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Abstract
Designing proteins with enhanced thermo-stability has been a main focus of protein engineering
because of its theoretical and practical significance. Despite extensive studies in the past years, a
general strategy for stabilizing proteins still remains elusive. Thus effective and robust
computational algorithms for designing thermo-stable proteins are in critical demand. Here we
report PROTS, a sequential and structural four-residue fragment based protein thermo-stability
potential. PROTS is derived from a non-redundant representative collection of thousands of
thermophilic and mesophilic protein structures and a large set of point mutations with
experimentally determined changes of melting temperatures. To the best of our knowledge,
PROTS is the first protein stability predictor based on integrated analysis and mining of these two
types of data. Besides conventional cross validation and blind testing, we introduce hypothetical
reverse mutations as a means of testing the robustness of protein thermo-stability predictors. In all
tests, PROTS demonstrates the ability to reliably predict mutation induced thermostability changes
as well as classify thermophilic and mesophilic proteins. In addition, this white-box predictor
allows easy interpretation of the factors that influence mutation induced protein stability changes
at the residue level.
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INTRODUCTION
The ability to design proteins with enhanced thermo-stability is important both theoretically
and practically.1–8 Protein-based drugs have become increasingly attractive because of their
high efficiency and low side effects. Unfortunately, many native proteins are only
marginally stable under both normal physiological and storage conditions. Drugs based on
proteins are often susceptible to physical and chemical degradation that affects their potency
and safety during manufacturing, transportation, and storage processes.9 Therefore
enhancing the thermo-stability of a protein drug candidate can be a decisive factor in
whether it eventually becomes a marketable pharmaceutical. Enzymes with enhanced
stability are also useful in many biotechnological applications. Such enzymes allow
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catalyzed reactions to be performed at higher temperature, which can lead to more efficient
industrial processes because chemical reactions are intrinsically faster at higher
temperature.7,8

Computational methods for designing proteins with enhanced thermostability are attractive
due to their potential low cost and time-saving properties over current experimental
approaches.10 In general, these methods attempt to define general principles of protein
thermo-stability and apply them to rationally design novel proteins. Despite extensive
studies in the past several years1–3,5; however, a general strategy for stabilizing proteins
remains elusive.11 This is primarily due to the diverse mechanisms contributing to protein
stabilization.12 Thus effective and robust computational algorithms for designing thermo-
stable proteins are still in critical demand.

Thermophiles are organisms which live at elevated temperatures as high as 113°C.5 Thus,
the proteins produced by thermophiles (thermophilic proteins or TPs) are intrinsically more
thermo-stable than their mesophilic counterparts (MPs). Consequently one common
approach to developing thermo-stable proteins is to perform comparative studies of the
sequences and/or structures of TPs and their MPs, in the hope of discovering structural
patterns of protein thermo-stabilization.13–21 For example, Haney et al. found an increased
level of charged residues in TPs22 and Glyakina et al. found that more closely packing of the
external, water-accessible residues.23 These comparative studies have revealed a number of
general trends that produce protein stabilization. It is challenging, however, to identify and
apply suitable rules to predict favorable mutations that may enhance the thermo-stability for
each individual protein.

Another approach is to use force-fields and potentials, either general purpose ones or those
specifically developed for predicting protein stability, to predict mutation induced thermo-
stability changes. For example, FoldX provides a quantitative estimation of the contributions
of specific interaction to protein stability and has been benchmark-tested on a large set of
point mutations.24 Gu et al. developed eScape for analyzing the protein energy lanscape of a
protein sequence and showed its correlation with protein stability across proteomes between
mesophiles and thermophiles.25,26 Other notable approaches include LSE,27 EGAD,28

DFIRE,29 and ERIS.30 ROSSETA, a suite of software programs well-known for its use in
protein structure predictions, also has the capacity to make thermostability predictions.2

In recent years, data mining technologies employing various machine learning algorithms
have increasingly attracted attention. Algorithms such as support vector machines,31–34

neuronal networks,35 or multiple regression and classification techniques,36,37 have been
used for predicting protein stability changes induced by mutations. The general procedure of
machine learning approaches is to train predictive models based on available experimental
data using features (properties) such as substitution types, secondary structure, solvent
accessibilities, and the presence of neighboring residues. These approaches hold great
promises because they may be used to discover subtle patterns governing mutation induced
stability changes and protein stability in general. The drawback associated with these types
of approaches is also obvious because these models were trained and tested on mutations
from a relatively small set of proteins due to the lack of availability of experimental data at
the time of their construction.30 For example, Cheng et al. developed a support vector
machine predictive model based on 1023 mutations in 36 proteins.32 This number is rather
small if one considers the fact that there are 380 different types of single mutations. As
Dokholyan et al. pointed out, “The improvement of the prediction accuracy relies on the
available experimental stability data for parameter trainings. It is questionable whether
parameters obtained from these trainings are transferable to other protein studies”.30 Thus
the robustness of these methods needs to be further validated on larger datasets.
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Here we report PROTS, a novel sequential and spatial fragment based PROtein Thermo-
Stability potential, which integrates TP/MP comparative analysis and experimental mutation
data mining. We create a comprehensive and non-redundant set of high-resolution protein
structures of TPs and MPs. Fragments consisting of four amino acid residues were chosen as
the atomic units for determining the overall thermo-stability of proteins. The frequencies of
sequential tetrapeptides and spatial Delaunay tetrahedrons (DT)38 in TPs, MPs, and protein
mutants are analyzed, and a lookup table is created for calculating the PROTS potentials of
proteins and their mutants. We suggest that these two types of data can be integrated
because HP/MP orthologs are essentially equivalent to mutants of each other.

Structural information can generally improve the performance of protein property prediction
algorithms. The vast majority of proteins, however, lack solved structures. Fortunately,
current state-of-the-art protein homologous modeling algorithms are able to produce
practically useful structural models.39 In this work, we test the PROTS potential in homolog
models, created using the I-TASSER algorithm,40–42 of 540 pairs of TP/MP orthologs.43

In this work, we introduce hypothetical reversed mutations to test the robustness of
computational methods for predicting protein stability changes upon mutations. Usually
protein stability changes upon mutations are experimentally measured through changes in
the melting temperature (ΔTm) or alteration of folding free energies (ΔΔG) between a wild
type protein and its mutant. Existing protein stability predictors use one or the other as the
metric for stability changes. Both metrics are thermodynamic parameters and thus state
functions.44 Therefore, the ΔTm of a mutation from a wild type protein to its mutant
(ΔTmWt→Mu) equals the negated ΔTm of a hypothetical reversed mutation (from the mutant
to the wild type protein, ΔTmMu→Wt):

(1)

(2)

A robust predictor should treat ΔTm and ΔΔΔG as thermodynamic parameters and be able
to achieve identical or at least similar performance on hypothetical reversed mutations to the
forward mutations. Our study described below indicates that these tested machine learning
algorithms are not robust in such a test.

In the following sections, we describe the applications of the potential to predicting stability
change upon mutations, as well as discriminating MP/TP native structures and homolog
models. We will also present a comparison of PROTS to several other relevant potentials or
algorithms, in the classification of thermophilic/mesophilic proteins and the prediction of
protein stability changes upon mutations. In all cases, PROTS compares favorably. We
describe the procedure of collecting training and test datasets, and then the construction of
the lookup table used for computing the PROTS potential in the Experimental Procedures.

MATERIALS AND METHODS
Nonredundant TP/MP native structures

In this study, we use a collection of nonredundant 1020 TP and 4742 MP structures that was
previous used in developing distance-dependent statistical potentials for discriminating TPs
and MPs and the procedure was described previously.45 Table I in Text S1 provides a
complete list of the organisms and distribution of these proteins in each organism.
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Structural modeling of 540 TP/MP ortholog pairs
Structural models of 540 TP/MP ortholog pairs, which did not have structures in the PDB
library, are predicted using I-TASSER.40–42 These ortholog pairs were previously used in
sequence-based TP/MP classification and relative thermostability prediction.43 I-TASSER is
a hierarchical approach to both template-based and ab initio modeling of protein structures,
and it was ranked as the best methods for automated protein structure prediction in
communitywide blind experiments, CASP7 and CASP8.46,47 For a given target sequence, I-
TASSER first identifies template structure and sequence-structure alignments by LOMETS,
a locally installed meta-threading algorithm including 9 start-of-the-art threading
programs.48 Continuous fragments of length >5 residues are then used to reassemble the
global topology of a protein under the guide of consensus restraints from multiple threading
templates. The structural assembly is performed by replica exchange Monte Carlo
simulations. The simulation trajectory decoys are then clustered to identify lowest free
energy Cα-represented models using SPICKER.49 Finally, all-atom models are constructed
based on the reduced Cα model using REMO through optimizing the hydrogen-bonding
network.50

The accuracy of the I-TASSER models can be reliably estimated by the confidence score
(C-score) which is a combination of the Z-score of the threading templates in LOMETS and
the structure density of SPICKER. In a recent large benchmark study,51 it was shown that
the Pearson correlation coefficient of C-score and the TM-score (a measure of structural
similarity to the native structure52) is 0.91. For these 540 TP/MP ortholog pairs, there are
97% of cases where the C-score is higher than −1.5, a cutoff for I-TASSER models of
correct topology; there are 99% of cases where there is at least one threading template which
has the Z-score higher than the inherent Z-score cutoff (meaning the template is a significant
hit in threading). Thus, the majority of I-TASSER models are anticipated to have correct
topology, which guarantees the quality of corresponding structure-based analyses.

Mutation datasets
We collect a set of point mutations with known melting temperatures (Tm) from the
Protherm database.53 Mutations with absolute ΔTm less than 1°C are excluded because such
small changes may not be statistically significant.54 For mutations with multiple ΔTm
values, we use the median ΔTm of these mutations if the sign of all ΔTm values is consistent
and excluded them otherwise. The final dataset includes 1146 mutants from 100 different
wild type proteins. These proteins are clustered using BLASTClust55 with a sequence
identity threshold of 30%. We obtain 84 distinct clusters and then split them into five
groups, each with approximately the same number of mutations, for cross validation. In the
cross validation test, mutations in four out of five groups are used for training and the
mutations in the remaining group are used for testing. This procedure is repeated four more
times until every mutation is used once.

We also obtained a set of point mutations with known free energy changes (ΔΔG) from the
literature for testing purposes.11 This dataset contains 2156 single-point mutations from 84
wild type proteins and was previously used in a comparative study of different approaches to
predict mutation induced stability changes.11

In addition, a set of wild type proteins and their mutants, all with known structures, were
collected from the Protherm database. We only consider structure pairs with known ΔΔG of
the mutations with resolution of protein structures better than 2.2 Å. There are 155 structure
pairs, including 140 for single mutations, originated from nine different wild type proteins in
the dataset (Table II in Text S1).
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Hypothetical reversed mutations as testing datasets
Currently available mutation induced stability change data, especially those available in the
Protherm database,53 have been widely used in protein stability prediction algorithm
development. Therefore using this data to test existing algorithms may not provide an
accurate test of performance because of the potential overfitting problem. In this study we
adopt a novel approach to construct testing datasets by using hypothetical reversed
mutations based on the fact that the melting temperature and free energy are thermodynamic
state functions [Eqs. (1,2)].

Secondary structure and solvent accessibility assignment
We use DSSP56 to assign the secondary structure states and solvent accessible status of all
residues in proteins. Each residue is assigned to one of the three classes of secondary
structure (helix/strand/coil). We use three levels of solvent accessibility: buried,
intermediate, and exposed residues. The solvent accessible area ratio (normalized by the
maximum solvent accessible area of each amino acid) of a buried residue is less than 0.25
and an exposed residue is larger than 0.5. All others are assigned as intermediate residues.

PROTS
Two types of four-residue fragments in proteins are used to calculate the PROTS potential.
The first type includes all 204 sequential tetrapeptides (abbreviated as SEQ), the full
permutation of four amino acids. The other comprises the 8855 spatial DTs,38 the exhaustive
combination of four amino acids.

All DTs are grouped into three categories according to the number of the continuously
sequential residues in the DTs. Type D43 contains the DTs formed by at least three
continuous residues. Type D2 contains at least one two-continuous-residues motif but not
extending to three continuous residues. Type D1 is formed by four non-neighboring
residues.38,57,58 We only include the DTs with maximal edge equal or less than 12 Å.59

Since the structures of mutants are usually unavailable, we assume that point mutations do
not cause significant conformational changes and therefore the structures of mutants are
created by simply replacing the wild type residues with mutated residues.

Each sequential fragment in PROTS has 13 features and each spatial fragment has 7 DT
features. The 13 sequential features include seven potential terms [calculated by Eq. (6)]
including dS(occurrence, Wi), dS(helix, Wi), dS(strand, Wi), dS(coil, Wi), dS(expose, Wi),
dS(bury, Wi), dS(intermediate, Wi), and six propensity terms including dD(helix, Wi),
dD(strand, Wi), dD(coil, Wi), dD(expose, Wi), dD(bury, Wi), and dD(intermediate, Wi). The
7 DT features include dS(occurrence_DT, Wi), dS(D43, Wi), dS(D2, Wi), dS(D1, Wi) and
the propensity terms dD(D43, Wi), dD(D2, Wi) and dD(D1, Wi).

The occurrence probability of a given structural feature K (e.g. helix, strand, coil) for a
fragment Wi in a given training dataset X, PX(K, Wi), is calculated using Eq. (3):

(3)

Here i runs over all possible four-residue fragments and NX(K, Wi) is the number of
fragments Wi for a feature K in a given dataset X. PX(occurrence, Wi) is the occurrence
probability of the fragment Wi in the dataset X. The propensity for the Wi in the structure
state indicated by feature K is defined as

Li et al. Page 5

Proteins. Author manuscript; available in PMC 2012 July 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(4)

We also calculate the Shannon entropy of all fragments defined as

(5)

The potential contribution of feature K of a fragment Wi, dS(K, Wi) is defined as:

(6)

Here T and M are the sets of TPs and MPs, respectively. Using Eq. (6), we calculate the
potential contributions of all features of all fragments from native protein structures.
Similarly, we can calculate the propensity difference dD(K, Wi). The Shannon entropy is not
used for propensities because they distribute over a small number of structural features while
the four-residue fragments are distributed over a large number of types (>103).

TP and MP orthologs are essentially mutants with multiple mutations of each other. Thus in
principle TP/MP and mutation data are equivalent. We classify all fragments involved in
mutations into stabilizing or destabilizing fragments according to the thermo-stability
changes caused by the mutations. The stabilizing (ST) fragments are those found in mutants
in stabilizing mutations or from wild type proteins in destabilizing mutations. The
destabilizing (DE) fragments are from mutants in destabilizing mutations or from wild type
proteins in stabilizing mutations. The Eq. (6) is revised to

(7)

Here the first two terms are derived from native TP and MP structures and the last two are
calculated from the point mutation dataset. ST(K) and SM(K) are the potential terms
corresponding to the most popular four-residue fragments from TPs and MPs, respectively.
The factors δST(Wi) and δDE(Wi) are used to address the thermo-stability preference of
fragments based on the point mutation dataset:

(8)

Here, the denominator is the total number of occurrences of a given fragment in the training
dataset, Wt and Mu represent wild type proteins and mutants, respectively.

The thermo-stability potential P for a given protein is calculated using:

(9)

where L is the number of residues in the protein, i runs over all possible sequential and DT
spatial fragments, and K includes all 13 sequential and/or 7 DT features.

Since the stability change equals the relative stability difference between mutants and their
wild type proteins, the PROTS potential change of a mutation can be calculated by
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(10)

The weights αK and βK, the relative contributions of various terms, for the PROTS potential
are optimized through maximizing the Pearson correlation coefficient between the predicted
stability change ΔP and the experimental observed ΔTm values based on mutations in the
training set. The correlation coefficient R is defined as

(11)

where the numerator is a summation over all mutations in the training dataset, 〈 〉 and Var( )
are the mean values and the variance of the variable enclosed.

The PROTS potential can be used to predict thermostability changes whether the protein
structure is available or not. All 20 features are used for proteins with structures while only
13 sequential features are used without structures (PROTS_SEQ).

Algorithms used for comparison
To evaluate the performance of PROTS, we compare it to several existing state-of-the-art
algorithms for predicting mutation induced thermo-stability changes. FoldX (version 3.0
beta3) is a quantitative estimate of the contributions of interactions to protein stability with a
benchmark test on a large set of point mutations.24 LSE is a statistical local structure entropy
derived from representative protein domains, which has demonstrated strong correlation
with protein thermostability.27 MUpro is a support vector machine (SVM) based predictor at
sequence level for the variation of folding free energy (ΔΔG) upon point mutations.32 I-
Mutant2.0 is a SVM based predictor using structure and sequence information for ΔΔG
prediction.31 EGAD is a force filed based empirical approach to calculate protein stability
with rotamer swapping on a fixed backbone scaffold which was shown reliable predictions
for more than 1500 mutations.28

Performance metrics
The discrimination of thermophilic/mesophilic proteins and stabilized/destabilized mutations
can be regarded as a binary classification problem. We generate the receiver operating
characteristic (ROC) curve according to the predicted potentials for TPs and MPs, or the
potential difference between wild type proteins and their mutants. ROC is a plot of the true-
positive ratio (sensitivity) against the false-positive ratio (1−specificity). The area under an
ROC curve (AUC) represents the trade-off between sensitivity and specificity. The accuracy
of the classification defined as

(12)

We calculate the accuracy at a fixed specificity of 0.80 so that we can directly compare the
accuracies of the different models. In this equation, TP, TN, FP, FN stand for true positive,
true negative, false positive, and false negative, respectively. A true case represents the class
of a protein has been correctly identified. A positive case represents the class of TPs or
stabilizing mutations.
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We also perform regression analysis of predicted PROTS changes against the ΔTm or ΔΔG
of mutations. The standard regression coefficient R defined in Eq. (11) is used as a metric of
the regression performance.

RESULTS AND DISCUSSION
In this section, we first describe parameterizing the PROTS potential based on standard
fivefold cross validation in the 1146 point mutations with ΔTm measurements. This
potential is then tested in discriminating native TP/MP structures. We also compare the
prediction performance over a large set of point mutations with other algorithms.

Cross validation
We use a standard fivefold cross validation to optimize the weights of all terms in Eq. (9).
The absolute values of all weights are restricted to the range of 0–1. We randomly assign an
initial weight to each of αK and βK in Eq. (9) and then calculate the correlation coefficient
R-value. The weights are then randomly updated and the R-value is recalculated. The new
weights are kept only if the R-value increased; otherwise the weights are rolled back to the
previous values. This procedure is repeated until the R-value reaches a stable plateau. The
optimization procedure of the R-values is illustrated in Figure 1 in Text S1. After 5 × 106

steps of optimization, the correlation coefficient reaches 0.653 ± 0.020 in the fivefold cross
validation. The quite small error indicates the performance of all classifiers is consistent.

Using the optimized weights in each training fold, we calculate the potentials of mutations in
the corresponding holdout testing set for classification and regression analysis. We then
calculate the regression R-value of the predicted values against experimentally observed
ΔTm values. The binary classification analysis is performed using ΔTm = 0 as the threshold
to classify mutations as stabilizing or destabilizing. In addition, we use other algorithms to
predict ΔTm of all 1146 point mutations and then perform the same regression and
classification performance analysis. Both the regression and the classification results are
plotted in Figure 1 and summarized in Table I. PROTS clearly results in favorable
classification performance over the other algorithms. For the regression, PROTS also
achieves higher correlation coefficients than other methods after mutations used as training
data are removed.

The final optimized weights from all five folds are quite similar. We therefore build the final
PROTS function by using the averaged weights from the cross validation test and use this in
the blind tests presented in the following sections.

PROTS for predicting ΔΔG of single-point mutations
Unlike PROTS, most of other existing algorithms for prediction of mutation induced
stability changes were trained and tested on mutations with ΔΔG measurements. We
compare the performance of the PROTS potential with other algorithms based on a large set
of point mutations with ΔΔG values in both regression and classification analysis. For a fair
comparison, mutations used in the training dataset of each algorithm are excluded. The
results are presented in Figure 2 and Table II. Clearly PROTS performs better than the other
algorithms in the classification of ΔΔG data even though PROTS is developed using TP/MP
and ΔTm data while the others are based on ΔΔG data.

Using hypothetical reverse mutations as a testing dataset
As discussed earlier, both melting temperature and free energy are state functions and
therefore the ΔTm and ΔΔG of a mutation and its hypothetical reverse mutation should
obey Eqs. (1) and (2). PROTS performs equally well for the reverse mutations. FoldX and
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EGAD, both empirical force field-based predictors, are expected to deliver very similar
results. However, the prediction power of machine learning based approaches, that is,
MUpro and I-Mutant2.0, diminishes with the hypothetical reversed mutations since their
AUCs are close to 0.5 (Tables I and II). LSE is a state function and thus its performance in
predicting hypothetical reverse mutations is identical to the forward ones. Its performance is,
however, not impressive in either direction (AUC = 0.577, R = 0.155). It should be pointed
out that for the structure-based predictions made by I-Mutant2.0 and PROTS, the wild type
protein structures in the hypothetical reversed mutations are generated by simple substitution
of wild type residues with mutant ones without any conformation optimization.

Mutations may alter protein conformations. Therefore, a simple residue substitution without
conformation optimization may not reflect reality. To perform a more strict evaluation of the
prediction of the hypothetical reversed mutations, we make and evaluate predictions of
ΔΔG of 155 mutations with known 3D structures for both wild type and mutants (Table III).
Similar to the above test, both MUpro and I-Mutant2.0 deliver significantly different
performance for the forward and hypothetical reverse mutations. We use either wild type or
mutant structures, respectively, for forward and reverse mutations while using the I-
Mutant2.0 (Table III).

The prediction performance of PROTS on reversed mutations is only slightly different from
forward ones because the DT features are not identical whether the structure of the wild type
protein or its mutant is used. Therefore we test using both structures in the predictions
(Table III). As expected, the performance using both structures is slightly better than using
only one of them (R = 0.521 vs. R = 0.455 or 0.447; AUC = 0.862 vs. AUC = 0.844 or
0.838). Such an approach, however, is not very practically useful because the structures of
mutants are often unavailable due to the current absence of some structures. Our results,
nevertheless, confirm that the current single structure approach assuming no significant
conformation changes caused by single mutation is acceptable for stability prediction
purposes.

PROTS for discriminating TPs and MPs
Using the optimized weights, we calculate PROTS values for all 1020 TPs and 4977 MPs
according to Eq. (9). The ROC curve of the classification is plotted and displayed in Figure
3. In addition to PROTS using all features, we also calculate the values using 13 SEQ or 7
DT features. The AUC of these three functions (PROTS, PROTS_SEQ, and PROTS_DT)
are 0.936, 0.903 and 0.889, and the accuracies are 91, 84, and 82%, respectively. Therefore
the model using both sequence and DT features achieves better performance than models
using either subset of the features. It is clear that both spatial and sequential features are
useful for discriminating TPs and MPs.

PROTS shows comparable or better performance on TP/MP classification in comparison to
other approaches. For example, Gromiha et al. obtained an accuracy of 89% in
discrimination of 1609 thermophilic proteins from 3075 mesophilic proteins based on neural
network analysis in a fivefold cross validation.60 TargetStar, a scoring function based on the
analysis of 1006 decoy structures for a given protein, can discriminate HP/MP orthologs
pairs with 77% accuracy.61 More recently, Montanucci et al. reported a SVM model which
achieves 88% accuracy on a set of redundancy-reduced HP/MP pairs.34

PROTS for classifying structural models of TPs and MPs
We evaluate the performance of PROTS on classifying TP and MP structure models. We
group these proteins into two categories using 30% maximum sequence identity against all
of the protein in the training dataset as the cutting threshold. We calculate the PROTS
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potentials of the models of all ortholog pairs in these two categories using PROTS and
PROTS_SEQ algorithms (Table IV). The accuracies of the pair-wise comparisons of TP/MP
orthologs in both categories (94.2% and 97.2%) using PROTS are higher than those using
the PROTS_SEQ potential (91.3% and 93.8%), suggesting the structure models built using
i-TASSER are useful for such an application. In addition, the difference in accuracies
between the close and the distant pairs is fairly small, strongly indicating that PROTS is a
robust classifier for discriminating thermophilic/mesophilic protein pairs.

Evaluating the applicability of PROTS
For predicting mutation induced stability changes, it is highly desirable to develop
algorithms applicable to many different types of proteins. We define applicability as the
ratio of proteins with positive correlation over all proteins in the study because an algorithm
can only be applicable to proteins with positive correlation. To evaluate the applicability of
PROTS, we select proteins with two or more mutations in ΔTm or ΔΔG datasets and
calculate the correlation coefficients of predicted ΔTm and ΔΔG versus experimental data
for the mutations of each protein (Table V). Using the applicability as metric, PROTS
outperforms other approaches in the prediction of mutation induced stability change in the
ΔTm dataset and is among the best in ΔΔG predictions. In both cases, the applicability of
PROTS and PROTS_SEQ is higher than 80%. Therefore these algorithms are practically
useful in real-world applications.

Analysis of PROTS predictions
We analyze the mutants of three proteins with typical structures: alpha, alpha/beta and beta
(Fig. 4). In the prediction of 27 mutants with ΔTm ranging from −13.1°C to 4.7°C from an
alpha-protein (PDB ID: 4LYZ, Gallus Gallus), a correlation coefficient of 0.714 is achieved
between PROTS predicted stability changes and observed ΔTm values. Similarly, a
correlation coefficient of 0.877 is obtained based on nine mutants from a beta-protein (PDB
ID: 2AFG, Homo Sapiens) while a correlation coefficient of 0.721 is obtained based on 16
mutants from an alpha/beta protein (PDB ID: 3SSI, Streptomyces Albogriseolus). Thus the
predicted stability changes at the residue level show strong correlation with experimentally
measured ΔTm values.

All predictive models fall into three categories according to their comprehensibility: white-,
gray-, or black-box approaches. The process of a white-box approach is very transparent and
well understood by the user. The black-box approach does not allow explicit explanation of
the model and the gray-box approaches are partially visible and reasonably understood by
the user. PROTS is a white-box approach since the weights of the features determining
whether the mutation would stabilize the target protein are known. This may reveal the
mechanisms of thermal stabilization. For example, the stabilizing mutation 2AFG-H93G can
be largely attributed to the positive contribution from the potential and the propensity from
strand/coil and exposure, matching the status of the H93 residue in a surface turn.62 The
destabilizing mutation 2AFG-C83S is caused by the unfavorable changes of the potential
and the propensity of coil and exposure, as well as D1 Delaunay tetrahedrons, which agrees
with the fact that this residue is located in a core region.63 The values of all features of these
two mutations are listed in Table VI.

ADDITIONAL DISCUSSION
PROTS has two versions. One uses structural information, in addition to sequence
information, for target proteins with solved 3D structures. The other version uses only
sequence information. Although the sequence-only model is not as accurate as the other that
uses both structural and sequential information, the sequence only model, still delivers
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reasonably good performance. Such flexibility presents an advantage over force-fields and
energy functions, which require high resolution protein structures. Although some machine
learning based algorithms can predict protein thermostability based on protein sequences
only, these algorithms as we show in this study fail to make acceptable predictions for
hypothetical reverse mutations. Therefore, further validation is necessary to establish their
robustness.

In this study, we use sequential and spatial fragments consisting of four amino acid residues
as the atomic units for determining the overall thermo-stability of proteins. Although it is
conceivable that using a larger size of protein fragments may improve the quality and
predictive ability of the relative potential, four-residue fragments are practically the largest
context for protein sequence and structure data mining because of the limited number of
available structures.64 There are 204 different permutations and 8855 combinations of four
deposited in the protein data bank (PDB) and the latter amino acid residues. The former
number is of the same is close to the number of currently known structural magnitude of
protein sequences with solved structures domains.65 There have been several successful
studies using four-residue fragments as the context of protein properties. For example, Chan
et al. developed tetrapeptide-based local structure entropy,27 which was later utilized by Bae
et al. [71] to design and eventually produce stabilized adenylate kinase mutants.66 Using a
scoring function based on four-residue Delaunay Tetrahedrons (DTs), Deutsch and
Krishnamoorthy were able to discriminate the stability and reactivity changes resulting from
mutations with high accuracy.59

CONCLUSION
In this work, we develop PROTS, a sequential and spatial fragment based potential, for
classifying TPs/MPs and stability changes upon mutations. Our approach utilizes structural
profile enhanced lookup tables and exhibits good performance in both classification and
regression. We also introduce hypothetical reversed mutations for comprehensive evaluation
of the algorithms for protein thermo-stability change predictions. Currently we are applying
PROTS to the design of stable mutants of several proteins. The results will be reported
separately at a later date.

Acknowledgments
The authors wish to thank the two anonymous reviewers and the editor for their constructive comments and
suggestions. They are indebted to Dr. Vladimir Potapov for kindly sharing his data with us and the authors of
FoldX, MUpro, I-mutant2.0 and LSE for making their programs and data available.

References
1. Dahiyat BI. In silico design for protein stabilization. Curr Opin Biotech. 1999; 10:387–390.

[PubMed: 10449321]

2. Korkegian A, Black ME, Baker D, Stoddard BL. Computational thermostabilization of an enzyme.
Science. 2005; 308:857–860. [PubMed: 15879217]

3. Lazar GA, Marshall SA, Plecs JJ, Mayo SL, Desjarlais JR. Designing proteins for therapeutic
applications. Curr Opin Struct Biol. 2003; 13:513–518. [PubMed: 12948782]

4. Schweiker KL, Makhatadze GI. Protein stabilization by the rational design of surface charge-charge
interactions. Methods Mol Biology. 2009; 490:261–283.

5. Sterner R, Liebl W. Thermophilic adaptation of proteins. Crit Rev Biochem Mol Biol. 2001; 36:39–
106. [PubMed: 11256505]

6. Chennamsetty N, Voynov V, Kayser V, Helk B, Trout BL. Design of therapeutic proteins with
enhanced stability. Proc Natl Acad Sci USA. 2009; 106:11937–11942. [PubMed: 19571001]

Li et al. Page 11

Proteins. Author manuscript; available in PMC 2012 July 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



7. Unsworth LD, van der Oost J, Koutsopoulos S. Hyperthermophilic enzymes—stability, activity and
implementation strategies for high temperature applications. FEBS J. 2007; 274:4044–4056.
[PubMed: 17683334]

8. Schoemaker HE, Mink D, Wubbolts MG. Dispelling the myths—biocatalysis in industrial synthesis.
Science. 2003; 299:1694–1697. [PubMed: 12637735]

9. Frokjaer S, Otzen DE. Protein drug stability: a formulation challenge. Nat Rev Drug Discov. 2005;
4:298–306. [PubMed: 15803194]

10. Lippow SM, Tidor B. Progress in computational protein design. Curr Opin Biotech. 2007; 18:305–
311. [PubMed: 17644370]

11. Potapov V, Cohen M, Schreiber G. Assessing computational methods for predicting protein
stability upon mutation: good on average but not in the details. Protein Eng Des Sel. 2009;
22:553–560. [PubMed: 19561092]

12. Berezovsky IN, Shakhnovich EI. Physics and evolution of thermophilic adaptation. Proc Natl Acad
Sci USA. 2005; 102:12742–12747. [PubMed: 16120678]

13. Berezovsky IN, Zeldovich KB, Shakhnovich EI. Positive and negative design in stability and
thermal adaptation of natural proteins. PLoS Comput Biol. 2007; 3:e52. [PubMed: 17381236]

14. Gianese G, Argos P, Pascarella S. Structural adaptation of enzymes to low temperatures. Protein
Eng. 2001; 14:141–148. [PubMed: 11342709]

15. Mandrich L, Pezzullo M, Del Vecchio P, Barone G, Rossi M, Manco G. Analysis of thermal
adaptation in the HSL enzyme family. J Mol Biol. 2004; 335:357–369. [PubMed: 14659763]

16. McDonald JH. Patterns of temperature adaptation in proteins from the bacteria Deinococcus
radiodurans and Thermus thermophilus. Mol Biol Evol. 2001; 18:741–749. [PubMed: 11319258]

17. Menendez-Arias L, Argos P. Engineering protein thermal stability. Sequence statistics point to
residue substitutions in alpha-helices. J Mol Biol. 1989; 206:397–406. [PubMed: 2716053]

18. Metpally RP, Reddy BV. Comparative proteome analysis of psychrophilic versus mesophilic
bacterial species: insights into the molecular basis of cold adaptation of proteins. BMC Genomics.
2009; 10:11. [PubMed: 19133128]

19. Razvi A, Scholtz JM. Lessons in stability from thermophilic proteins. Protein Sci. 2006; 15:1569–
1578. [PubMed: 16815912]

20. Zeldovich KB, Berezovsky IN, Shakhnovich EI. Protein and DNA sequence determinants of
thermophilic adaptation. PLoS Comput Biol. 2007; 3:e5. [PubMed: 17222055]

21. Zhou XX, Wang YB, Pan YJ, Li WF. Differences in amino acids composition and coupling
patterns between mesophilic and thermophilic proteins. Amino Acids. 2008; 34:25–33. [PubMed:
17710363]

22. Haney PJ, Badger JH, Buldak GL, Reich CI, Woese CR, Olsen GJ. Thermal adaptation analyzed
by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus
species. Proc Natl Acad Sci USA. 1999; 96:3578–3583. [PubMed: 10097079]

23. Glyakina AV, Garbuzynskiy SO, Lobanov MY, Galzitskaya OV. Different packing of external
residues can explain differences in the thermostability of proteins from thermophilic and
mesophilic organisms. Bioinformatics. 2007; 23:2231–2238. [PubMed: 17599925]

24. Guerois R, Nielsen JE, Serrano L. Predicting changes in the stability of proteins and protein
complexes: a study of more than 1000 mutations. J Mol Biol. 2002; 320:369–387. [PubMed:
12079393]

25. Gu J, Hilser VJ. Sequence-based analysis of protein energy landscapes reveals nonuniform thermal
adaptation within the proteome. Mol Biol Evol. 2009; 26:2217–2227. [PubMed: 19592668]

26. Gu J, Hilser VJ. Predicting the energetics of conformational fluctuations in proteins from
sequence: a strategy for profiling the proteome. Structure. 2008; 16:1627–1637. [PubMed:
19000815]

27. Chan CH, Liang HK, Hsiao NW, Ko MT, Lyu PC, Hwang JK. Relationship between local
structural entropy and protein thermostability. Proteins. 2004; 57:684–691. [PubMed: 15532068]

28. Pokala N, Handel TM. Energy functions for protein design: adjustment with protein-protein
complex affinities, models for the unfolded state, and negative design of solubility and specificity.
J Mol Biol. 2005; 347:203–227. [PubMed: 15733929]

Li et al. Page 12

Proteins. Author manuscript; available in PMC 2012 July 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



29. Zhou H, Zhou Y. Distance-scaled, finite ideal-gas reference state improves structure-derived
potentials of mean force for structure selection and stability prediction. Protein Sci. 2002;
11:2714–2726. [PubMed: 12381853]

30. Yin S, Ding F, Dokholyan NV. Modeling backbone flexibility improves protein stability
estimation. Structure. 2007; 15:1567–1576. [PubMed: 18073107]

31. Capriotti E, Fariselli P, Casadio R. I-Mutant2. 0: predicting stability changes upon mutation from
the protein sequence or structure. Nucleic acids research. 2005; 33(Web Server issue):W306–
W310. [PubMed: 15980478]

32. Cheng J, Randall A, Baldi P. Prediction of protein stability changes for single-site mutations using
support vector machines. Proteins. 2006; 62:1125–1132. [PubMed: 16372356]

33. Masso M, Vaisman II. Accurate prediction of stability changes in protein mutants by combining
machine learning with structure based computational mutagenesis. Bioinformatics. 2008;
24:2002–2009. [PubMed: 18632749]

34. Montanucci L, Fariselli P, Martelli PL, Casadio R. Predicting protein thermostability changes from
sequence upon multiple mutations. Bioinformatics. 2008; 24:I190–I195. [PubMed: 18586713]

35. Wu LC, Lee JX, Huang HD, Liu BJ, Horng JT. An expert system to predict protein thermostability
using decision tree. Expert Systems Appl. 2009; 36:9007–9014.

36. Gromiha MM, Oobatake M, Sarai A. Important amino acid properties for enhanced thermostability
from mesophilic to thermophilic proteins. Biophys Chem. 1999; 82:51–67. [PubMed: 10584295]

37. Huang LT, Gromiha MM. Reliable prediction of protein thermostability change upon double
mutation from amino acid sequence. Bioinformatics. 2009; 25:2181–2187. [PubMed: 19535532]

38. Singh RK, Tropsha A, Vaisman II. Delaunay tessellation of proteins: four body nearest-neighbor
propensities of amino acid residues. J Comp Biol. 1996; 3:213–221.

39. Zhang Y. Protein structure prediction: when is it useful? Curr Opin Struct Biol. 2009; 19:145–155.
[PubMed: 19327982]

40. Wu S, Skolnick J, Zhang Y. Ab initio modeling of small proteins by iterative TASSER
simulations. BMC Biol. 2007; 5:17. [PubMed: 17488521]

41. Zhang Y. Template-based modeling and free modeling by I-TASSER in CASP7. Proteins. 2007;
69(Suppl 8):108–117. [PubMed: 17894355]

42. Zhang Y. I-TASSER: fully automated protein structure prediction in CASP8. Proteins. 2009;
77(Suppl 9):100–113. [PubMed: 19768687]

43. Li Y, Middaugh CR, Fang J. A novel scoring function for discriminating hyperthermophilic and
mesophilic proteins with application to predicting relative thermostability of protein mutants.
BMC Bioinformatics. 2010; 11:62. [PubMed: 20109199]

44. Becktel WJ, Schellman JA. Protein stability curves. Biopolymers. 1987; 26:1859–1877. [PubMed:
3689874]

45. Li YQ, Fang JW. Distance-dependent statistical potentials for discriminating thermophilic and
mesophilic proteins. Biochem Biophys Res Commun. 2010; 396:736–741. [PubMed: 20451495]

46. Kryshtafovych A, Krysko O, Daniluk P, Dmytriv Z, Fidelis K. Protein structure prediction center
in CASP8. Proteins-Struct Funct Bioinformatics. 2009; 77:5–9.

47. Moult J, Fidelis K, Kryshtafovych A, Rost B, Hubbard T, Tramontano A. Critical assessment of
methods of protein structure prediction—round VII. Proteins-Struct Funct Bioinformatics. 2007;
69:3–9.

48. Wu S, Zhang Y. LOMETS: a local meta-threading-server for protein structure prediction. Nucleic
Acids Res. 2007; 35:3375–3382. [PubMed: 17478507]

49. Zhang Y, Skolnick J. SPICKER: a clustering approach to identify near-native protein folds. J
Comput Chem. 2004; 25:865–871. [PubMed: 15011258]

50. Li Y, Zhang Y. REMO: A new protocol to refine full atomic protein models from C-alpha traces
by optimizing hydrogen-bonding networks. Proteins-Structure Function and Bioinformatics. 2009;
76:665–676.

51. Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics. 2008; 9:40.
[PubMed: 18215316]

Li et al. Page 13

Proteins. Author manuscript; available in PMC 2012 July 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



52. Zhang Y, Skolnick J. Scoring function for automated assessment of protein structure template
quality. Proteins. 2004; 57:702–710. [PubMed: 15476259]

53. Kumar MD, Bava KA, Gromiha MM, Prabakaran P, Kitajima K, Uedaira H, Sarai A. ProTherm
and ProNIT: thermodynamic databases for proteins and protein-nucleic acid interactions. Nucleic
Acids Res. 2006; 34(Database issue):D204–D206. [PubMed: 16381846]

54. Li Y, Drummond DA, Sawayama AM, Snow CD, Bloom JD, Arnold FH. A diverse family of
thermostable cytochrome P450s created by recombination of stabilizing fragments. Nat
Biotechnol. 2007; 25:1051–1056. [PubMed: 17721510]

55. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol
Biol. 1990; 215:403–410. [PubMed: 2231712]

56. Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-
bonded and geometrical features. Biopolymers. 1983; 22:2577–2637. [PubMed: 6667333]

57. Liang J, Edelsbrunner H, Woodward C. Anatomy of protein pockets and cavities: measurement of
binding site geometry and implications for ligand design. Protein Sci. 1998; 7:1884–1897.
[PubMed: 9761470]

58. Masso M, Vaisman II. Accurate prediction of enzyme mutant activity based on a multibody
statistical potential. Bioinformatics. 2007; 23:3155–3161. [PubMed: 17977887]

59. Deutsch C, Krishnamoorthy B. Four-body scoring function for mutagenesis. Bioinformatics. 2007;
23:3009–3015. [PubMed: 17921497]

60. Gromiha MM, Huang L-T, Lai L-F. Sequence based prediction of protein mutant stability and
discrimination of thermophilic proteins. Lecture Notes Comput Sci. 2008; 5265:1–12.

61. Kim H, Moon EJ, Moon S, Jung HJ, Yang YL, Park YH, Heo M, Cheon M, Chang I, Han DS.
New method of evaluating relative thermal stabilities of proteins based on their amino acid
sequences; Targetstar. Int J Modern Phys C. 2007; 18:1513–1526.

62. Brych SR, Blaber SI, Logan TM, Blaber M. Structure and stability effects of mutations designed to
increase the primary sequence symmetry within the core region of a beta-trefoil. Protein Sci. 2001;
10:2587–2599. [PubMed: 11714927]

63. Culajay JF, Blaber SI, Khurana A, Blaber M. Thermodynamic characterization of mutants of
human fibroblast growth factor 1 with an increased physiological half-life. Biochemistry. 2000;
39:7153–7158. [PubMed: 10852713]

64. Dalluge R, Oschmann J, Birkenmeier O, Lucke C, Lilie H, Rudolph R, Lange C. A tetrapeptide
fragment-based design method results in highly stable artificial proteins. Proteins-Struct Funct
Bioinformatics. 2007; 68:839–849.

65. Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz HR, Ceric G, Forslund K, Eddy SR,
Sonnhammer EL, Bateman A. The Pfam protein families database. Nucleic Acids Res. 2008;
36(Database issue):D281–D288. [PubMed: 18039703]

66. Bae E, Bannen RM, Phillips GN Jr. Bioinformatic method for protein thermal stabilization by
structural entropy optimization. Proc Natl Acad Sci USA. 2008; 105:9594–9597. [PubMed:
18621726]

Li et al. Page 14

Proteins. Author manuscript; available in PMC 2012 July 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Linear regression (left) and ROC curves (right) of the 1146 point mutations with ΔTm
values. In the regression plot, the cross points show the mutations with ΔTm either lower
than −15°C or higher than 10°C. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]
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Figure 2.
Linear regression (left) and ROC curves (right) of the 2264 point mutations with ΔΔG
measurements. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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Figure 3.
The ROC curves of PROTS in the classification of 1020 TPs and 4977 MPs. [Color figure
can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 4.
Examples of PROTS in prediction stability changes for mutants of an alpha-protein (PDBid:
4lyzA, top), a beta-protein (2afgA, middle) and an alpha/beta protein (3ssiA, bottom). The
left column presents the regression on all of the mutants. Some significant mutants are
labeled. The middle column shows the PROTS potential change at residue level for each
mutation. Some unchanged residues are omitted for clarity. The right column illustrates the
mutation locations in the wild type proteins. The protein images are generated using Pymol.
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Table V

Comparison of the Applicability of Various Algorithms

Dataset Algorithms No. of proteins No. of proteins with positive correlation Applicability (%)

The 1146 mutants MUpro 65 47 72.3

 dataset with ΔTm I-Mutant2.0 59 41 69.5

 values LSE 78 47 60.3

PROTS 78 71 91.0

PROTS_SEQ 78 67 85.9

The 2156 mutants MUpro 62 42 67.7

 dataset with ΔΔG I-Mutant2.0 47 35 74.5

 values LSE 80 49 61.2

FoldX 59 48 81.4

EGAD 52 43 82.7

PROTS 67 55 82.1

PROTS_SEQ 67 56 83.6

The predictions are grouped by the wild type proteins. The applicability is defined as the ratio of proteins with positive correlation of predicted
stability potential changes versus ΔTm or ΔΔG over all proteins used in the study. An algorithm can be only applicable in proteins with positive

correlation.
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