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Abstract
The neoclerodane diterpene salvinorin A is the major active component of the hallucinogenic mint
plant Salvia divinorum Epling & Játiva (Lamiaceae). Since the finding that salvinorin A exerts its
potent psychotropic actions through the activation of opioid receptors, the site of action of
morphine and related analogues, there has been much interest in elucidating the underlying
mechanisms behind its effects. These effects are particularly remarkable, because (1) salvinorin A
is the first reported non-nitrogenous opioid receptor agonist, and (2) its effects are not mediated
through the previously investigated targets of psychotomimetics. This perspective outlines our
research program, illustrating a new direction to the development of tools to further elucidate the
biological mechanisms of drug tolerance and dependence. The information gained from these
efforts is expected to facilitate the design of novel agents to treat pain, drug abuse, and other CNS
disorders.
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Introduction
The inability to adequately control pain is a major problem in medicine and society.1–5

According to the Institute of Medicine, chronic pain affects about 100 million American
adults. This is more people than those affected by diabetes, heart disease and cancer
combined. It has been estimated that the associated costs of pain in the United States exceed
$600 billion dollars per year primarily due to medical treatment and lost productivity. While
these expenidtures are significant, the costs in terms of suffering and quality of life cannot
be adequately quantitated.

Opioid analgesics, such as morphine and its analogs, have been the mainstay for treatment
of pain for thousands of years and are currently the “gold-standard” for pain management.
However, clinicians are conservative in prescribing, and patients are conservative in taking,
opioids due to valid concerns about adverse effects (constipation, respiratory depression,
nausea, tolerance and dependence) as well as social and legal issues. As a result, pain is
often undertreated (more than 65% of patients in nursing homes report inadequate treatment
of pain)6 and patients continue to suffer. Thus, the development of improved opioid
analgesics represents a critically important research objective.
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Opioid analgesics produce their effects by binding to and activitating opioid receptors.
Initially, it was believed that there was one opiate receptor.7 As a result of intensive work
over the last 40 years, we now know that there are three major types of opioid receptors, mu
(μ), delta (δ), and kappa (κ), and all are members of the G-protein coupled receptor
superfamily.8 Each opioid receptor type plays a role in antinociception, in addition to other
biological responses.9 In addition, there is pharmacological evidence for the existence of
additional opioid receptor subtypes, as well as the formation of opioid receptor
heterodimers.10–15 However, current thinking is that clinically used opioids exert their
analgesic effectiveness mostly through their interactions with μ receptors.16

In addition to μ agonists, selective κ and δ receptor agonists have been explored as potential
analgesics that would not have the side effects of morphine and other μ agonists. A number
of clinically used opioids have κ agonist activity in addition to their effects at μ receptors.
However, the use of selective κ agonists is limited due to dose dependent neuropsychiatric
effects including sedation and dysphoria.17–21 The development of chemical and biological
tools has helped to clarify the role of δ receptors in various pain states, as well as mood
disorders.22, 23 However, no δ selective agonist has reached the clinic but progress is being
made towards its development.24

Need for a New Direction
The chemistry and pharmacology of the opium alkaloids morphine (1), codeine (2), and
thebaine (3) (Figure 1) have been extensively investigated for many years.25, 26 While these
studies have produced many clinically useful agents and essential chemical probes for
opioid receptors, new agents are needed to provide greater insight into the mechanisms of
opioid antinociception and opioid addiction. At present, nearly all nonpeptide opioids are
derived from morphine. While the degree and severity may vary among individual members,
agents derived from morphine generally suffer from the same side effects including
tolerance, constipation, and respiratory depression.

As described elsewhere, the investigation of natural products has proven to be an excellent
source of clinical agents for a number of therapeutic areas including pain.27 In addition,
much of what we know about pain processing can be directly attributed to the extensive
investigation of morphine and related compounds. Given that past accomplishments are
often a great predictor of future success, it was surmised that exploring nature might be a
fruitful approach for identifying new opioid receptor probes with the greatest potential for
reduced side effects. Assuming that a new natural product scaffold could be identified with
opioid activity, this would provide an opportunity for new chemical investigation.

Salvinorin A as an Atypical Opioid
Salvia divinorum Epling & Játiva (Lamiaceae) is a mint plant native to Oaxaca, Mexico that
has been used by the Mazatec Indians living there as a divinatory or psychotomimetic
agent.28, 29 The term hallucinogenic or psychotomimetic has been given to several classes of
agents including cannabinoids, lysergic acid derivatives, phenethylamines,
indolalkylamines, other indolic compounds, piperidyl benzilate esters, as well as
phenylcyclohexyl compounds.30 The common theme of all these classes of
pharmacologically active substances is that they alter consciousness, often in dramatic and
unpredictable ways, and in high doses may produce delirium, true hallucinations, loss of
contact with reality, and in some cases death.31 Although the effects of S. divinorum have
been known for centuries, it was not until 2002 that opioid receptors were implicated in its
actions.32
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The principal psychoactive constituent found in S. divinorum is the neoclerodane diterpene
salvinorin A (4) (Figure 2).33, 34 Through large scale screening of human cloned GPCRs 4
was identified as a potent and selective κ opioid receptor agonist.32 This activity was
striking, as it was the first example of a naturally occurring small molecule selective for κ
opioid receptors. In addition, it did not structurally resemble other major classes of non-
peptide opioid receptor ligands, such as the epoxymorphinans, morphinans, orvinols,
benzomorphans, phenylpiperidines, anilidopiperidines, phenylmorphans, arylacetamides,
and nitrobenzimidazoles.35 The most striking structural difference between 4 and these
chemotypes was the lack of a basic nitrogen atom. Up until the discovery of 4, it was
generally accepted that the presence of a positively charged nitrogen atom represented an
absolute requirement for high affinity with opioid receptors.36 The conventional thinking
was that the cationic amino charge of the opioid ligand would form a salt bridge with the
side chain carboxyl group of an aspartate residue located in TM III of the opioid receptor.
However, 4 lacked the potential for this interaction. This suggested that there was a high
probability 4 interacts with opioid receptors in a manner qualitatively different than all other
known opioids. In fact, several recent crystal structures of the opioid receptors with selective
antagonists have nicely corroborated this thinking.37–39

The structure and potential mechanism of 4 as a psychotomimetic was also fascinating.
Previously known targets of psychotomimetics include cannabinoid receptors, NMDA
receptors, cholinergic receptors, and most notably serotonin receptors. As mentioned above,
4 had no appreciable affinity for these known targets. Furthermore, 4 had no structural
similarity to other psychotomimetics such as Δ9-THC, hyoscyamine, phencyclidine (PCP),
lysergic acid diethylamide (LSD), mescaline, dimethyltryptamine (DMT), and ibogaine
(Figure 3).

On the basis of its unique structure as an opioid and as a psychotomimetic, a program was
established to better understand the biological actions of 4 and related neoclerodanes as
opioid ligands and psychotomimetics. It was envisioned that by better understanding the
chemistry and pharmacology of neoclerodanes related to 4, one might be able to develop
novel treatments for pain, drug abuse, and other CNS disorders that lack the detrimental
effects associated with morphine like scaffolds.

Rationale
It is well known that ionic bonds often provide a key anchoring interaction between ligands
and their target. The lack of a readily ionizable group in 4 suggested that hydrophobic
interactions and/or hydrogen bonding were likely to play an important role its interaction
with the κ opioid receptor. However, it was not readily clear what, if any, groups were
necessary for the nature of the high affinity and selectivity of 4. Furthermore, given the lack
of a definitive binding site, as well as its relationship to known ligands, it was apparent that
previous structure-activity relationships of opioids were not likely to be useful. Thus, a
series of chemical probes based on 4 would need to be prepared and evaluated at opioid
receptors to investigate for their usefulness as potential opioid ligands.

In order to conduct a thorough medicinal chemistry campaign, the first initial question that
needed to be answered was how to obtain multigram quantities of the natural product needed
for chemical diversification. Two approaches were considered: (1) total synthesis and (2)
isolation from S. divinorum. Total synthesis is often a fruitful technique and has been used
previously to probe the structure-function of many different natural products. The major
advantage of this approach would be analogues not accessible by an isolation route could be
prepared for testing. However, the major disadvantage of the total synthesis approach was
that it would likely require many steps with a low overall yield. This has subsequently been
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shown in two published routes.40–42 Furthermore, it was anticipated that this approach
would be time-consuming and the ability to more fully investigate the pharmacological
effects of 4 in vivo compared to traditional opioids or other hallucinogens would also be
inhibited. The alternative approach was isolation of the natural product from S. divinorum.
This approach has been used successfully as a starting point with the opium alkaloids and
many natural products with antibiotic or anticancer activity. The advantage of isolation
relies on using readily available S. divinorum leaves due to its largely unscheduled nature at
the time. This is no longer the case as several states including Kansas now treat S.
divinorum as a controlled substance. Further, extracting the source has the benefit of
identifying other naturally occurring congeners to add to structure-activity relationship
studies. Finally, this method was expected to provide information on the basic
pharmacology of 4 in a faster timeframe than total synthesis. Thus, it was decided to explore
methods to isolate 4 and other naturally occurring secondary metabolites from S. divinorum.

The second initial question that needed to be answered was what analogues could or should
be prepared based on 4. As mentioned above, the lack of a readily ionizable group in 4
suggested that hydrophobic interactions and/or hydrogen bonding were likely to play an
important role. Initial analogue design ideas focused on preparing analogues to selectively
probe the importance of existing hydrogen bonding groups, such as the 1-ketone, 2-position
acetyl group, 4-carbomethoxy group, 17-lactone carbonyl, and furanyl oxygen (Chart 1).
Unfortunately, the lack of a readily ionizable group and the presence of several ester
moieties in 4 also indicated that water solubility and metabolic stability were going to be
problematic and analogues with enhanced properties should be prioritized. Given there were
published methods for solubilizing CNS active molecules with poor water solubility
identified from the study of phytocannabinoids, we focused initially on finding analogues
with enhanced stability.

Development of Neoclerodanes
Initial phytochemical investigation of S. divinorum identified the neoclerodane diterpenes
salvinorin A (4) and salvinorin B (5) (Figure 4).33, 34 Later work by several different groups
of investigators isolated salvinorins C – I,43–47 divinatorins A – F,45, 46, 48 and and
salvidivins A – D.46 Our own efforts working with commercially available S. divinorum
leaves identified salvinicins A (6) and B (7).49 The structures of these congeners were
elucidated by spectroscopic techniques and the absolute stereochemistry was assigned on the
basis of single-crystal X-ray crystallographic analysis of 6 and a 3,4-dichlorobenzoate
derivative of 5. Interestingly, 7 exhibited antagonist activity at μ receptors with a Ki of > 1.9
μM. This was the first report of a neoclerodane diterpene with opioid antagonist activity.

Having identified a practical method for extracting 4,50 we set out to explore the chemistry
associated with the natural product. Previous reports had indicated that it would be possible
to selectively hydrolyze the C-2 ester of 4 to 5.34, 51 We were able to identify conditions
whereby the C-2 acetate is selectively removed while retaining the configuration of the
stereogenic centers by treating 4 with Na2CO3 in MeOH.50 This particular transformation is
challenging/low yielding as epimerization of the C-8 position can occur due to breaking of
the C-8/C-9 bond via base-promoted cleavage.51, 52 A number of diverse organic and
inorganic bases have been tried but to date have not resulted in an overall improvement in
the synthesis of 5.52, 53

With a reliable method for the conversion of 4 to 5 in hand, we set out to explore the
structure-activity relationships of the C-2 position. We initially focused on modifications to
explore the steric tolerance of the C-2 position.54, 55 Lacking a receptor-ligand crystal
structure to aid analogue design, we took the approach of systematically changing the
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structure of 4 and observing its effects on opioid affinity and efficacy. Our over-arching
hypothesis was that each neoclerodane was binding in an identical manner at the κ opioid
receptor. While this may or may not be the case, we felt it was a good starting point for our
structure-activity relationship explorations. It was quickly learned that modification of the
C-2 position has clear effects on opioid receptor affinity and activity.56 In particular, we
found that the incorporation of an aromatic group to the C-2 position decreases affinity at κ
receptors but increases affinity for μ receptors.54, 57 This work identified herkinorin (8) as a
neoclerodane with μ agonist activity. In addition, we and others found that the C-2 ester
could be effectively replaced by sulfonates and alkyloxymethyl ethers.52, 54, 55, 58

Interestingly, the sulfonates appear to be binding a manner different than the corresponding
esters based on the observation that parallel changes in structure did not result in parallel
changes in affinity.55 Also, the replacement of the C-2 ester moiety with an ethoxymethyl
ether (9) results in the most potent neoclerodane at κ receptors to date.58

In an attempt to generate more stable salvinorin A analogues, we explored the incorporation
of amides into the C-2 position.57 It was expected that the replacement of the ester linkage
with a corresponding amide would result in enhanced stability to plasma esterases as had
been indicated as a site of ex vivo metabolism.59 In addition, we felt this substitution was
likely to enhance aqueous solubility. Using a several step procedure, we were able to
convert 5 to the 2-amino analogue.57 This then allowed the preparation of various amides
and sulfonamides. Generally, we found that this biosiosteric replacement descreased affinity
for κ opioid receptors. However, this modification did increase affinity for μ opioid
receptors. Combining previous C-2 SAR, we identified benzamide 10 as the highest affinity
and most μ selective neoclerodane described to date.

More recently, we have investigated the structural basis that underlies the increases in
affinity and potency seen with ethoxymethyl ether 9.60 Noting that the ether moiety at C-2 is
relatively flexible and can adopt different conformations when interacting with κ receptors,
we applied the concept of conformational constraint in order to probe this phenomenon.61

We found that constraining the ethoxymethyl ether into a tetrahydropyran ring decreased
affinity for κ opioid receptors. However when constraining the ether into a tetrahydropyran
ring, a new stereocenter is formed. Using a mixture of spectroscopic methods and X-ray
crystallography, we were able to assign the absolute stereochemistry for each epimer.
Biological evaluation revealed the eutomer (11) and distomer (12) and indicated a
preference for the hydrogen of the new stereocenter to be in the β position or R
configuration. Further, we found tetrahydropyran 11 attenuated cocaine-induced drug
seeking behavior comparably to 4 representing the first modified neoclerodane that has
demonstrated anti-addictive capabilities.

It is widely known in medicinal chemistry that furan rings should be avoided in drug
development campaigns due to their potential for hepatotoxicity.62 Due to the presence of a
furan ring, 4 possesses the potential for toxicity. Furthermore, previous studies showed that
teucrin A (Figure 5), a neoclerodane present in germander (Teucrium chamaedrys L.;
Lamiaceae), produced hepatotoxicity in humans likely resulting from the formation of an
enedial formed during metabolism of the furan ring by cytochrome P450 enzymes.63, 64 In
order to reduce the potential of forming reactive metabolites and increase the value of
neoclerodanes as in vivo biological probes for opioid receptors, we sought to find
replacements for the furan ring. Our studies and those of others indicate that the furan ring is
not required for biological activity.56 It should be noted, however, that complete removal of
the furan moiety results in a large reduction in κ opioid receptor affinity compared to 4.65

We have identified conditions that enhance the reactivity of the furan ring in 4 to participate
in a Diels-Alder reaction.66 Further, several of the cycloadduct analogues were themselves
useful as synthetic intermediates as they were able to undergo reductive elimination to
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afford their phenyl ring counterparts. More recently, we found a palladium catalyzed
Liebeskind-Srogl cross-coupling reaction of a thioester derived from 4 and a boronic acid
that occurs at neutral pH and ambient temperature to produce ketone analogs at C-12.67 To
the best of our knowledge, this was the first reported usage of the Liebeskind-Srogl
reaction68 to diversify a natural product scaffold. Using this chemistry, we were able to
prepare the furan-2-yl analog of salvinorin A (13). Interestingly, 13 has similar affinity to 4
suggesting that a hydrogen bond exists from the furanyl oxygen of 13 to the same residue on
the κ receptor as the furanyl oxygen of 4.

Having established a facile isolation of 4, we sought to further explore its in vitro and in
vivo pharmacology. Monkeys trained to discriminate 4 from saline generalized to a number
of structurally diverse κ agonists.69 However, these animals did not generalize to μ or δ
opioid agonists, the classical hallucinogen psilocybin or the dissociative NMDA antagonist,
ketamine. The discriminative effects of 4 were blocked by the opioid antagonist
quadazocine, but not by the serotonergic antagonist ketanserin. This indicates that the
discriminative stimulus produced by 4 is mediated by agonism at κ opioid receptors, and is
different from that elicited by classical hallucinogens. Recently, we found that the p-
glycoprotein inhibitor tariquidar enhances the concentration of 4 in the cerebrospinal fluid as
determined by LC/MS/MS.70 These are the first studies in vivo showing sensitivity of 4 to
modulation by the p-glycoprotein transporter, a major functional component of the blood-
brain barrier.

In collaboration with researchers at Johns Hopkins University, we have begun to evaluate
the dose-related effects of inhaled 4 in individuals with histories of hallucinogen use.71, 72 In
a double-blind, placebo-controlled study, inhaled doses of 4 from 0.375 μg/kg to 21 μg/kg
resulted in orderly dose- and time-related participant ratings of drug strength.71 More
recently, 4 was found to produce a unique profile of subjective and cognitive effects,
including strong dissociative effects and memory impairment, which only partially overlap
with classical hallucinogens.72 As seen previously, dose-related effects peaked at 2 min and
then rapidly dissipated. Collectively, the effects in humans complement those seen in non-
human primates and are relevant to understanding the neurobiology of the kappa opioid
system. In addition, these findings suggest that future studies of 4 can be conducted without
appreciable risk.

Herkinorin
A growing body of pharmacological evidence has shown that structurally similar ligands
acting at the same receptor can elicit different signaling pathways.73 This has been termed
“biased agonism” or “functional selectivity” and is thought to be due to differences in
ligand-induced receptor conformations.74, 75 Such differences at the mu opioid receptor
regulation are physiologically relevant as mice lacking β-arrestin2 display enhanced
antinociception, decreased tolerance, and greatly diminished side effects (constipation and
respiratory depression) following morphine treatment.76 Therefore, the development of
ligands that activate mu receptors in the absence of β-arrestin – μ receptor interactions may
provide valuable tools for studying this pharmacology further and could possibly lead to the
discovery of novel compounds for the treatment chronic pain.

As described above, herkinorin (8) was identified as the first μ selective ligand from the
neoclerodane scaffold.54 Surprisingly, 8 was also found to activate G protein coupling and
ERK1/2 in a naloxone reversible manner yet does not induce receptor-β-arrestin
interactions.77 Additional studies in non-human primates showed that 8 has opioid receptor
mediated effects using prolactin release as a neuroendocrine biomarker of opioid activity in
vivo.78 More recently, we reported that 8 has antinociceptive properties in the rat formalin

Prisinzano Page 6

J Med Chem. Author manuscript; available in PMC 2014 May 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



paw withdrawal test, a model for peripheral antinociception in inflammatory pain.79 Further,
we found that 8 has a reduced tolerance profile and remains efficacious in rats made tolerant
to chronic morphine. These initial findings suggest that therapeutic efficacies may be
attainable and that herkinorin-like compounds may be useful in morphine-tolerant peripheral
pain treatment.

Future Perspective
The goal of identifying opioid analgesics with greatly reduced side effects relative to
morphine has remained elusive likely due to vast efforts exploring the morphine scaffold.
Even with the diversity of structures exhibiting affinity and activity at opioid receptors, there
is still ample opportunity for chemical investigation. With the recent publishing of the
crystal structures of the κ, μ, and δ opioid receptors,37–39 as well as the nociception
receptor,80 a new era in opioid receptor research has begun. The ability to conduct structure-
based drug design on this important class of GPCRs is now possible. At present, all of the
structures have been established with antagonists crystalizing the inactive state of the
receptor. This will be especially useful for the identification of new selective antagonists.
Unfortunately, it may not be as useful for the identification of new agonists at opioid
receptors. However, the concominant use of molecular dynamics and the corresponding
crystal structure is likely to be a more fruitful approach. Regardless, it is easy to envision
new scaffolds being developed, as molecular probes to better understand the mechanisms of
opioid addiction.

The biological basis of how 4 exerts its potent psychotomimetic effects is not completely
understood. It is clear the discriminative stimulus effects of 4 are different than those elicited
by classical hallucinogens and dissociatives and similar to other κ agonists. At present, there
are no animal models that selectively model the psychotomimetic effects of κ agonists.
Whether, all neoclerodanes produce the same type of psychotomimetic effects is an
unresolved question.

As stated above, centrally active κ agonists are currently limited by sedation and dysphoria.
One approach to circumventing these side effects is to identify peripherally restricted
compounds.81–85 The rationale for this approach is that peripherally restricted κ agonists
would be devoid of the dysphoria and sedation seen with centrally acting agents but
analgesic efficacy would be maintained given that activation of peripheral κ receptors also
produces antinociception.86, 87 Given that 4 appears to be a substrate for the p-glycoprotein,
neoclerodanes related to 4 might be a new scaffold for the development of peripherally
restricted κ agonists.

Although the concept of functional selectivity was proposed almost 20 years ago,88 there are
few studies in physiologically relevant cell systems and in vivo. Just as selectivity for
different receptor subtypes became a valuable pharmacological property exploited by
medicinal chemists to specifically target a therapeutic effect and reduce off-target adverse
effects, ligand functional selectivity may become the next major advance in drug
development. In addition to receptor selectivity, ligands that have selectivity for certain
signaling pathways over others would be expected to have enhanced therapeutic efficacy
and fewer adverse effects.

As seen with 8, the development of opioid ligands that direct signaling of the receptors
toward G protein coupling without recruiting β-arrestins may be therapeutically advantages
for producing pain relief with reduced side effects. More recently, TRV130 (14) was found
to have robust G protein signaling, with potency and efficacy similar to morphine, but less
β-arrestin recruitment and receptor internalization.89 Interestingly, 14 was found to have less
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gastrointestinal dysfunction and respiratory suppression than morphine at equianalgesic
doses. The further development of functionally selective opioid ligands offers a new
approach to pain management, as well as to other disorders where opioid receptors have
been implicated.90, 91

In 1929, the eminent pharmacologist Reid Hunt stated that, “A thorough study of the
morphine molecule might show a possibility of separating the analgesic from the habit
forming property … work along these lines would involve cooperation between the highest
type of organic chemists and pharmacologists.”92–94 While much excellent work has been
done under this directive, there are still many unanswered questions and research
opportunities. It is my sincere hope that continued research in this field may yet provide the
holy grail of opioids, a powerful analgesic drug devoid of the side effects associated with
morphine.95

Acknowledgments
I am deeply honored to have been the recipient of the 2012 David W. Robertson Award for Excellence in Medicinal
Chemistry this past August in Philadelphia. I never had the pleasure of meeting Dr. Robertson but I became very
familiar with his excellent work with the selective serotonin reuptake inhibitor fluoxetine during my time as a
graduate student in the laboratory of Dr. Richard Glennon. A special thanks goes to Dr. Kenner Rice for his
support, insights, and for first introducing me to opioid research. As a medicinal and natural product chemist, I have
benefited greatly from working with a number of outstanding pharmacologists on several different research
projects. However, I will always be indebted to my two longtime collaborators, Drs. Richard B. Rothman and
Eduardo R. Butelman for taking a chance and collaborating with a young assistant professor. I would also like to
thank my past and present group members for all their hard work and the National Institute on Drug Abuse for their
financial support of our research efforts. Lastly and most importantly, I would like to thank my wife Deanna for her
love, confidence in my abilities, and unwavering support.

References
1. Fairchild A. Under-treatment of cancer pain. Curr Opin Support Palliat Care. 2010; 4:11–15.

[PubMed: 20040878]

2. Mitera G, Fairchild A, DeAngelis C, Emmenegger U, Zurawel-Balaura L, Zhang L, Bezjak A,
Levin W, McLean M, Zeiadin N, Pang J, Nguyen J, Sinclair E, Chow E, Wong R. A multicenter
assessment of the adequacy of cancer pain treatment using the pain management index. J Palliat
Med. 2010; 13:589–593. [PubMed: 20408764]

3. Phillips DM. JCAHO pain management standards are unveiled. Joint Commission on Accreditation
of Healthcare Organizations. JAMA. 2000; 284:428–429. [PubMed: 10904487]

4. Richardson P, Mustard L. The management of pain in the burns unit. Burns. 2009; 35:921–936.
[PubMed: 19505764]

5. Stewart WF, Ricci JA, Chee E, Morganstein D, Lipton R. Lost productive time and cost due to
common pain conditions in the US workforce. JAMA. 2003; 290:2443–2454. [PubMed: 14612481]

6. Pizzo PA, Clark NM. Alleviating suffering 101--pain relief in the United States. N Engl J Med.
2012; 366:197–199. [PubMed: 22256802]

7. Pert CB, Snyder SH. Opiate receptor: demonstration in nervous tissue. Science. 1973; 179:1011–
1014. [PubMed: 4687585]

8. Waldhoer M, Bartlett SE, Whistler JL. Opioid receptors. Annu Rev Biochem. 2004; 73:953–990.
[PubMed: 15189164]

9. Kieffer BL, Gaveriaux-Ruff C. Exploring the opioid system by gene knockout. Prog Neurobiol.
2002; 66:285–306. [PubMed: 12015197]

10. Pasternak GW. Multiple opiate receptors: deja vu all over again. Neuropharmacology. 2004;
47(Suppl 1):312–323. [PubMed: 15464147]

11. Zaki PA, Bilsky EJ, Vanderah TW, Lai J, Evans CJ, Porreca F. Opioid receptor types and
subtypes: the delta receptor as a model. Annu Rev Pharmacol Toxicol. 1996; 36:379–401.
[PubMed: 8725395]

Prisinzano Page 8

J Med Chem. Author manuscript; available in PMC 2014 May 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



12. Rothman RB. Evidence for heterogeneity of kappa-opioid binding sites: a review of data obtained
using brain membranes depleted of mu and delta binding sites with irreversible agents. Analgesia.
1994; 1:27–49.

13. Rios CD, Jordan BA, Gomes I, Devi LA. G-protein-coupled receptor dimerization: modulation of
receptor function. Pharmacol Ther. 2001; 92:71–87. [PubMed: 11916530]

14. Costantino CM, Gomes I, Stockton SD, Lim MP, Devi LA. Opioid receptor heteromers in
analgesia. Expert Rev Mol Med. 2012; 14:e9. [PubMed: 22490239]

15. Pasternak GW. Preclinical pharmacology and opioid combinations. Pain Med. 2012; 13(Suppl
1):S4–11. [PubMed: 22420604]

16. Pasternak GW. The pharmacology of mu analgesics: from patients to genes. Neuroscientist. 2001;
7:220–231. [PubMed: 11499401]

17. Pfeiffer A, Brantl V, Herz A, Emrich HM. Psychotomimesis Mediated by Kappa Opiate Receptors.
Science. 1986; 233:774–776. [PubMed: 3016896]

18. Martin WR, Fraser HF, Gorodetzky CW, Rosenberg DE. Studies of the Dependence-Producing
Potential of the Narcotic Antagonist 2-Cyclopropylmethyl-2′-hydroxy-5,9-dimethyl-6,7-
benzomorphan (Cyclazocine, WIN-20,740: ARC II-C-3). J Pharmacol Exp Ther. 1965; 150:426–
436. [PubMed: 5322320]

19. Kumor KM, Haertzen CA, Johnson RE, Kocher T, Jasinski D. Human psychopharmacology of
ketocyclazocine as compared with cyclazocine, morphine and placebo. J Pharmacol Exp Ther.
1986; 238:960–968. [PubMed: 3018228]

20. Rimoy GH, Wright DM, Bhaskar NK, Rubin PC. The cardiovascular and central nervous system
effects in the human of U-62066E. A selective opioid receptor agonist. Eur J Clin Pharmacol.
1994; 46:203–207. [PubMed: 8070500]

21. Walsh SL, Strain EC, Abreu ME, Bigelow GE. Enadoline, a Selective Kappa Opioid Agonist:
Comparison with Butorphanol and Hydromorphone in Humans. Psychopharmacology. 2001;
157:151–162. [PubMed: 11594439]

22. Pradhan AA, Befort K, Nozaki C, Gaveriaux-Ruff C, Kieffer BL. The delta opioid receptor: an
evolving target for the treatment of brain disorders. Trends Pharmacol Sci. 2011; 32:581–590.
[PubMed: 21925742]

23. Gaveriaux-Ruff C, Kieffer BL. Delta opioid receptor analgesia: recent contributions from
pharmacology and molecular approaches. Behav Pharmacol. 2011; 22:405–414. [PubMed:
21836459]

24. Nozaki C, Le Bourdonnec B, Reiss D, Windh RT, Little PJ, Dolle RE, Kieffer BL, Gaveriaux-Ruff
C. delta-Opioid mechanisms for ADL5747 and ADL5859 effects in mice: analgesia, locomotion,
and receptor internalization. J Pharmacol Exp Ther. 2012; 342:799–807. [PubMed: 22700431]

25. Casy, AF.; Parfitt, RT. Opioid analgesics: chemistry and receptors. Plenum Press; New York:
1986. p. xvp. 518

26. Nagase H. Chemistry of Opioids Preface. Chemistry of Opioids. 2011; 299:Ix–Xi.

27. Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to
2010. J Nat Prod. 2012; 75:311–335. [PubMed: 22316239]

28. Epling C, Jativa-M CD. A New Species of Salvia from Mexico. Bot Museum Leaflets, Harvard
Univ. 1962; 20:75–76.

29. Tyler VE. The Physiological Properties and Chemical Constituents of Some Habit-Forming Plants.
Lloydia. 1966; 29:275–292.

30. Glennon, RA. Hallucinogens, Stimulants, and Related Drugs of Abuse and their Therapeutic
Potential. In: Lemke, TL.; Williams, DA.; Roche, VF.; Zito, SW., editors. Foye’s Principles of
Medicinal Chemistry. 7. Wolters Kluwer, Lippincott Williams & Wilkins; Philadelphia: 2013. p.
632-657.

31. Nichols DE. Hallucinogens. Pharmacol Ther. 2004; 101:131–181. [PubMed: 14761703]

32. Roth BL, Baner K, Westkaemper R, Siebert D, Rice KC, Steinberg S, Ernsberger P, Rothman RB.
Salvinorin A: A Potent Naturally Occurring Nonnitrogenous Kappa Opioid Selective Agonist.
Proc Natl Acad Sci USA. 2002; 99:11934–11939. [PubMed: 12192085]

33. Ortega A, Blount JF, Manchand PS. Salvinorin, a New Trans-Neoclerodane Diterpene from Salvia-
Divinorum (Labiatae). J Chem Soc, Perkin Trans. 1982; 1:2505–2508.

Prisinzano Page 9

J Med Chem. Author manuscript; available in PMC 2014 May 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



34. Valdes LJ III, Butler WM, Hatfield GM, Paul AG, Koreeda M. Divinorin A, a Psychotropic
Terpenoid, and Divinorin B from the Hallucinogenic Mexican MintSalvia divinorum. J Org Chem.
1984; 49:4716–4720.

35. McCurdy, CR.; Prisinzano, TE. Opioid Receptor Ligands. In: Abraham, DJ.; Rotella, DP., editors.
Burger’s Medicinal Chemistry, Drug Discovery, and Development. 7. Vol. 8. John Wiley & Sons,
Inc; 2010. p. 569-735.

36. Rees, DC.; Hunter, JC. Comprehensive Medicinal Chemistry. Emmet, JC., editor. Pergamon; New
York: 1990. p. 805-846.

37. Wu H, Wacker D, Mileni M, Katritch V, Han GW, Vardy E, Liu W, Thompson AA, Huang XP,
Carroll FI, Mascarella SW, Westkaemper RB, Mosier PD, Roth BL, Cherezov V, Stevens RC.
Structure of the human kappa-opioid receptor in complex with JDTic. Nature. 2012; 485:327–332.
[PubMed: 22437504]

38. Granier S, Manglik A, Kruse AC, Kobilka TS, Thian FS, Weis WI, Kobilka BK. Structure of the
delta-opioid receptor bound to naltrindole. Nature. 2012; 485:400–404. [PubMed: 22596164]

39. Manglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM, Sunahara RK, Pardo L, Weis WI,
Kobilka BK, Granier S. Crystal structure of the micro-opioid receptor bound to a morphinan
antagonist. Nature. 2012; 485:321–326. [PubMed: 22437502]

40. Scheerer JR, Lawrence JF, Wang GC, Evans DA. Asymmetric synthesis of salvinorin A, a potent
kappa opioid receptor agonist. J Am Chem Soc. 2007; 129:8968–8969. [PubMed: 17602636]

41. Hagiwara H, Suka Y, Nojima T, Hoshi T, Suzuki T. Second-generation synthesis of salvinorin A.
Tetrahedron. 2009; 65:4820–4825.

42. Nozawa M, Suka Y, Hoshi T, Suzuki T, Hagiwara H. Total synthesis of the hallucinogenic
neoclerodane diterpenoid salvinorin A. Org Lett. 2008; 10:1365–1368. [PubMed: 18311991]

43. Valdes LJ III, Chang HM, Visger DC, Koreeda M. Salvinorin C, a New Neoclerodane Diterpene
from a Bioactive Fraction of the Hallucinogenic Mexican Mint Salvia Divinorum. Org Lett. 2001;
3:3935–3937. [PubMed: 11720573]

44. Munro TA, Rizzacasa MA. Salvinorins D-F, New Neoclerodane Diterpenoids from Salvia
divinorum, and an Improved Method for the Isolation of Salvinorin A. J Nat Prod. 2003; 66:703–
705. [PubMed: 12762813]

45. Lee DY, Ma Z, Liu-Chen LY, Wang Y, Chen Y, Carlezon WA Jr, Cohen B. New neoclerodane
diterpenoids isolated from the leaves of Salvia divinorum and their binding affinities for human
kappa opioid receptors. Bioorg Med Chem. 2005; 13:5635–5639. [PubMed: 16084728]

46. Shirota O, Nagamatsu K, Sekita S. Neo-clerodane diterpenes from the hallucinogenic sage Salvia
divinorum. J Nat Prod. 2006; 69:1782–1786. [PubMed: 17190459]

47. Ma Z, Lee DY. Revised structure of deacetyl-1,10-didehydrosalvinorin G. Tetrahedron Lett. 2007;
48:5461–5464. [PubMed: 18665199]

48. Bigham AK, Munro TA, Rizzacasa MA, Robins-Browne RM. Divinatorins A-C, new
neoclerodane diterpenoids from the controlled sage Salvia divinorum. J Nat Prod. 2003; 66:1242–
1244. [PubMed: 14510607]

49. Harding WW, Tidgewell K, Schmidt M, Shah K, Dersch CM, Snyder J, Parrish D, Deschamps JR,
Rothman RB, Prisinzano TE. Salvinicins A and B, New Neoclerodane Diterpenes from Salvia
divinorum. Org Lett. 2005; 7:3017–3020. [PubMed: 15987194]

50. Tidgewell K, Harding WW, Schmidt M, Holden KG, Murry DJ, Prisinzano TE. A facile method
for the preparation of deuterium labeled salvinorin A: synthesis of [2,2,2-2H3]-salvinorin A.
Bioorg Med Chem Lett. 2004; 14:5099–5102. [PubMed: 15380207]

51. Koreeda M, Brown L, Valdes LJ III. The Absolute Stereochemistry of Salvinorins. Chem Lett.
1990:2015–2018.

52. Lee DYW, Karnati VVR, He M, Liu-Chen LY, Kondaveti L, Ma Z, Wang Y, Chen Y, Beguin C.
Synthesis and in vitro pharmacological studies of new C(2) modified salvinorin A analogues.
Bioorg Med Chem Lett. 2005; 15:3744–3747. [PubMed: 15993589]

53. Munro TA, Goetchius GW, Roth BL, Vortherms TA, Rizzacasa MA. Autoxidation of Salvinorin A
under Basic Conditions. J Org Chem. 2005; 70:10057–10061. [PubMed: 16292839]

Prisinzano Page 10

J Med Chem. Author manuscript; available in PMC 2014 May 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



54. Harding WW, Tidgewell K, Byrd N, Cobb H, Dersch CM, Butelman ER, Rothman RB, Prisinzano
TE. Neoclerodane diterpenes as a novel scaffold for mu opioid receptor ligands. J Med Chem.
2005; 48:4765–4771. [PubMed: 16033256]

55. Tidgewell K, Harding WW, Lozama A, Cobb H, Shah K, Kannan P, Dersch CM, Parrish D,
Deschamps JR, Rothman RB, Prisinzano TE. Synthesis of Salvinorin A Analogues as Opioid
Receptor Probes. J Nat Prod. 2006; 69:914–918. [PubMed: 16792410]

56. Cunningham CW, Rothman RB, Prisinzano TE. Neuropharmacology of the naturally occurring
kappa-opioid hallucinogen salvinorin A. Pharmacol Rev. 2011; 63:316–347. [PubMed: 21444610]

57. Tidgewell K, Groer CE, Harding WW, Lozama A, Schmidt M, Marquam A, Hiemstra J, Partilla
JS, Dersch CM, Rothman RB, Bohn LM, Prisinzano TE. Herkinorin analogues with differential
beta-arrestin-2 interactions. J Med Chem. 2008; 51:2421–2431. [PubMed: 18380425]

58. Munro TA, Duncan KK, Xu W, Wang Y, Liu-Chen LY, Carlezon WA Jr, Cohen BM, Beguin C.
Standard protecting groups create potent and selective kappa opioids: salvinorin B alkoxymethyl
ethers. Bioorg Med Chem. 2008; 16:1279–1286. [PubMed: 17981041]

59. Schmidt MS, Prisinzano TE, Tidgewell K, Harding W, Butelman ER, Kreek MJ, Murry DJ.
Determination of Salvinorin A in body fluids by high performance liquid chromatography-
atmospheric pressure chemical ionization. J Chromatogr B Analyt Technol Biomed Life Sci. 2005;
818:221–225.

60. Prevatt-Smith KM, Lovell KM, Simpson DS, Day VW, Douglas JT, Bosch P, Dersch CM,
Rothman RB, Kivell B, Prisinzano TE. Potential Drug Abuse Therapeutics Derived from the
Hallucinogenic Natural Product Salvinorin A. MedChemComm. 2011; 2:1217–1222. [PubMed:
22442751]

61. Smissman EE, Nelson WL, LaPidus JB, Day JL. Conformational Aspects of Acetylcholine
Receptor Sites. The Isomeric 3-Trimethylammonium-2-acetoxy-trans-decalin Halides1 and the
Isomeric α,β-Dimethylacetylcholine Halides2. J Med Chem. 1966; 9:458–465. [PubMed:
5968006]

62. Dalvie DK, Kalgutkar AS, Khojasteh-Bakht SC, Obach RS, O’Donnell JP. Biotransformation
Reactions of Five-Membered Aromatic Heterocyclic Rings. Chem Res Toxicol. 2002; 15:269–
299. [PubMed: 11896674]

63. Peterson LA. Reactive Metabolites in the Biotransformation of Molecules Containing a Furan
Ring. Chem Res Toxicol. 2013; 26:6–25.

64. Kouzi SA, McMurtry RJ, Nelson SD. Hepatotoxicity of germander (Teucrium chamaedrys L.) and
one of its constituent neoclerodane diterpenes teucrin A in the mouse. Chem Res Toxicol. 1994;
7:850–856. [PubMed: 7696542]

65. Simpson DS, Katavic PL, Lozama A, Harding WW, Parrish D, Deschamps JR, Dersch CM,
Partilla JS, Rothman RB, Navarro H, Prisinzano TE. Synthetic studies of neoclerodane diterpenes
from Salvia divinorum: preparation and opioid receptor activity of salvinicin analogues. J Med
Chem. 2007; 50:3596–3603. [PubMed: 17580847]

66. Lozama A, Cunningham CW, Caspers MJ, Douglas JT, Dersch CM, Rothman RB, Prisinzano TE.
Opioid receptor probes derived from cycloaddition of the hallucinogen natural product salvinorin
A. J Nat Prod. 2011; 74:718–726. [PubMed: 21338114]

67. Lovell KM, Vasiljevik T, Araya JJ, Lozama A, Prevatt-Smith KM, Day VW, Dersch CM,
Rothman RB, Butelman ER, Kreek MJ, Prisinzano TE. Semisynthetic neoclerodanes as kappa
opioid receptor probes. Bioorg Med Chem. 2012; 20:3100–3110. [PubMed: 22464684]

68. Liebeskind LS, Srogl J. Heteroaromatic thioether-boronic acid cross-coupling under neutral
reaction conditions. Organic Letters. 2002; 4:979–981. [PubMed: 11893201]

69. Butelman ER, Rus S, Prisinzano TE, Kreek MJ. The discriminative effects of the kappa-opioid
hallucinogen salvinorin A in nonhuman primates: dissociation from classic hallucinogen effects.
Psychopharmacology (Berl). 2010; 210:253–262. [PubMed: 20084367]

70. Butelman ER, Caspers M, Lovell KM, Kreek MJ, Prisinzano TE. Behavioral effects and central
nervous system levels of the broadly available kappa-agonist hallucinogen salvinorin A are
affected by P-glycoprotein modulation in vivo. J Pharmacol Exp Ther. 2012; 341:802–808.
[PubMed: 22434677]

Prisinzano Page 11

J Med Chem. Author manuscript; available in PMC 2014 May 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



71. Johnson MW, MacLean KA, Reissig CJ, Prisinzano TE, Griffiths RR. Human
psychopharmacology and dose-effects of salvinorin A, a kappa opioid agonist hallucinogen
present in the plant Salvia divinorum. Drug Alcohol Depend. 2011; 115:150–155. [PubMed:
21131142]

72. Maclean KA, Johnson MW, Reissig CJ, Prisinzano TE, Griffiths RR. Dose-related effects of
salvinorin A in humans: dissociative, hallucinogenic, and memory effects. Psychopharmacology
(Berl). 2013; 226:381–392. [PubMed: 23135605]

73. Urban JD, Clarke WP, von Zastrow M, Nichols DE, Kobilka B, Weinstein H, Javitch JA, Roth BL,
Christopoulos A, Sexton PM, Miller KJ, Spedding M, Mailman RB. Functional Selectivity and
Classical Concepts of Quantitative Pharmacology. J Pharmacol Exp Ther. 2007; 320:1–13.
[PubMed: 16803859]

74. Stallaert W, Christopoulos A, Bouvier M. Ligand functional selectivity and quantitative
pharmacology at G protein-coupled receptors. Expert Opin Drug Discov. 2011; 6:811–825.
[PubMed: 22651124]

75. Goupil E, Laporte SA, Hebert TE. Functional selectivity in GPCR signaling: understanding the full
spectrum of receptor conformations. Mini reviews in medicinal chemistry. 2012; 12:817–830.
[PubMed: 22681252]

76. Schmid CL, Bohn LM. Physiological and pharmacological implications of beta-arrestin regulation.
Pharmacol Ther. 2009; 121:285–293. [PubMed: 19100766]

77. Groer CE, Tidgewell K, Moyer RA, Harding WW, Rothman RB, Prisinzano TE, Bohn LM. An
opioid agonist that does not induce mu-opioid receptor-arrestin interactions or receptor
internalization. Mol Pharmacol. 2007; 71:549–557. [PubMed: 17090705]

78. Butelman ER, Rus S, Simpson DS, Wolf A, Prisinzano TE, Kreek MJ. The effects of herkinorin,
the first mu-selective ligand from a salvinorin A-derived scaffold, in a neuroendocrine biomarker
assay in nonhuman primates. J Pharmacol Exp Ther. 2008; 327:154–160. [PubMed: 18593955]

79. Lamb K, Tidgewell K, Simpson DS, Bohn LM, Prisinzano TE. Antinociceptive effects of
herkinorin, a MOP receptor agonist derived from salvinorin A in the formalin test in rats: new
concepts in mu opioid receptor pharmacology: from a symposium on new concepts in mu-opioid
pharmacology. Drug Alcohol Depend. 2012; 121:181–188. [PubMed: 22119134]

80. Thompson AA, Liu W, Chun E, Katritch V, Wu H, Vardy E, Huang XP, Trapella C, Guerrini R,
Calo G, Roth BL, Cherezov V, Stevens RC. Structure of the nociceptin/orphanin FQ receptor in
complex with a peptide mimetic. Nature. 2012; 485:395–399. [PubMed: 22596163]

81. DeHaven-Hudkins DL, Dolle RE. Peripherally restricted opioid agonists as novel analgesic agents.
Curr Pharm Des. 2004; 10:743–757. [PubMed: 15032700]

82. Vanderah TW, Largent-Milnes T, Lai J, Porreca F, Houghten RA, Menzaghi F, Wisniewski K,
Stalewski J, Sueiras-Diaz J, Galyean R, Schteingart C, Junien JL, Trojnar J, Rivière PJM. Novel d-
amino acid tetrapeptides produce potent antinociception by selectively acting at peripheral κ-
opioid receptors. Eur J Pharmacol. 2008; 583:62–72. [PubMed: 18282565]

83. Floyd BN, Camilleri M, Busciglio I, Sweetser S, Burton D, Wong GY, Kell S, Khanna S, Hwang
S, Zinsmeister AR. Effect of a κ-opioid agonist, i.v. JNJ-38488502; on sensation of colonic
distensions in healthy male volunteers. Neurogastroenterol Motil. 2009; 21:281–290. [PubMed:
18823290]

84. Camilleri M. Novel pharmacology: asimadoline, a κ-opioid agonist, and visceral sensation.
Neurogastroent Motil. 2008; 20:971–979.

85. Arendt-Nielsen L, Olesen AE, Staahl C, Menzaghi F, Kell S, Wong GY, Drewes AM. Analgesic
Efficacy of Peripheral k-Opioid Receptor Agonist CR665 Compared to Oxycodone in a Multi-
modal, Multi-tissue Experimental Human Pain Model: Selective Effect on Visceral Pain.
Anesthesiology. 2009; 111:616–624. [PubMed: 19672186]

86. Stein C. Peripheral Mechanisms of Opioid Analgesia. Anesth Analg. 1993; 76:182–191. [PubMed:
8380316]

87. Stein, C.; Cabot, PJ.; Schafer, M. Peripheral opioid analgesia: Mechanisms and clinical
implications. In: Stein, C., editor. Opioids in pain control : basic and clinical aspects. Cambridge
University Press; New York: 1999. p. 96-108.

Prisinzano Page 12

J Med Chem. Author manuscript; available in PMC 2014 May 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



88. Kenakin T. Agonist-receptor efficacy. II. Agonist trafficking of receptor signals. Trends Pharmacol
Sci. 1995; 16:232–238. [PubMed: 7667897]

89. Dewire SM, Yamashita DS, Rominger DH, Liu G, Cowan CL, Graczyk TM, Chen XT, Pitis PM,
Gotchev D, Yuan C, Koblish M, Lark MW, Violin JD. A G Protein-Biased Ligand at the mu-
Opioid Receptor Is Potently Analgesic with Reduced Gastrointestinal and Respiratory Dysfunction
Compared with Morphine. J Pharmacol Exp Ther. 2013; 344:708–717. [PubMed: 23300227]

90. Carroll FI, Carlezon WA Jr. Development of kappa Opioid Receptor Antagonists. J Med Chem.
2013; 56:2178–2195. [PubMed: 23360448]

91. Lutz PE, Kieffer BL. Opioid receptors: distinct roles in mood disorders. Trends Neurosci. 2013;
36:195–206. [PubMed: 23219016]

92. White, WC. Report of the Committee on Drug Addiction, 1929–1941. National Research Council;
1941.

93. Eddy, NB. The National Research Council Involvement in the Opiate Problem 1928–1971.
National Academy of Sciences; Washington, DC: 1973.

94. Rice, KC. Analgesic Research at the National Institutes of Health: State of the Art 1930s to the
Present. In: Meldrum, ML., editor. Opioids and Pain Relief: A Historical Perspective, Progress in
Pain Research and Management. IASP Press; Seattle: 2003. p. 57-83.

95. Corbett AD, Henderson G, McKnight AT, Paterson SJ. 75 years of opioid research: the exciting
but vain quest for the Holy Grail. Br J Pharmacol. 2006; 147(Suppl 1):S153–S162. [PubMed:
16402099]

Biography
Thomas E. Prisinzano, Ph.D. received his B.S. degree in Chemistry from the University of
Delaware, Newark, DE in 1995 and was awarded a Ph.D. in Pharmaceutical Sciences from
the School of Pharmacy, Virginia Commonwealth University, Richmond, VA in 2000. He
was an Intramural Research Training Award Fellow in the National Institute of Diabetes and
Digestive and Kidney Diseases in Bethesda, MD from 2000 – 2003. Currently, he is
Professor and Chair of the Department of Medicinal Chemistry at the University of Kansas.
His research focuses on the development of novel agents to treat pain, substance abuse and
other CNS disorders through the identification, structure elucidation, and synthesis of
natural products.

Prisinzano Page 13

J Med Chem. Author manuscript; available in PMC 2014 May 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Structures of opium alkaloids morphine (1), codeine (2), and thebaine (3).
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Figure 2.
Structure of salvinorin A (4) and major classes of non-peptide opioid receptor ligands.
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Figure 3.
Structures of salvinorin A (4), Δ9-THC, hyoscyamine, phencyclidine (PCP), lysergic acid
diethylamide (LSD), mescaline, dimethyltryptamine (DMT), and ibogaine.
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Figure 4.
Structures of neoclerodanes 5 – 12 related to 4.
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Figure 5.
Structures of teucrin A, neoclerodane 13, and TRV130 (14).
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Chart 1.
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