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Abstract

The syntheses of silica-supported oligomeric benzyl phosphates (Si-OBPn) and triazole 

phosphates (Si-OTPn) using ring-opening metathesis polymerization (ROMP) for use as efficient 

alkylating reagents is reported. Ease of synthesis and grafting onto the surface of norbornenyl-

tagged (Nb-tagged) silica particles has been demonstrated for benzyl phosphate and triazole 

phosphate monomers. It is shown that these silica polymer hybrid reagents, Si-OBPn and Si-OTPn, 

can be used to carry out alkylation reactions with an array of different nucleophiles to afford the 

corresponding benzylated and (triazolyl)methylated products in good yield and high purity.

Graphical abstract

INTRODUCTION

The need to rapidly synthesize a wide variety of small molecules in the desired quantities 

with high purities and yields is an important challenge facing drug discovery and 

developmental chemistry. 1 To help address this need, immobilized reagents and scavengers 

have been developed to provide ease of synthesis and to eliminate time-consuming 

chromatographic separation protocols. These reagents have found frequent use in the arena 

of facilitated synthesis and high-throughput chemistry, 2, 3 as well as in the scale-up of 

advanced pharmaceutical intermediates.4 Given the large range of chemistries and 

conditions in which they need to be employed as reagents, scavengers, or catalysts, the field 

has seen a number of new innovations regarding immobilized polystyrene resins, 5 silicas, 6 
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soluble polyethylene glycol (PEG) polymers,7 monolith8 and fluorous-tagged compounds9 

to remove impurities or excess reagents from reaction mixtures. Some of the more recent 

developments reported include silica-supported isocyanide ligands for scavenging 

ruthenium,10 mesocellular silica-supported boronic acids as direct amidation catalysts, 11 

silica-supported rhodium catalysts, 12 N-heterocyclic carbenes, 13 palladium and copper (I) 

catalysts,14 phosphines,15, prolinol and TADDOLs.16 However, for all of their advantages 

immobilized reagents are often limited by several factors, including (i) low load levels (ii) 

heterogeneous reaction kinetics and non-surface diffusion-controlled processes, (iii) 

immobilized reagent swelling, and (iv) poor solvent tolerance. While some of these issues 

have been addressed through the development of technologies such as microgels, Janda-gels 

and micro-porous resins,3 there is still a need for additional materials that can deliver the 

performance of solution-phase reagents with the ease of removal (via filtration, precipitation, 

extraction, etc.) afforded by their immobilization.

We have previously examined a variety of soluble, high-load, oligomeric reagents and 

scavengers derived through the use of ring-opening methathesis polymerization (ROMP) of 

functionalized norbornene and 7-oxanorbornene monomers. 17 These materials, known as 

ROMPgels, build on the pioneering efforts of Barrett,18 Buchmeiser,19 Bolm20 and others;21 

and they have effectively been used to mediate a number of chemical reactions. However, 

while these ROMPgel materials have the advantage of behaving equivalently to traditional 

homogeneous reagents and catalysts, they are generally removed from solution via 

precipitation, which can limit their use in pharmaceutical applications.

As a result, inspired by the seminal work of Buchmeister and coworkers, 22 efforts were 

focused on the synthesis and study of a number of hybrid materials that graft several of the 

ROMPgel materials onto the surface of silica particles.23 Through this grafting process, the 

resulting immobilized ROMP reagents can be removed from solution by simple filtration, 

thus eliminating the precipitation step. In this fashion, silica-supported ROMPgel acid 

chloride, dichlorotriazine, and triphenylphosphine reagents were generated with properties 

nearly identical to the equivalent soluble ROMPgel oligomeric reagents.23

We herein describe our efforts to expand the family oligomeric materials that have been 

grafted onto silica to include ROMP-derived oligomeric benzyl phosphate (OBPn) and 

triazole phosphate (OTPn), which we previously reported as soluble alkylating reagents that 

were used in facilitated library generation.24 Benzylation and triazolation are useful 

diversification reactions in medicinal chemistry, high-throughput chemistry, and diversity-

oriented synthesis (DOS).25 The benzylation of amines and alcohols also serves as one of 

the most utilized protecting group strategies in organic synthesis due to its easy 

incorporation and removal.26 While these uses have spurred development of a number of 

alternative approaches to benzylation27 and triazolation, we believe the generation of the 

analogous silica-oligomeric benzyl phosphate (Si-OBPn) and triazole phosphate (Si-OTPn) 

reagents could find efficient, safe, and cost effective applications in chemical synthesis and 

library production. Key advantages of these reagents, include: (i) their stability at room 

temperature (ii) safety in handling when compared to commercially available benzyl 

bromides or iodides, and (iii) ease of purification via simple filtration through Celite®.
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RESULTS AND DISCUSSION

Initial efforts centered on the synthesis of the silica-grafted oligomeric benzyl phosphate 

reagent, as outlined in Scheme 1, using a modification of the procedure reported by 

Buchmeiser.28 The activated silica 1 (60 Å, 20 μm) was tagged with commercially available 

norbornene silyl reagent [(MeO)3Si-(CH2)2-Nb (2)] followed by capping with 

trimethoxymethylsilane and dimethoxydimethylsilane to afford the norbornene-

functionalized silica (Si-Nb) 3 (Scheme 1). It was observed that, the use of (MeO)3Si-

(CH2)2-Nb (2) dramatically increased the norbornene load of Si-Nb (3), compare to 5-

(bicycloheptenyl)-triethoxysilane [Nb-Si(OEt)3], which was previously used for silica 

tagging.23 By this optimized method, we prepared norbornene-functionalized silica 3 (Si-

Nb) on gram scale with 0.4 mmol/g loading (determined by modified bromine titration 

method).29 With this Si-tagged nanoparticle (3) in hand, a metathesis catalyst-armed 

surface-initiated polymerization was established using the C848 [Grubbs 2nd generation 

catalyst, G-II)30 (20 mol%, based on Si-Nb load) in CH2Cl2 and toluene as solvents, 

followed by addition of the Nb-tagged benzyl phosphate monomer 4 to rapidly generate the 

desired hybrid material 5a, silica oligomeric benzyl phosphate (Si-OBPn). The benzyl 

phosphate monomer 4 was itself easily synthesized in good yield and purity according to 

previously reported methods.24a Norbornene exo-diol 6 was reacted with POCl3 and Et3N in 

the presence of catalytic DMAP to generate the Nb-tagged monochlorophosphate compound 

7 in moderate yields as a white solid (Scheme 1). This material was then reacted with benzyl 

alcohol in NMI, and CH2Cl2 at room temperature to yield 4. The scale-up synthesis of the 

monomeric reagent, as well as Si-OBPn have been carried out on gram scale as stable, free-

flowing powders. The SEM images of Si-OBPn and Si-OTPn silica hybrid materials 

demonstrate the grafting of the corresponding monomer on silica surface and inherent 

morphology of hybrid materials (Figure 1).

The utilization of silica oligomeric benzyl phosphate 5a (Si-OBPn) for benzylation with 

various N-, O-, S- nucleophiles including anilines, amines, phenols, thiols, and sulfonamides 

(Table 1), were next examined. The reactions were carried out in a sealed pressure tube with 

different nucleophiles (1 equiv.), Si-OBPn (1.5 equiv), Cs2CO3 (3.0 equiv.) and NaI (0.2 

equiv.) in THF at 80 °C (oil bath temperature) to yield the products after simple filtration via 

Celite®-SPE to remove Si-phosphate by-product. The corresponding benzylated analogs 

(8a–8h) were isolated in excellent purities (>90%, determined by LC-MS) and yields. We 

have screened wide varieties of nucleophile for benzylation. Initially, a variety of amines and 

phenols (Table 1, entry 1–4) were utilized and then extended to thiophenols and 

sulfonamides (Table 1, entry 5–8) to yield (>90%) of the benzylated products.

With these results in hand, an expanded set of Si-OBPn derivatives was next examined 

(Figure 2). These high load reagents (5b–5d) were synthesized in an analogous fashion to 

the Si-OBPn reagent in Scheme 1 and were also obtained on gram scales as free-flowing 

powders. Utilization of these reagents in substitution reaction with O- and S-nucleophiles 

were next carried out to afford benzylated products (8i–8n) in good yield (>90%) and 

excellent purity after Celite®-SPE filtration (Table 2). Diversification of the Si-OBPn 

reagents via substituting electron withdrawing groups, as well as electron donating groups, 
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on the aryl moiety were next examined, and in all cases, analogous results to Table 1 were 

obtained (see Table 2).

Attention was next placed on the gram-scale generation of silica oligomeric triazole 

phosphate hybrid reagents (Si-OTPn). Triazoles and their derivatives have demonstrated a 

wide variety of biological activity, with many reports focusing on antifungal activity.31 We 

previously reported soluble oligomeric triazole phosphates to construct a wide array of 

triazole-containing compounds. Silica-immobilized oligomeric triazole phosphate 10a (Si-

OTPn) was synthesized via grafting of the Nb-tagged benzyl triazole phosphate monomer 9 
onto the surface of norbornene-functionalized silica (Si-Nb) 3 through the same protocol 

discussed for the synthesis of Si-OBPn in Scheme 1. The product, 10a (Si-OTPn), was 

isolated as a free flowing solid in high-load (1.15 mmol/g) (Scheme 2). The triazole 

phosphate monomer 9 was synthesized in good yield and purity according to previously 

reported methods.24 Phosphorylation of propargyl alcohol with Nb-tagged phosphonyl 

chloride 7, followed by a “Click”-capture event of the corresponding azide, yields the 

desired monomer 9 in an efficient fashion (Scheme 2). The triazole phosphate monomer, as 

well as silica oligomeric triazole phosphate reagents (Si-OTPn) have been synthesized on 

gram scale as stable, free-flowing solids.

With Si-OTPn 10a in hand, the hybrid material was evaluated for (triazolyl)methylation on 

various nucleophiles including amines, phenols, thiophenols and sulfonamides in good 

yields and high purity with chromatography-free purification. The reaction was carried out 

in a pressure tube with different nucleophiles (1 equiv.), Si-OTPn (1.5 equiv.), Cs2CO3 (3.0 

equiv.) and NaI (0.2 equiv.) in DMF at 90 °C for overnight. The reaction mixture was diluted 

with EtOAc and filtered through a pad of Celite® to give the corresponding 

(triazolyl)methylated products. Optimal results were achieved in DMF compared to THF. A 

variety of N-, O-, S-nucleophiles were utilized for nucleophilic substitution reaction with Si-

OTPn triazolating reagent gave the (triazolyl)methylated products (11a–11g) in excellent 

yield and high purity (>85%, determined by LC-MS) (Table 3). In all cases, similar results 

(Table 3) were obtained as compared to Si-OBPn in THF in Table 1.

Building on these results, the project was expanded to the synthesis of additional variants of 

Si-OTPn hybrid reagents (10b–10d, Figure 3) on gram scales as free-flowing powders in an 

analogous fashion to the Si-OTPn reagent in Scheme 2. These Si-OTPn hybrid reagents were 

utilized for (triazolyl)methylation of O- and S-nucleophiles. In all cases, 

(triazolyl)methylated products (11h–11m) were isolated in excellent yield and high purity 

after passing thru a Celite® SPE (Table 4).

In conclusion, the combination of Nb-tagged silica particles and functionalized Nb-tagged 

monomers efficiently yields high-load, hybrid Si-ROMP benzylating and 

(triazolyl)methylating reagents. A metathesis catalyst-armed surface (CAS)-initiated 

polymerization was key to functionalization of units off the silica particle surface. With this 

technology, we developed Si-immobilized oligomeric benzyl phosphate (Si-OBPn) as a 

benzylating reagent and triazole phosphate (Si-OTPn) as a (triazolyl)methylating reagent on 

gram scale as stable, free-flowing powders in all cases, utilizing ROMP of Nb-tagged 

phosphate monomers. SEM imaging was utilized to demonstrate the successful grafting of 
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the corresponding oligomer and the inherent morphology of the hybrid materials. Utilization 

of these reagents for representative small molecule synthesis, under purification free 

protocols, was demonstrated to afford corresponding products in excellent yield and with 

high purity. Since benzylation is a key transformation in many synthetic processes, we are 

currently working on expanding the scope of nucleophiles (i.e., alcohols, bis-nucleophilic, 

etc), as well as the scale on which these transformations can be carried out.

EXPERIMENTAL SECTION

General Information

All reactions were carried out under argon atmosphere. Stirring was achieved with oven-

dried magnetic stir bars. Et2O and CH2Cl2 were purified by passage through the Solv-Tek 

purification system employing activated Al2O3 (Pangborn, A. B.; Giardello, M. A.; Grubbs, 

R. H.; Rosen, R. K.; Timmers, F. J. Safe and Convenient Procedure for Solvent Purification 

Organometallics 1996, 15, 1518–1520). CHCl3 was passed through basic alumina and dried 

over molecular sieves. Et3N was purified by passage through basic alumina or distilled over 

CaH2 and stored over KOH. For Celite-SPE 6 mL empty cartridges were used. All the 

solvents for routine isolation of products and chromatography were reagent grade. Flash 

chromatography was performed using silica gel (300–400 mesh) with the indicated solvents. 

Melting points were recorded on an Electrothermal digital melting point apparatus and were 

uncorrected. IR spectra were recorded on a spectrophotometer using KBr optics. 1H NMR 

and 13C NMR spectra were recorded on 400 or 500 MHz (1H NMR) and 100 or 125 MHz 

(13C NMR) spectrometers using CDCl3 as the solvent and TMS as the internal standard. 

The 1H NMR data are reported as the chemical shift in parts per million, multiplicity (s, 

singlet; d, doublet; t, triplet; q, quartet; m, multiplet), coupling constant in hertz, and number 

of protons. High-resolution mass spectra were obtained using a high-resolution ESI-TOF 

mass spectrometer.

General Procedure for Silica Oligomeric Benzyl Phosphate (Si-OBPn) and Triazole 
Phosphate (Si-OTPn)

Si-Nb (load ~0.4 mmol/g, 1 equiv.) was heated with C848 (G-II, 0.2 equiv.) at 45 °C in 

dichloromethane for 2 hrs under argon. The OBP or OTP monomer was added (50 equiv. w/r 

to cat. G-II) in CH2Cl2 and toluene to the reaction mixture and heated at 45 °C for 

overnight. The reaction mixture was cooled to room temperature and EVE was added, with 

stirring for an additional 1 hour at room temperature. The reaction mixture was filtered and 

washed with mixture of toluene:CH2Cl2 (1:1), and dried over high vacuo pump.

Procedure A: General procedure for different nucleophilic substitution with Si-OBPn

In a sealed pressure tube was added Si-OBPn 5a (1.5 equiv.), followed by addition of sodium 

iodide (0.2 equiv.), Cs2CO3 (3.0 equiv.), and solvent THF (0.2M). The mixture was stirred 

rapidly and then nucleophiles were added. The reaction was sealed under argon and heated 

to 80 °C with stirring for 12 h. After such time, the reaction was cooled to rt and the crude 

mixture was filtered via a Celite®-packed SPE and rinsed several times with a mixture of 

hexanes:EtOAc (1:2). The resulting eluent was concentrated in vacuo to yield the benzylated 

products in good to excellent yields and purities.
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Procedure B: General procedure for different nucleophilic substitution with Si-OTPn

In a pressure tube was added Si-OTPn 10a (1.5 equiv.), followed by addition of NaI (0.2 

equiv.), Cs2CO3 (3.0 equiv.), and solvent DMF (0.2M). The nucleophile was added and the 

resulting mixture was stirred rapidly. The reaction was sealed under argon and heated to 

90 °C w/ stirring for (12–14 hrs) after which time, DMF was removed in vacuo. The crude 

mixture was filtered via celite®-SPE and rinsed with EtOAc. The resulting eluent was then 

concentrated in vacuo to yield the products in good to excellent yields and purities.

1-(benzyloxy)-4-(tert-butyl)benzene (8c)

Utilizing general procedure A, 8c (18.5 mg, 0.077 mmol, 97%) was isolated as a white solid. 

MP: 65 °C; FTIR (neat): 3056, 3024, 2960, 2866, 1610, 1512, 1456, 1242, 1182, 1024 

cm−1; 1H NMR (400 MHz, CDCl3): δ7.46–7.43 (m, 2H), 7.42–7.38 (m, 2H), 7.36–7.30 (m, 

3H), 6.92–6.96 (m, 2H), 5.06 (s, 2H), 1.33 (s, 9H); 13C NMR (126 MHz, CDCl3): δ 156.6, 

143.7, 137.3, 128.5 (2C), 127.9, 127.5 (2C), 126.2 (2C), 114.2 (2C), 70.0, 34.1, 31.4 (3C); 

GC-MS (EI+) calculated for C17H20O 240.15; found 240.1 (M+ 7), 91.0 (100).32a

1-(benzyloxy)-2,4-dichlorobenzene (8d)

Utilizing general procedure A, 8d (30 mg, 0.119 mmol, 98%) was isolated as a thick liquid. 

FTIR (neat): 3031, 2931, 2835, 1597, 1481, 1452, 1382, 1290, 1249, 1060 cm−1; 1H NMR 

(400 MHz, CDCl3): δ 7.47–7.44 (m, 2H), 7.43–7.38 (m, 3H), 7.37–7.33 (m, 1H), 7.18 (dd, J 
= 2.6, 8.7 Hz, 1H), 6.90 (d, J = 8.9 Hz, 1H), 5.16 (s, 2H); 13C NMR (126 MHz, CDCl3): δ 

153.0, 136.1, 130.1, 128.7 (2C), 128.1, 127.5, 127.1 (2C), 126.0, 124.1, 114.8, 71.2; GC-MS 

(EI+) C13H10Cl2O calculated 252.01; found 251.9 (M+ 4), 91.0 (100).32b

Benzyl(2,4,6-trichlorophenyl)sulfane (8e)

Utilizing general procedure A, 8e (21 mg, 0.07 mmol, 98%) was isolated as a yellow solid. 

MP: 112 °C; FTIR (neat): 3087, 2935, 2850, 1583, 1454, 1321, 1116, 1054 cm−1. 1H NMR 

(400 MHz, CDCl3): δ 7.47 (s, 1H), 7.37–7.33 (m, 4H), 7.32–7.39 (m, 2H), 4.15 (s, 2H); 13C 

NMR (126 MHz, CDCl3): δ 136.3, 135.3, 132.0, 131.3, 130.6, 130.0, 129.5, 128.9 (2C), 

128.8 (2C), 127.8, 37.6; GC-MS (EI+) C13H9Cl3S calculated 301.95; found 301.9 (32), 169 

(7), 91.0 (100).

Benzyl(3,4-dimethoxyphenyl)sulfane (8f)

Utilizing general procedure A, 8f (22 mg, 0.085 mmol, 98%) was isolated as a thick liquid. 

FTIR (neat): 2933, 2833, 1595, 1504, 1251, 1228, 1135, 1026 cm−1. 1H NMR (400 MHz, 

CDCl3): δ 7.31 –7.19 (m, 5H), 6.95 (dd, J = 8.3, 2.2 Hz, 1H), 6.0–6.74 (m, 2H), 4.02 (s, 2H), 

3.88 (s, 3H), 3.75 (s, 3H); 13C NMR (126 MHz, CDCl3): δ 148.7 (2C), 138.2, 129.0 (2C), 

128.4 (2C), 127.0, 126.2, 125.3, 115.9, 111.3, 55.9, 55.8, 41.2; GC-MS (EI+) C15H16O2S 

calculated 260.09; found 260.0 (32), 169 (30), 91.0 (100).

N-benzyl-4-bromo-N-butyl-2-fluorobenzenesulfonamide (8g)

Utilizing general procedure A, 8g (24 mg, 0.060 mmol, 99%) was isolated as a thick liquid. 

FTIR (neat): 3089, 3025, 2958, 2931, 1589, 1472, 1456, 1396, 1344, 1161, 1135 cm−1. 1H 

NMR (500 MHz, CDCl3): δ 7.79 (t, J = 7.70 Hz, 1H), 7.43–7.38 (m, 2H), 7.34–7.28 (m, 
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5H), 4.47 (s, 2H), 3.19 (t, J = 7.60 Hz, 2H), 1.35–1.29 (m, 2H), 1.16–1.11 (m, 2H), 0.76 (t, J 
= 7.45 Hz, 3H). 13C NMR (126 MHz, CDCl3): δ 158.44 (1JC–F = 259 Hz), 136.1, 131.8, 

128.6 (2C), 128.2 (2C), 128.0, 127.8 (3C), 120.7 (2J = 25.0 Hz), 51.4, 47.3, 29.7, 19.7, 13.5. 

GC-MS (EI+) C17H19BrFNO2S calculated 399.3; found 399.0 (M+ 3), 401.2 (M+2 2), 355.8 

(60), 357.8 (60), 91 (100).

(S)-2,3-dibenzyl-7-bromo-3,4-dihydro-2H-benzo[b][1,4,5]oxathiazepine1,1-dioxide (8h)

Utilizing general procedure A, 8h (30 mg, 0.066 mmol, 97%) was isolated as a white solid. 

MP: 170 °C. FTIR (neat): 3026, 2921, 2852, 1595, 1552, 1325, 1153, 700 cm−1. 1H NMR 

(500 MHz, CDCl3): δ 7.74 (d, J = 8.5 Hz, 1H), 7.33–7.28 (m, 4H), 7.25–7.19 (m, 5H), 7.17 

(d, J = 1.8 Hz, 1H), 6.92 (d, J = 7.5 Hz, 2H), 4.85 (t, J = 12.0 Hz, 1H), 4.40 (d, J = 14.3 Hz, 

1H), 4.26 (dd, J = 4.5, 13.42 Hz, 1H), 4.09 (d, J = 14.6 Hz, 1H), 3.85 (m, 1H), 2.93 (m, 

2H). 13C NMR (126 MHz, CDCl3): δ 156.1, 137.4, 135.2, 129.8, 130.8, 129.0 (2), 128.7 (2), 

128.6 (2), 128.1 (2), 127.1 (2), 126.7, 126.4, 124.4, 73.7, 62.4, 55.2, 37.9. HRMS calculated 

for C22H20BrNO3SNa (M+Na)+ 480.0245; found 480.0258 (TOF MS).

1-((4-bromobenzyl)oxy)-2,4-dichlorobenzene (8i)

Utilizing general procedure A, 8i (29 mg, 0.088 mmol, 98%) was isolated as a yellow solid. 

MP: 87 °C. FTIR (neat) 3070, 2923, 2866, 1585, 1571, 1480, 1456, 1290, 1262, 1103 

cm−1. 1H NMR (500 MHz, CDCl3): δ 7.52–7.54 (m, J = 8.4 Hz, 2H), 7.40 (d, J = 2.7 Hz, 

1H), 7.32–7.34 (m, 2H), 7.15–7.18 (dd, J = 8.6, 2.4 Hz, 1H), 6.85 (d, J = 8.8, 1H), 5.10 (s, 

2H). 13C NMR (126 MHz, CDCl3): δ 152.7, 135.0, 131.8 (2C), 130.1, 128.7 (2C), 127.5, 

126.3, 124.1, 122.1, 114.7, 70.3. GC-MS (EI+) C13H9BrCl2O calculated 329.92; found 

331.9 (M+2, 2), 169 (100), 90 (25). 32b

(4-bromobenzyl)(2,4,6-trichlorophenyl)sulfane (8j)

Utilizing general procedure A, 8j (25 mg, 0.066 mmol, 94%) was isolated as a white solid. 

MP: 54 °C. FTIR (neat) 2923, 1590, 1487, 1452, 1433, 1323, 1116, 1058, 1012 cm−1. 1H 

NMR (500 MHz, CDCl3): δ 7.44–7.47 (m, 3H), 7.27 (s, 1H), 7.20–7.22 (m, 2H), 4.08 (s, 

2H). 13C NMR (126 MHz, CDCl3): δ 135.6, 134.5, 132.4, 131.9 (2C), 131.4, 130.7, 130.5 

(2C), 130.4, 129.9, 121.7, 37.1. GC-MS (EI+) C13H8Cl3BrS calculated 379.86; found 379.8 

(M+ 5), 381.8 (M+2, 7), 169 (100), 90 (25).

2,4-dichloro-1-((4-fluorobenzyl)oxy)benzene (8k)

Utilizing general procedure A, 8k (24 mg, 0.088 mmol, 96%) is isolated as a thick liquid. 

FTIR (neat) 2931, 1604, 1510, 1483, 1379, 1226, 1060, 823, 730 cm−1. 1H NMR (500 MHz, 

CDCl3): δ 7.41–7.45 (m, 2H), 7.40 (d, J = 2.5 Hz, 1H), 7.15–7.18 (dd, J = 8.6, 2.5 Hz, 1H), 

7.07–7.11 (m, 2H), 6.88 (d, J = 7.5, 1H), 5.10 (s, 2H). 13C NMR (126 MHz, CDCl3): δ 

162.5 (1JC–F = 246.5 Hz) 152.8, 131.8, 130.1, 129.1 (3J = 8.4 Hz, 2), 127.5, 126.6, 124.2, 

115.6 (2J = 21.6 Hz, 2) 114.9, 70.5. GC-MS (EI+) C13H9Cl2FO calculated 270.00; found 

269.9 (M+ 2), 109 (100).
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4-fluorobenzyl)(2,4,6-trichlorophenyl)sulfane (8l)

Utilizing general procedure A, 8l (21 mg, 0.065 mmol, 95%) was isolated as a thick liquid. 

FTIR (neat) 2933, 1600, 1505, 1433, 1323, 1228, 1116, 1058, 837 cm−1. 1H NMR (500 

MHz, CDCl3): δ 7.49 (s, 1H), 7.31–7.34 (m, 2H), 7.29 (s, 1H), 7.01–7.05 (m, 2H), 4.13 (s, 

2H). 13C NMR (126 MHz, CDCl3): δ 163.3, (1JC–F = 247.5 Hz) 135.8, 132.3, 131.3, 131.1 

(4JC–F = 3.6 Hz), 130.7, 130.5 (3J = 8.5 Hz, 2) 130.4, 129.9, 115.7 (2J = 22.3 Hz, 2), 36.9. 

GC-MS (EI+). C13H8Cl3FS calculated 319.94; found 319.9 (M+ 5), 109 (100).

2,4-dichloro-1-((3,5-dimethoxybenzyl)oxy)benzene (8m)

Utilizing general procedure A, 8m (28 mg, 0.089 mmol, 98%) was isolated as a yellow 

solid. MP: 55 °C; FTIR (neat): 2935, 2825, 1598, 1483, 1456, 1292, 1157, 1060 cm−1; 1H 

NMR (500 MHz, CDCl3): δ 7.38 (d, J = 2.5 Hz, 1H), 7.14–7.16 (dd, J = 8.7, 2.4 Hz, 1H), 

6.88–6.85 (d, J = 7.8 Hz, 1H), 6.60 (d, J = 2.2 Hz, 2H), 6.42 (t, J = 2.5 Hz, 1H), 5.09 (s, 1H), 

3.80 (s, 6H); 13C NMR (126 MHz, CDCl3): δ 161.0 (2C), 152.9, 138.5, 130.0, 127.5, 126.1, 

124.0, 114.8, 104.7 (2C), 99.8, 70.9, 55.3 (2C). GC-MS (EI+). C15H13Cl3O2S, calculated 

312.03; found 312.0 (M+, 3), 151.1 (100).

(3,5-dimethoxybenzyl)(2,4,6-trichlorophenyl)sulfane (8n)

Utilizing general procedure A, 8n (20 mg, 0.055 mmol, 94%) was isolated as a white solid. 

MP: 84 °C; FTIR (neat): 2956, 2931, 2830, 1610, 1596, 1454, 1431, 1323, 1205, 1157, 1158 

cm−1; 1H NMR (500 MHz, CDCl3): δ 7.46 (s, 1H), 7.30 (s, 1H), 6.51 (d, J = 2.25 Hz, 2H), 

6.38 (t, J = 2.3, Hz 1H), 4.08 (s, 2H), 3.79 (s, 6H). 13C NMR (126 MHz, CDCl3): δ 160.1 

(2C), 137.5, 136.3, 131.9, 131.3, 130.6, 130.0, 129.4, 106.9 (2C), 99.8, 55.4 (2C), 37.8. GC-

MS (EI+). C15H13Cl3O2S, calculated 361.97 found 361.9 (M+ 3), 151.1 (100).

1-benzyl-4-((3-chlorophenoxy)methyl)-1H-1,2,3-triazole (11a)

Utilizing general procedure B, 1-benzyl-4-((3-chlorophenoxy)methyl)-1H-1,2,3-triazole 11a 
( 50 mg, 0.167 mmol, 91%) was isolated as a white solid. MP: 96 °C; FTIR (neat): 2960, 

2358, 1610, 1511, 1463, 1250, 1184, 1031 cm-1; 1H NMR (400 MHz, CDCl3): δ 7.53 (s, 

1H), 7.43 – 7.35 (m, 3H), 7.29 (dd, J = 4.8, 2.8 Hz, 2H), 7.20 (t, J = 8.1 Hz, 1H), 6.98 – 6.93 

(m, 2H), 6.89 – 6.84 (m, 1H), 5.55 (s, 2H), 5.17 (s, 2H). 13C NMR (126 MHz, CDCl3): δ 

158.9, 144.1, 134.9, 134.4, 130.3, 129.2 (2C), 128.9, 128.2 (2C), 122.7, 121.5, 115.4, 113.1, 

62.2, 54.3. HRMS calculated for C16H15ClN3O (M+H)+ 300.0904; found 300.0906 (TOF 

MS ES+).

1-benzyl-4-((naphthalen-1-yloxy)methyl)-1H-1,2,3-triazole (11b)

Utilizing general procedure B, 11b (53 mg, 0.168 mmol, 90%) was isolated as a light brown 

solid. MP: 94 °C; FTIR (neat): 3409, 2918, 1583, 1458, 1390, 1267, 1238, 1155, 1095 

cm-1; 1H NMR (400 MHz, CDCl3): δ 8.23 (d, J = 8.1 Hz, 1H), 7.82 (d, J = 7.6 Hz, 1H), 7.62 

(s, 1H), 7.54–7.44 (m, 3H), 7.43–7.36 (m, 4H), 7.34 – 7.25 (m, 2H), 6.98 (d, J = 7.6 Hz, 

1H), 5.57 (s, 2H), 5.41 (s, 2H). 13C NMR (126 MHz, CDCl3): δ 153.9, 144.8, 134.5, 129.2 

(2C), 128.8, 128.1 (2C), 127.5, 126.5, 125.8, 125.6, 125.3, 122.6, 122.0, 120.9, 105.4, 62.5, 

54.3. HRMS calculated for C20H18N3O (M+H)+ 316.1450; found 316.1427 (TOF MS ES+).
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1-benzyl-4-(pyrrolidin-1-ylmethyl)-1H-1,2,3-triazole (11c)

Utilizing general procedure B, 11c (48 mg, 0.198 mmol, 84%) was isolated as a light brown 

thick liquid. FTIR (neat): 3307, 2923, 1581, 1448, 1420, 1396, 1238, 1215, 1121, 1008 

cm-1; 1H NMR (400 MHz, CDCl3): δ 7.59 (s, 1H), 7.41–7.33 (m, 3H), 7.30–7.26 (m, 2H), 

5.52 (s, 2H), 3.87 (s, 2H), 2.74–2.67 (m, 4H), 1.89–1.81 (m, 4H). 13C NMR (126 MHz, 

CDCl3): δ 144.6, 134.6, 129.1 (2C), 128.7, 128.1 (2C), 122.9, 54.2, 53.9 (2C), 50.5, 23.4 

(2C). HRMS calculated for C14H19N4 (M+H)+ 243.1610; found 243.1631 (TOF MS ES+).

1-benzyl-4-(((2,4,6-trichlorophenyl)thio)methyl)-1H-1,2,3-triazole (11e)

Utilizing general procedure B, 11e (63 mg, 0.164 mmol, 92%) was isolated as a white solid. 

MP: 137 °C; FTIR (neat): 3369, 2923, 1699, 1456, 1433, 1363, 1242, 1116, 1049, 721 

cm-1; 1H NMR (400 MHz, CDCl3): δ 7.44 (s, 1H), 7.41–7.34 (m, 5H), 7.24–7.20 (m, 2H), 

5.52 (s, 2H), 4.25 (s, 2H). 13C NMR (126 MHz, CDCl3): δ 143.8, 135.1, 134.4, 132.3, 

131.5, 130.7, 130.6, 130.0, 129.2 (2C), 128.9, 128.0 (2C), 122.1, 54.3, 27.8. HRMS 

calculated for C16H13Cl3N3S (M+H)+ 383.9896; found 383.9912 (TOF MS ES+).

1-benzyl-4-(((3,4-dimethoxyphenyl)thio)methyl)-1H-1,2,3-triazole (11f)

Utilizing general procedure B, 11f (53 mg, 0.155 mmol, 94%) was isolated as a white solid. 

MP: 101 °C; FTIR (neat): 2952, 1581, 1502, 1438, 1253, 1228, 1135, 1024 cm-1; 1H NMR 

(400 MHz, CDCl3): δ 7.58–7.32 (m, 3H), 7.20 (dd, J = 6.7, 2.7 Hz, 2H), 7.17 (s, 1H), 6.89 

(dt, J = 5.1, 2.1 Hz, 2H), 6.72 (d, J = 8.2 Hz, 1H), 5.47 (s, 2H), 4.14 (s, 2H), 3.86 (s, 3H), 

3.79 (s, 3H). 13C NMR (126 MHz, CDCl3): δ 149.0, 148.7, 145.5, 134.6, 129.1 (2C), 128.7, 

127.9 (2C), 125.7, 124.8, 121.9, 115.2, 111.4, 55.9, 55.9, 54.1, 30.8. HRMS calculated for 

C18H19N3O2S (M+Na)+ 364.1096; found 364.1063 (TOF MS ES+).

N-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)-2-bromo-N-isopropylbenzenesulfonamide (11g)

Utilizing general procedure B, 11g (47 mg, 0.104 mmol, 89%) was isolated as a colorless 

thick liquid. FTIR (neat): 3134, 2923, 2846, 1703, 1604, 1487, 1456, 1411, 1328, 1220, 

1049 cm-1; 1H NMR (400 MHz, CDCl3): δ 8.14 (dd, J = 7.8, 1.8 Hz, 1H), 7.70, (dd, J = 7.7, 

1.4 Hz, 1H), 7.65 (s, 1H), 7.48 – 7.32 (m, 5H), 7.27 – 7.20 (m, 2H), 5.52 (d, J = 5.1 Hz, 2H), 

4.71 (s, 2H), 4.03 – 3.82 (m, 1H), 1.09 (d, J = 6.8 Hz, 6H). 13C NMR (126 MHz, CDCl3): δ 

147.1, 139.3, 135.6, 134.7, 133.5, 132.5, 129.1 (2C), 128.7, 127.9 (2C), 127.5, 123.6, 120.3, 

54.2, 49.9, 38.6, 21.1 (2C). HRMS calculated for C19H21BrN4NaO2S (M+H)+ 471.0466; 

found 471.0478 (TOF MS ES+)

4-((4-bromophenoxy)methyl)-1-(4-methylbenzyl)-1H-1,2,3-triazole (11h)

Utilizing general procedure B, 11h (52 mg, 0.145 mmol, 85%) was isolated as a white solid. 

MP: 103 °C; FTIR (neat): 3087, 2920, 1589, 1490, 1384, 1282, 1242, 1022, 825, 757 

cm−1. 1H NMR (400 MHz, CDCl3): δ 7.49 (s, 1H), 7.37 (d, J = 8.8 Hz, 2H), 7.19 (m, 4H), 

6.85 (d, J = 8.8 Hz, 2H), 5.49 (s, 1H), 5.14 (s, 1H), 2.36 (s, 1H). 13C NMR (126 MHz, 

CDCl3): δ 157.3, 144.1, 138.8, 132.3 (2C), 131.3, 129.8 (2C), 128.2 (2C), 122.6, 116.6 (2C), 

113.5, 62.2, 54.1, 21.2. HRMS calculated for C17H17BrN3O (M+H)+ 358.0555; found 

358.0558 (TOF MS ES+).
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1-(4-methylbenzyl)-4-(((2,4,6-trichlorophenyl)thio)methyl)-1H-1,2,3-triazole (11i)

Utilizing general procedure B, 11i (48 mg, 0.120 mmol, 87%) was isolated as a white solid. 

MP: 136 °C; FTIR (neat): 3083, 2920, 1515, 1434, 1323, 1151, 1116, 1058, 871 cm−1. 1H 

NMR (400 MHz, CDCl3): δ 7.43 (s, 1H), 7.38 (s, 1H), 7.31 (s, 1H), 7.18 (d, J = 7.9 Hz, 2H), 

7.12 (d, J = 8.0 Hz, 2H), 5.45 (s, 2H), 4.23 (s, 2H), 2.36 (s, 3H). 13C NMR (126 MHz, 

CDCl3): δ 143.7, 138.2, 135.1, 132.3, 131.5, 131.3, 130.7, 130.5, 130.0, 129.8 (2C), 128.0 

(2C), 122.0, 54.1, 27.9, 21.2. HRMS calculated for C17H15Cl3N3S (M+H)+ 398.0052; found 

398.0063 (TOF MS ES+).

4-((4-bromophenoxy)methyl)-1-(4-methoxybenzyl)-1H-1,2,3-triazole (11j)

Utilizing general procedure B, 11j ( 67 mg, 0.179 mmol, 89%) was isolated as a white solid. 

MP: 98 °C FTIR (neat): 3137, 2933, 1612, 1514, 1487, 1461, 1247, 1176, 1049, 1031, 821 

cm−1. 1H NMR (400 MHz, CDCl3): δ 7.48 (s, 1H), 7.36 (dd, J = 9.6, 2.5 Hz, 2H), 7.23 (d, J 
= 8.6 Hz, 2H), 6.91 (d, J = 8.6 Hz, 2H), 6.85 (d, J = 8.9 Hz, 2H), 5.47 (s, 2H), 5.14 (s, 2H), 

3.82 (s, 3H). 13C NMR (126 MHz, CDCl3): δ 160.0, 157.3, 144.1, 132.3 (2C), 129.8 (2C), 

126.3, 122.4, 116.6 (2C), 114.5 (2C), 113.5, 62.2, 55.4, 53.9. HRMS calculated for 

C17H16BrN3NaO2 (M+Na)+ 396.0324; found 396.0331 (TOF MS ES+).

1-(4-methoxybenzyl)-4-(((2,4,6-trichlorophenyl)thio)methyl)-1H-1,2,3-triazole(11k)

Utilizing general procedure B, 11k ( 50 mg, 0.120 mmol, 86%) was isolated as a yellow 

solid. FTIR (neat): 3082, 2931, 1612, 1514, 1434, 1323, 1249, 1176, 1118, 1058 cm-1; MP: 

88 °C 1H NMR (400 MHz, CDCl3): δ 7.35 (m, 1H), 7.31 (m, 1H), 7.22 (s, 1H), 7.20–7.17 

(m, 1H), 7.09 (dd, J = 8.5, 1.8 Hz, 2H), 6.82 (dd, J = 8.4, 2.1 Hz, 2H), 5.34 (s, 2H), 4.14 (s, 2 

H), 3.74 (s, 3H). 13C NMR (126 MHz, CDCl3): δ 160.0, 143.6, 135.2, 132.3, 131.5, 130.7, 

130.5, 130.0, 129.6 (2C), 126.3, 121.9, 114.5 (2C), 55.4, 53.8, 27.9. HRMS calculated for 

C17H15Cl3N3OS (M+H)+ 414.0001; found 414.0007 (TOF MS ES+).

4-((4-bromophenoxy)methyl)-1-(cyclohexylmethyl)-1H-1,2,3-triazole (11l)

Utilizing general procedure B, 11l (52 mg, 0.148 mmol, 86%) was isolated as a white solid. 

FTIR (neat): 2921, 2852, 1488, 1446, 1384, 1244, 1224, 1112, 1054 cm-1; MP: 90 °C; 1H 

NMR (400 MHz, CDCl3): 7.54 (s, 1H), 7.41–7.35 (ddd, J = 10.2, 3.4, 2.2, 2H), 6.91–6.85 

(ddd, J = 10.2, 3.4, 2.2, 2H), 5.19 (s, 2H), 4.18 (d, J = 7.2 Hz, 2H), 1.94–1.83 (m, 1H), 1.76–

1.61 (m, 5H), 1.29–1.14 (m, 3H), 1.04–0.94 (m, 2H). 13C NMR (126 MHz, CDCl3): δ 157.3, 

143.5, 132.3, 123.1, 116.7, 113.5, 62.3, 56.6, 38.7, 30.5 (2C), 26.0, 25.5 (2C). HRMS 

calculated for C16H21BrN3O (M+H)+ 350.0868; found 350.0870 (TOF MS ES+).

1-(cyclohexylmethyl)-4-(((2,4,6-trichlorophenyl)thio)methyl)-1H-1,2,3-triazole (11m)

Utilizing general procedure B, 11m (48 mg, 0.122 mmol, 88%) was isolated as a white solid. 

FTIR (neat): 2925, 2852, 1450, 1427, 1215, 1153, 1116 cm-1; MP: 141 °C. 1H NMR (500 

MHz, CDCl3): δ 7.46 (s, 1H), 7.39 (d, J = 5.3 Hz, 2H), 4.27 (s, 2H), 4.14 (d, J = 7.2 Hz, 2H), 

1.89–1.79 (m, 1H), 1.76–1.61 (m, 4H), 1.58–1.50 (m, 2H), 1.28–1.09 (m, 4H), 0.95 (qd, J = 

12.2, 3.2 Hz, 2H). 13C NMR (126 MHz, CDCl3): δ 143.1, 135.2, 132.3, 131.5, 130.7, 130.5, 

130.0, 122.6, 56.6, 38.7, 30.4 (2C), 27.8, 26.0, 25.5 (2C). HRMS calculated for 

C16H19Cl3N3S (M+H)+ 390.0365; found 390.0377 (TOF MS ES+).
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Figure 1. 
SEM images of Si-Nb (left), Si-OBPn (middle) and Si-OTPn (right).
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Figure 2. 
Various silica-supported Oligomeric Benzyl Phosphate (Si-OBPn) analogs.
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Figure 3. 
Various silica-supported Oligomeric Triazole Phosphate (Si-OTPn) analogs.
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Scheme 1. 
Synthesis of silica-supported Oligomeric Benzyl Phosphate (Si-OBPn).
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Scheme 2. 
Synthesis of silica-supported Oligomeric Triazole Phosphate (Si-OTPn).
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Table 1

Benzylation of N-, O- and S-nucleophiles utilizing Si-OBPn.

Entry Nucleophile Pdt Yield (%)

1

8a

97

2

8b

95

3

8c

97

4

8d

98

5

8e

98

6

8f

98

7

8g

99

8

8h

9T
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Table 2

Benzylation of N-, O-and S-nucleophiles utilizing various Si-OBPn analogs.

Entry Si-OBPn Nucleophile Pdt Yield (%)

1 5b 2,4-CI-PhOH 8i 98

2 5b 2,4,6-CI-PhSH 8j 94

3 5C 2,4-CI-PhOH 8k 96

4 5c 2,4,6-CI-PhSH 81 95

5 5d 2,4-CI-PhOH 8m 98

6 5d 2,4,6-CI-PhSH 8n 94
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Table 3

Triazolation utilizing Si-OTPn with O-, N-and S-nucleophiles.

Entry Nucleophile Pdt yield (%)

1

11a

91

2

11b

90

3

11c

84

4

11d

83

5

11e

92

6

11f

94

7

11g

89
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Table 4

Triazolation of N-, O-and S-nucleophiles utilizing various Si-OTPn Analogs.

Entry Si-OTPn Nucleophile (RB-XH) Pdt Yield (%)

1 10b, R4 = 4-MePh 4-Br-PhOH 11h 85

2 10b, R4 = 4-MePh 2,4,6-CI-PhSH 11i 87

3 10c, R4 = 4-OMePh 4-Br-PhOH 11j 89

4 10c, R4 = 4-OMePh 2,4,6-CI-PhSH 11k 86

5 10d, R4 = cyclohexyl 4-Br-PhOH 111 86

6 10d, R4 = cyclohexyl 2,4,6-CI-PhSH 11m 88
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