \mathrm{H}), 4.23(\mathrm{~s}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , CDCl_{3}): $\delta 143.7,138.2,135.1,132.3,131.5,131.3,130.7,130.5,130.0,129.8$ (2C), 128.0 (2C), 122.0, 54.1, 27.9, 21.2. HRMS calculated for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 398.0052$; found 398.0063 (TOF MS ES+).

4-((4-bromophenoxy)methyl)-1-(4-methoxybenzyl)-1H-1,2,3-triazole (11j)

Utilizing general procedure $\mathrm{B}, \mathbf{1 1 j}$ ($67 \mathrm{mg}, 0.179 \mathrm{mmol}, 89 \%$) was isolated as a white solid. MP: $98{ }^{\circ} \mathrm{C}$ FTIR (neat): $3137,2933,1612,1514,1487,1461,1247,1176,1049,1031,821$ $\mathrm{cm}^{-1.1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=9.6,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.47(\mathrm{~s}, 2 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H})$, $3.82(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.0,157.3,144.1,132.3$ (2C), 129.8 (2C), 126.3, 122.4, 116.6 (2C), 114.5 (2C), 113.5, 62.2, 55.4, 53.9. HRMS calculated for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{BrN}_{3} \mathrm{NaO}_{2}(\mathrm{M}+\mathrm{Na})^{+} 396.0324$; found 396.0331 (TOF MS ES+).

1-(4-methoxybenzyl)-4-(((2,4,6-trichlorophenyl)thio)methyl)-1 H-1,2,3-triazole(11k)

Utilizing general procedure $\mathrm{B}, \mathbf{1 1 k}$ ($50 \mathrm{mg}, 0.120 \mathrm{mmol}, 86 \%$) was isolated as a yellow solid. FTIR (neat): 3082, 2931, 1612, 1514, 1434, 1323, 1249, 1176, 1118, $1058 \mathrm{~cm}-1$; MP: $88{ }^{\circ} \mathrm{C}^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 7.20-7.17$ (m, 1H), 7.09 (dd, $J=8.5,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{dd}, J=8.4,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.34(\mathrm{~s}, 2 \mathrm{H}), 4.14(\mathrm{~s}, 2$ H), $3.74(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.0,143.6,135.2,132.3,131.5,130.7$, 130.5, 130.0, 129.6 (2C), 126.3, 121.9, 114.5 (2C), 55.4, 53.8, 27.9. HRMS calculated for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{OS}(\mathrm{M}+\mathrm{H})^{+} 414.0001$; found 414.0007 (TOF MS ES+ + .

4-((4-bromophenoxy)methyl)-1-(cyclohexylmethyl)-1H-1,2,3-triazole (11I)

Utilizing general procedure B, $\mathbf{1 1 1}(52 \mathrm{mg}, 0.148 \mathrm{mmol}, 86 \%)$ was isolated as a white solid. FTIR (neat): 2921, 2852, 1488, 1446, 1384, 1244, 1224, 1112, $1054 \mathrm{~cm}-1 ; \mathrm{MP}: 90{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.54 (s, 1H), 7.41-7.35 (ddd, $\left.J=10.2,3.4,2.2,2 \mathrm{H}\right), 6.91-6.85$ (ddd, $J=10.2,3.4,2.2,2 \mathrm{H}), 5.19(\mathrm{~s}, 2 \mathrm{H}), 4.18(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.94-1.83$ (m, 1H), 1.76$1.61(\mathrm{~m}, 5 \mathrm{H}), 1.29-1.14(\mathrm{~m}, 3 \mathrm{H}), 1.04-0.94(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 157.3$, $143.5,132.3,123.1,116.7,113.5,62.3,56.6,38.7,30.5$ (2C), 26.0, 25.5 (2C). HRMS calculated for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{BrN}_{3} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+} 350.0868$; found 350.0870 (TOF MS ES+).

1-(cyclohexylmethyl)-4-(((2,4,6-trichlorophenyl)thio)methyl)-1H-1,2,3-triazole (11m)
Utilizing general procedure $\mathrm{B}, 11 \mathrm{~m}(48 \mathrm{mg}, 0.122 \mathrm{mmol}, 88 \%)$ was isolated as a white solid. FTIR (neat): 2925, 2852, 1450, 1427, 1215, 1153, $1116 \mathrm{~cm}^{-1}$; MP: $141^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.27(\mathrm{~s}, 2 \mathrm{H}), 4.14(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $1.89-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.58-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.09(\mathrm{~m}, 4 \mathrm{H}), 0.95(\mathrm{qd}, J=$ $12.2,3.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 143.1,135.2,132.3,131.5,130.7,130.5$, 130.0, 122.6, 56.6, 38.7, 30.4 (2C), 27.8, 26.0, 25.5 (2C). HRMS calculated for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 390.0365$; found 390.0377 (TOF MS ES+).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This research was made possible by the National Institute of General Medical Sciences [NIH STTR R42 GM097896 and NIH Center for Chemical Methodologies and Library Development at the University of Kansas (P50 GM069663). The authors thank Justin Douglas and Sarah Neuenswander in the University of Kansas NMR Laboratory. We acknowledge Dr. Prem Thapa and Ms. Heather Shinogle for carrying out SEM analysis (KU). We thank Materia Inc. for providing metathesis catalyst. We also thank Dr. Patrick Kearney for helpful discussion and proofing the manuscript.

References

1. (a) Gallop MA, Barrett RW, Dower WJ, Fodor SPA, Gordon EM. J Med Chem. 1994; 37:12331251. [PubMed: 8176700] (b) Flynn DL, Devraj RV, Naing W, Parlow JJ, Weidner JJ, Yang S. Med Chem Res. 1998; 8:219-243.(c) Musonda CC, Chibale K. Curr Med Chem. 2004; 11:2519-2533. [PubMed: 15544460] (d) Dolle RE, Bourdonnec BL, Worm K, Morales GA, Thomas CJ, Zhang W. J Comb Chem. 2010; 12:765-806. [PubMed: 20923157] (e) Schreiber SL. Proc Natl Acad Sci U S A. 2011; 108:6699-6702. [PubMed: 21464328] (f) Chatterjee AK. J Med Chem. 2013; 56:77417749. [PubMed: 23927720]
2. (a) Kirschning A, Monenschein H, Wittenberg R. Angew Chem Int Ed. 2001; 40:650-679.(b) Eames J, Watkinson M. Eur J Org Chem. 2001:1213-1224.(c) Booth RJ, Hodges JC. Acc Chem Res. 1999; 32:18-26.(d) Ley SV, Baxendale IR, Bream RN, Jackson PS, Leach AG, Longbottom DA, Nesi M, Scott JS, Storer RI, Taylor SJ. J Chem Soc, Perkin Trans. 2000; 1:3815-4195.(e) Strohmeier GA, Kappe CO. Angew Chem Int Ed. 2004; 43:621-624.(f) Lesch B, Thomson DW, Lindell SD. Comb Chem High T Scr. 2008; 11:31-36.
3. (a) Gravert DJ, Janda KD. Chem Rev. 1997; 97:489-509. [PubMed: 11848880] (b) Toy PH, Janda KD. Acc Chem Res. 2000; 33:546-554. [PubMed: 10955985] (c) Dickerson TJ, Reed NN, Janda KD. Chem Rev. 2002; 102:3325-3344. [PubMed: 12371887] (d) Haag R. Chem Eur J. 2001; 7:327335. [PubMed: 11271517] (e) Haag R, Sunder A, Hebel A, Roller S. J Comb Chem. 2002; 4:112119. [PubMed: 11886284] (f) Bergbreiter DE. Chem Rev. 2002; 102:3345-3384. [PubMed: 12371888] (g) Bergbreiter DE, Tian J, Hongfa C. Chem Rev. 2009; 109:530-582. [PubMed: 19209941]
4. (a) Bhattacharyya S. Curr Opin Drug Dis Dev. 2004; 7:752-764.(b) Hudson D. J Comb Chem. 1999; 1:333-360. [PubMed: 10748732] (c) Polshettiwar V, Varma RS. Acc Chem Res. 2008; 41:629-639. [PubMed: 18419142] (d) Malet-Sanz L, Susanne F. J Med Chem. 2012; 55:40624098. [PubMed: 22283413]
5. (a) Lu J, Toy PH. Chem Rev. 2009; 109:815-838. [PubMed: 19128147] (b) Takashima H, Vigneaud VD, Merrifield RB. J Am Chem Soc. 1968; 90:1323-1325. [PubMed: 5636536] (c) Baxendale IR, Brusotti G, Matsuoka M, Ley SV. J Chem Soc, Perkin Trans 1. 2002:143-154.(d) Storer RI, Takemoto T, Jackson PS, Brown DS, Baxendale IR, Ley SV. Chem Eur J. 2004; 10:2529-2547. [PubMed: 15146525] (e) Baxendale IR, Ley SV, Piutti C. Angew Chem, Int Ed. 2002; 41:21942197.(f) Roller S, Türk H, Stumbé JF, Rapp W, Haag R. J Comb Chem. 2006; 8:350-354. [PubMed: 16677004]
6. (a) Guillier F, Orain D, Bradley M. Chem Rev. 2000; 100:2091-2157. [PubMed: 11749285] (b) Polshettiwar V, Len C, Fihri A. Coord Chem Rev. 2009; 253:2599-2626.(c) Moreno J, Iglesias J, Meleroa JA, Sherringtonc DC. J Mater Chem. 2011; 21:6725-6735.(d) Fihri A, Bouhrara M, Patil U, Cha D, Saih Y, Polshettiwar V. ACS Cat. 2012; 2:1425-1431.(e) Sharma RK, Yukti M. App Cat A: General. 2013; 454:1-10.
7. (a) Crauste C, Périgaud C, Peyrottes S. J Org Chem. 2011; 76:997-1000. [PubMed: 21192699] (b) Adams JH, Cook RM, Hudson D, Jammalamadaka V, Lyttle MH, Songster MF. J Org Chem. 1998; 63:3706-3716.(c) Gooding OW, Baudart S, Deegan TL, Heisler K, Labadie JW, Newcomb WS, Porco JA Jr, van Eikeren P. J Comb Chem. 1999; 1:113-122.(d) Kalinina I, Worsley K, Lugo C,

Mandal S, Bekyarova E, Haddon RC. Chem Mater. 2011; 23:1246-1253.(e) Lee JW, Fuchs PL. Org Lett. 1999; 1:179-181. [PubMed: 10822557]
8. (a) Bandari R, Prager-Duschke A, Kühnel C, Decker U, Schlemmer B, Buchmeiser MB. Macromolecules. 2007; 28:2090-2094.(b) Mayr M, Mayr B, Buchmeiser MR. Angew Chem Int Ed. 2001; 40:3839-3842.(c) Moitra N, Ichii S, Kamei T, Kanamori K, Zhu Y, Takeda K, Nakanishi K, Shimada T. J Am Chem Soc. 2014; 136:11570-11573. [PubMed: 25101719]
9. (a) Curran DP. Aldrichimica Acta. 2006; 39:3-9.(b) Zhang W. Chem Rev. 2004; 104:2531-2556. [PubMed: 15137799] (c) Curran DP. Med Res Rev. 2000; 72:1649-1653.(d) Kim J, Lee WS, Koo J, Lee J, Park SB. ACS Comb Sci. 2014; 16:24-32. [PubMed: 24215277] (e) Curran DP. Pure Appl Chem. 2000; 72:1649-1653.(f) Dandapani S, Curran DP. J Org Chem. 2004; 69:8751-8757.
[PubMed: 15575753] (g) Fustero S, Garcia SA, Chiva G, Sanz-Cervera JF, Del PC, Acena JL. J Org Chem. 2006; 71:3299-3302. [PubMed: 16599635] (h) Leach SG, Cordier CJ, Morton D, McKiernan GJ, Warriner S, Nelson A. J Org Chem. 2008; 73:2753-2759. [PubMed: 18327951] (i) Zhang W. Chem Rev. 2009; 109:749-795. [PubMed: 19146385] (j) Sugiyama Y, Kurata Y, Kunda Y, Miyazaki A, Matsui J, Nakamura S, Hamamoto H, Shioiri T, Matsugi M. Tetrahedron. 2012; 68:3885-3892.(k) Sugiyama Y, Ishihara K, Masuda Y, Kobayashi Y, Hamamoto H, Matsugi M. Tetrahedron Lett. 2013; 54:2060-2062.
10. French JM, Caras CA, Diver ST. Org Lett. 2013; 15:5416-5419. [PubMed: 24128003]
11. Gu L, Lim J, Cheong JL, Lee SS. Chem Commun. 2014; 50:7017-7019.
12. Chepiga KM, Feng Y, Brunelli NA, Jones CW, Davies HML. Org Lett. 2013; 15:6136-6139. [PubMed: 24251986]
13. Ghiaci M, Zarghani M, Khojastehnezhad A, Moeinpour F. RSC Adv. 2014; 4:15496-15501.
14. (a) Alesi S, Di Maria F, Melucci M, Macquarrie DJ, Luque R, Barbarella G. Green Chem. 2008; 10:517-523.(b) Opanasenko M, Stepnicka P, Cejka J. RSC Adv. 2014; 4:65137-65162.(c) Miao T, Wang L. Synthesis. 2008:363-368.(d) Onozawa S, Fukaya N, Saitou K, Sakakura T, Yasuda H. Catal Lett. 2011; 141:866-871.
15. (a) Iwai T, Harada T, Tanaka R, Sawamura M. Chem Lett. 2014; 43:548-586.(b) Tsiavaliaris G, Haubrich S, Merckle C, Blümel J. Synlett. 2001:391-393.
16. (a) Altava B, Burguete MI, Garcia-Verdugo E, Luis SV, Vicent MJ. Tetrahedron Lett. 2001; 42:8459-8462.(b) Heckel A, Seebach D. Chem Eur J. 2002; 8:559-572. [PubMed: 11855704]
17. (a) Maity PK, Kainz QM, Faisal S, Rolfe A, Samarakoon TB, Basha FZ, Reiser O, Hanson PR. Chem Commun. 2011; 47:12524-12526.(b) Rolfe A, Probst D, Volp K, Omar I, Flynn D, Hanson PR. J Org Chem. 2008; 73:8785-8790. [PubMed: 18937412] (c) Stoianova DS, Yao L, Rolfe A, Samarakoon T, Hanson PR. Tetrahedron Lett. 2008; 49:4553-4555. [PubMed: 19319202] (d) Herpel RH, Vedantham P, Flynn DL, Hanson PR. Tetrahedron Lett. 2006; 47:6429-6432.(e) Harned AM, He Song H, Toy PH, Flynn DL, Hanson PR. J Am Chem Soc. 2005; 127:52-53. [PubMed: 15631444] (f) Zhang M, Flynn DL, Hanson PR. J Org Chem. 2007; 72:3194-3198. [PubMed: 17407352] (g) Harned AM, Sherrill WM, Flynn DL, Hanson PR. Tetrahedron. 2005; 61:12093-12099.(h) Zhang M, Moore JD, Flynn DL, Hanson PR. Org Lett. 2004; 6:2657-2660. [PubMed: 15281737] (i) Asad N, Hanson PR, Long TR, Rayabarapu DK, Rolfe A. Chem Commun. 2011; 47:9528-9530.(j) Maity PK, Rolfe A, Samarakoon TB, Faisal S, Kurtz RD, Long TR, Schatz A, Flynn DL, Grass RN, Stark WJ, Reiser O, Hanson PR. Org Lett. 2011; 13:8-10. [PubMed: 21121636] (k) Kainz QM, Linhardt R, Maity PK, Hanson PR, Reiser O.
ChemSusChem. 2013; 6:721-729. [PubMed: 23427021] (1) Harned AM, Zhang M, Vedantham P, Mukherjee S, Herpel RH, Flynn DL, Hanson PR. Aldrichimica Acta. 2005; 38:3-16.
18. (a) Barrett AGM, Cramp SM, Roberts RS. Org Lett. 1999; 1:1083-1086.(b) Ahmed M, Barrett AGM, Braddock DC, Cramp SM, Procopiou PA. Tetrahedron Lett. 1999; 40:8657-8662.(c) Fuchter MJ, Hoffman BM, Barrett AGM. J Org Chem. 2006; 71:724-729. [PubMed: 16408985] (d) Barrett AGM, Cramp SM, Roberts RS. Org Lett. 1999; 1:1083-1086.(e) Barrett AGM, Hopkins BT, Köbberling. J Chem Rev. 2002; 102:3301-3324.(f) Barrett AGM, Hopkins BT, Love AC, Tedeschi L. Org Lett. 2004; 6:835-837. [PubMed: 14986987] (g) Arstad E, Barrett AGM, Tedeschi L. Tetrahedron Lett. 2003; 44:2703-2707.
19. (a) Buchmeiser MR, Atzl N, Bonn GK. J Am Chem Soc. 1997; 119:9166-9174.(b) Buchmeiser MR. Chem Rev. 2000; 100:1565-1604. [PubMed: 11749276] (c) Buchmeiser MR. Bioorg Med Chem Lett. 2002; 12:1837-1840. [PubMed: 12086829] (d) Buchmeiser, MR. In Handbook of

Metathesis. Grubbs, RH., editor. Vol. 3. Wiley-VCH; Weinheim: 2003. p. 226-254.(e) Lubbad SH, Bandari R, Buchmeiser MR. J Chromatogr A. 2011; 1218:8897-8902. [PubMed: 21450301] (f) Wang D, Unold J, Bubrin M, Frey W, Kaim W, Buchmeiser MR. ChemCatChem. 2012; 4:18081812.(g) Buchmeiser, MR. Synthesis of Polymers. Schlueter, DA.; Hawker, CJ.; Sakamoto, J., editors. Vol. 2. 2012. p. 547-586.(h) Buchmeiser MR. Curr Org Chem. 2013; 17:2764-2775.(i) Naumann S, Schmidt FG, Frey W, Buchmeiser MR. Polymer Chemistry. 2013; 4:4172-4181.
20. (a) Bolm C, Dinter CL, Seger A, Höcker H, Brozio J. J Org Chem. 1999; 64:5730-5731.(b) Bolm C, Dinter CL, Schiffers I, Defrere L. Synlett. 2001:1875-1877.(c) Bolm C, Tanyeli C, Grenz A, Dinter CL. Adv Synth Catal. 2002; 344:649-656.
21. (a) Roberts RS. J Comb Chem. 2005; 7:21-32. [PubMed: 15638475] (b) Zhang M, Flynn DL, Hanson PR. J Org Chem. 2007; 72:3194-3198. [PubMed: 17407352] (c) Nguyen MH, Smith AB III. Org Lett. 2013; 15:4258-4261. [PubMed: 23901881] (d) Nguyen MH, Smith AB III. Org Lett. 2013; 15:4872-4875. [PubMed: 24000819] (e) Flynn DL, Hanson PR, Berk SC, Makara GM. Curr Opin Drug Discovery Dev. 2002; 5:571-579.(f) Harned, AM.; Probst, DA.; Hanson, PR. In Handbook of Metathesis. Grubbs, RH., editor. Wiley-VCH; Weinheim, Germany: 2003. p. 361-402.
22. (a) Buchmeiser MR. Chem Rev. 2009; 109:303-321. [PubMed: 18980343] (b) Zou H, Wu S, Shen J. Chem Rev. 2008; 108:3893-3957. [PubMed: 18720998] (c) Timofte RS, Woodward S. Tetrahedron Lett. 2004; 45:39-42.(d) Butterworth AJ, Clark JH, Walton PH, Barlow SJ. Chem Commun. 1996:1859-1860.
23. Rolfe A, Loh JK, Maity PK, Hanson PR. Org Lett. 2011; 13:4-7. [PubMed: 21128690]
24. (a) Long T, Maity PK, Samarakoon TB, Hanson PR. Org Lett. 2010; 12:2904-2907. [PubMed: 20521800] (b) Long TR, Faisal S, Maity PK, Rolfe A, Kurtz RD, Klimberg SV, Najjar MR, Basha FZ, Hanson PR. Org Lett. 2011; 13:2038-2041. [PubMed: 21434675] (c) Faisal S, Farmann U, Maity PK, Rolfe A, Basha FZ, Organ MG, Hanson PR. ACS Comb Sci. 2012; 14:268-272. [PubMed: 22384820]
25. (a) Dolle RE, Le Bourdonnec B, Goodman AJ, Morales GA, Thomas CJ, Zhang W. J Comb Chem. 2009; 11:739-790. [PubMed: 19715292] (b) Fenster E, Rayabarapu DK, Zhang M, Mukherjee S, Hill D, Neuenswander B, Schoenen F, Hanson PR, Aubé J. J Comb Chem. 2008; 10:230-234. [PubMed: 18254600]
26. (a) Paquette, LA. Encyclopedia of Reagents for Organic Synthesis. 1. John Wiley and Sons; New York: 1995. p. 316-318.(b) March, J. Advanced Organic Chemistry. 4. Wiley; New York: 1991. (c) Greene, TW.; Wuts, PGM. Protective Groups in Organic Synthesis. 4. John Wiley and Sons; New York: 2007. p. 102-148.
27. Lopez SS, Dudley GB. Beilstein J Org Chem. 2008; 4(44)
28. (a) Buchmeiser MR, Sinner F, Mupa M, Wurst K. Macromolecules. 2000; 33:32-39.(b) Eder K, Reichel E, Schottenberger H, Huber CG, Buchmeiser MR. Macromolecules. 2001; 34:4334-4341. (c) Buchmeiser MR, Atzl N, Bonn GK. J Am Chem Soc. 1997; 119:9166-9174.(d) Ambrose D, Fritz JS, Buchmeiser MR, Altz N, Bonn GK. J Chromatogr, A. 1997; 786:259-268.
29. Johnson HL, Clark RA. Anal Chem. 1947; 19:869-872.
30. (a) Nguyen ST, Johnson LK, Grubbs RH, Ziller JW. J Am Chem Soc. 1992; 114:3974-3975.(b) Schwab P, France MB, Ziller JW, Grubbs RH. Angew Chem Int Ed. 1995; 34:2039-2041.(c) Schwab P, Grubbs RH, Ziller JW. J Am Chem Soc. 1996; 118:100-110.(d) Huang J-K, Stevens ED, Nolan SP, Petersen JL. J Am Chem Soc. 1999; 121:2674-2678.(e) Kingsbury JS, Harrity JPA, Bonitatebus PJ, Hoveyda AH. J Am Chem Soc. 1999; 121:791-799.(f) Vougioukalakis GC, Grubbs RH. Chem Rev. 2010; 110:1746-1787. [PubMed: 20000700]
31. (a) Xia Y, Qu F, Peng L. Rev Med Chem. 2010; 10:806-821.(b) Cronin S, Chandrasekar PHJ. Antimicrob Chemother. 2010; 65:410-416.(c) Nivoix Y, Ubeaud-Sequier G, Engel P, Leveque D, Herbrecht R. Curr Drug Metab. 2009; 10:395-409. [PubMed: 19519346]
32. (a) Bu X, Jing H, Wang L, Chang T, Jin L, Yongmin L. J Mol Cat A: Chem. 2006; 259:121-124.(b) Chakraborti AK, Nayak MK, Sharma L. J Org Chem. 1999; 64:8027-8030.

Figure 1.
SEM images of $\mathrm{Si}-\mathrm{Nb}$ (left), $\mathrm{Si}_{\mathrm{Si}} \mathrm{OBP}_{\mathrm{n}}$ (middle) and $\mathrm{Si}_{\mathrm{I}} \mathrm{OTP}_{\mathrm{n}}$ (right).

Figure 2.
Various silica-supported Oligomeric Benzyl Phosphate ($\mathrm{Si}_{\mathrm{i}}-\mathrm{OBP}_{\mathrm{n}}$) analogs.

Figure 3.
Various silica-supported Oligomeric Triazole Phosphate ($\mathrm{Si}-\mathrm{OTP}_{\mathrm{n}}$) analogs.

Scheme 1.

Synthesis of silica-supported Oligomeric Benzyl Phosphate ($\mathrm{Si}_{\mathrm{i}} \mathrm{OBP}_{\mathrm{n}}$).

Scheme 2.

Synthesis of silica-supported Oligomeric Triazole Phosphate ($\mathrm{Si}_{\mathrm{i}} \mathrm{OTP}_{\mathrm{n}}$).

Table 1
Benzylation of N-, O - and S-nucleophiles utilizing $\operatorname{Si-OBP}_{\mathrm{n}}$.

Table 2
Benzylation of N-, O-and S-nucleophiles utilizing various $\mathrm{Si}^{-} \mathrm{OBP}_{\mathrm{n}}$ analogs.

Table 3
Triazolation utilizing $\mathrm{Si}_{\mathrm{i}} \mathrm{OTP}_{\mathrm{n}}$ with O - N -and S-nucleophiles.

Table 4
Triazolation of N-, O-and S-nucleophiles utilizing various $\mathrm{Si}^{-} \mathrm{OTP}_{\mathrm{n}}$ Analogs.

Entry	$\mathrm{Si}-\mathrm{OTP}_{\mathrm{n}}$	Nucleophile (RB-XH)	Pdt	Yield (\%)
1	10b, $\mathrm{R}^{4}=4-\mathrm{MePh}$	$4-\mathrm{Br}-\mathrm{PhOH}$	11h	85
2	10b, $\mathrm{R}^{4}=4-\mathrm{MePh}$	2,4,6-CI-PhSH	11i	87
3	10c, $\mathrm{R}^{4}=4-\mathrm{OMePh}$	$4-\mathrm{Br}-\mathrm{PhOH}$	11j	89
4	10c, $\mathrm{R}^{4}=4-\mathrm{OMePh}$	2,4,6-CI-PhSH	11k	86
5	10d, $\mathrm{R}^{4}=$ cyclohexyl	$4-\mathrm{Br}-\mathrm{PhOH}$	111	86
6	10d, $\mathrm{R}^{4}=$ cyclohexyl	2,4,6-CI-PhSH	11m	88

[^0]: *Corresponding Author: phanson@ku.edu.
 Notes
 The corresponding author (PRH) is a member of the Scientific Advisory Board at Materia, Inc.
 ${ }^{\dagger}$ Materia, Inc. 60 N. San Gabriel Blvd. Pasadena, CA 91107.
 ASSOCIATED CONTENT
 Supporting Information. Experimental details and NMR spectral data for new compounds. This material is available free of charge via the Internet at http://pubs.acs.org

