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Abstract

A concise synthetic pathway to the originally assigned structure of lyngbouilloside macrolactone 

(3) is reported. The core macrocycle 3 was synthesized via a phosphate tether-mediated, one-pot, 

sequential RCM/CM/chemoselective hydrogenation reaction, Roskamp homologation, and a high 

yielding Boeckman acylketene cyclization.
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Lyngbouilloside (1)1 and lyngbyaloside B (2)2 are two similar cytotoxic macrolactones 

isolated in 2002 from two different marine cyanobacteria of the genus Lyngbya bouillonii 

(Oscillatoriaceae) (Figure 1). Initial biological screening demonstrated that 1 and 2 were 

modestly cytotoxic against neuroblastoma and KB cells with IC50 values of 17 μM and 4.3 

μM, respectively.3 Spectroscopic analysis and chemical derivatization revealed the structure 

of 1 as a glycosylated 14-membered macrolide (1, Figure 1), containing a six-membered 

cyclic hemiketal, an (E,E)-octadienyl side chain, as well as an L-rhamnose-derived 

pyranoside.
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Lyngbouilloside has attracted significant attention from the synthetic community due to its 

stereochemical ambiguities, along with its biological activity and natural scarcity.4, 5,6 In 

2008, Cossy and coworkers, reported the first stereoselective synthesis of the carbon 

backbone of 1 using a pivotal cross-metathesis (CM) between the C1–C8 and C9–C13 

fragments.4a In 2009, Ley and coworkers reported a synthesis of the lyngbouilloside 

macrolactone core using a late-stage ring-closing metathesis (RCM)/hydrogenation 

sequence for macrocyclization, and also brought to light stereochemical issues regarding this 

natural product.4b In 2012, Cossy and coworkers confirmed the stereochemical issues in 

their first total synthesis of the lyngbouilloside aglycon using a pivotal acylketene 

macrolactonization of a tertiary methyl carbinol (C13 in 1) to circumvent fundamental issues 

associated with macrolactonizations of sterically encumbered alcohols.5 In addition, Cossy 

proposed a revised structure of lyngbouilloside with stereochemical reassignment of the C11 

stereogenic center having an epimeric C11 stereogenic center and thus a syn C10/C11 

relationship.5

In 2014, Fuwa and coworkers7 completed an elegant total synthesis of (−)-lyngbyaloside B, 

employing innovative use of an Abiko–Masamune anti-aldol and a vinylogous Mukaiyama 

to install the requisite stereochemistry in the starting building blocks. In this work, synthetic, 

spectroscopic and molecular modeling studies provided unequivocal stereochemical 

reassignment of (−)-lyngbyaloside B having epimeric stereogenic centers at C10/C11 and 

C13 as shown for the reassigned lyngbyaloside B (2b) (Figure 1) when compared with the 

original assigned structure of lyngbyaloside B (2a). Moreover, the authors tested the titled 

compound and several derivatives and found good inhibition potencies against the 

proliferation of HL-60 cells. The authors also surmise that the structures of (−)-

lyngbouilloside and the natural congeners of (−)-lyngbyaloside B be reconsidered 

accordingly. In this regard, confirmation of the complete stereostructure of 1 is still 

unknown, warranting continued effort for its total synthesis. Recently, we have engaged in 

the synthesis of biologically active natural products using phosphate tether-mediated 

approaches,8,9 and have developed a one-pot, sequential RCM/CM/chemoselective 

hydrogenation protocol mediated by a phosphate tether for the synthesis of advanced polyol 

and polyketide synthons.8c Herein, we report application of a one-pot, sequential RCM/CM/

chemoselective hydrogenation for the concise synthesis of the originally assigned 

macrolactone core of (−)-lyngbouilloside, with easy adaptability to C10/C11 and C13 

diastereomeric analogs.

Retrosynthetic analysis reveals a late-stage installation of the C16–C17 E-olefin and L-

rhamnose-derived pyranoside. The macrolactone core 3 can be constructed by Boeckman 

acylketene cyclization10 of β-keto ester 4, formed via a pivotal one-pot, sequential 

RCM/CM/chemoselective hydrogenative coupling of the phosphate triene (R,R)-5 with the 

advanced C8–C16 fragment 6, followed by Roskamp homologation and deprotection of the 

C13 tertiary carbinol. Triene (R,R)-5 is readily prepared in 2-steps via sequential tripodal 

coupling of the C2-symmetric anti-diene diol (R,R)-7 and allyl alcohol with POCl3 or in one 

step utilizing phosphoramidite chemistry.9a Fragment 6 is obtainable by Brown anti-

crotylation and Sharpless asymmetric epoxidation of commercially inexpensive geraniol (8) 

in a scalable 9-step route (Scheme 1).
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Initial synthetic studies focused on the construction of the C8–C16 fragment 6 from 

Sharpless asymmetric epoxidation11 of geraniol (8) using (−)-DET, TBHP, Ti(OiPr)4, 

followed by regioselective epoxide opening mediated by Red-Al,12 and subsequent 

protection of the 1,3-diol moiety to afford the PMP acetal 9 as a 1:1 ratio of diastereomers in 

excellent yield (Scheme 2). Ozonolysis of compound 9, followed by in situ reductive 

workup, afforded alcohol 10 in 87% overall yield. Silylation of the primary alcohol 10 with 

TBSCl generated the corresponding silyl ether and subsequent regioselective opening of the 

PMP-acetal with DIBAL-H produced primary alcohol 9 in 89% yield. Parikh-Doering 

oxidation13 of the resulting alcohol 11, followed by reagent-controlled enantioselective 

Brown anti-crotylation, 14 furnished desired homoallylic alcohol 12 in good yield. Silylation 

of homoallyl alcohol 12 afforded the required C8–C16 fragment 6 in 95% yield.

Construction of subunit 13 was achieved from triene (R,R)-5 via a one-pot, sequential 

RCM/CM/chemoselective hydrogenation with the C8–C16 fragment 6 as the CM partner 

(Scheme 3). Following the previously reported optimized conditions for RCM/CM/“H2”,8c 

triene (R,R)-5 was first subjected to RCM reaction with the second generation Hoveyda–

Grubbs catalyst (HG-II)15 (6 mol %) in CH2Cl2 (0.007 M), and upon completion, the CM 

partner 6 in DCE (0.1 M) was added. The reaction was continued at 90 °C with 

simultaneous evaporation of low boiling solvent from the previous reaction to reach optimal 

concentration (~ 0.1 M) for cross-metathesis (Scheme 3). Subsequent chemo-selective 

diimide reduction, by simple addition of o-NBSH16 and Et3N into the reaction mixture, 

provided the bicyclic phosphate phosphate 13 in 65% overall yield, representing an 87% 

average yield/reaction in the one-pot, sequential protocol. Next, a Pd-catalyzed, reductive 

allylic transposition was carried out to regioselectively open the phosphate tether with 

hydride [Pd(OAc)2/Bu3PHBF4, HCOOH, Et3N, then methylation with TMSCHN2 in 

MeOH] affording monocyclic phosphate ester in excellent overall yield (82%) and 

regioselectivity. Complete removal of the phosphate tether in the presence of LiAlH4 

provided diol 14 as a single diastereomer in good yield (76%).

With diol 14 in hand, silylation of both alcohols with TESOTf (2,6-lutidine, CH2Cl2) 

generated the differentially protected subunit 15 in quantitative yield (Scheme 4). Oxidative 

cleavage of the terminal olefin in 15 using a modified Johnson-Lemieux protocol developed 

by Jin17 and coworkers (OsO4, NaIO4, 2,6-lutidine), yielded the corresponding aldehyde 

which was immediately subjected to a two-carbon Roskamp homologation18 with ethyl 

diazoacetate in the presence of SnCl4•5H2O to furnish β-keto ester 16 in 76% overall yield 

over the final two steps. Deprotection of the PMB ether by oxidative cleavage using DDQ 

produced the Boeckman cyclization precursor 4 in excellent yield. Pyrolysis of β-keto ester 

4 in toluene under dilute conditions (0.0007 M) using a Dean-Stark condenser with 

azeotropic removal of EtOH afforded macrolactone 3 in excellent yield (90%) using 

Boeckman cyclization conditions previously reported by several in the context of complex 

macrolactonization.5,10

The mechanism of the high yielding Boeckman cyclization of β-keto ester 4 is worth noting 

and presumably proceeds as outlined in Scheme 5.19 Thus, initial formation of acylketene C 
proceeds under thermal conditions from 4, with subsequent addition of an accessible 
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hydroxyl group leading to enol-D and final tautomerization affording the β-keto 

macrolactone 3. Overall, this high yielding cyclization enables macrocyclization from the 

hindered C13 carbinol and circumvents the aforementioned issues noted by Cossy in their 

synthesis of lyngbouilloside aglycon.5

In conclusion, we report a concise route to the originally assigned structure of 

lyngbouilloside macrolactone core 3 that is easily adaptable20 to potential C10/C11 and C13 

variants proposed by the revised structure of lyngbouilloside 1 reported by Cossy and 

coworkers,5 as well as implied in the work of Fuwa in 2014 on the unambiguous 

determination of the closely related structure of lyngbyaloside B (2b).7 Highlights of the 

synthesis include a phosphate tether-mediated, one-pot, sequential RCM/CM/

chemoselective hydrogenation reaction, Roskamp homologation, and a high yielding 

Boeckman acylketene cyclization. Overall, the synthesis is highly modular and will enable 

analog synthesis. Efforts aimed at completing the total synthesis as well as simplified 

analogs are in process and will be reported in due course.
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Figure 1. 
Original proposed structure of (−)-lyngbouilloside (1) and (−)-lyngbyaloside B (2a) and the 

reassigned structure of lyngbyaloside B (2b) by Fuwa.
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Scheme 1. 
Retrosynthetic analysis of (−)-lyngbouilloside.
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Scheme 2. 
Synthesis of C8–C16 fragment.
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Scheme 3. 
Key one-pot RCM/CM/regioselective hydrogenation.
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Scheme 4. 
Synthesis of macrolactone 3.
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Scheme 5. 
Plausible mechanism of Boeckman cyclization.
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