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Abstract

Characterization of life processes at the molecular level requires structural details of protein–

protein interactions (PPIs). The number of experimentally determined protein structures accounts 

only for a fraction of known proteins. This gap has to be bridged by modeling, typically using 

experimentally determined structures as templates to model related proteins. The fraction of 

experimentally determined PPI structures is even smaller than that for the individual proteins, due 

to a larger number of interactions than the number of individual proteins, and a greater difficulty of 

crystallizing protein–protein complexes. The approaches to structural modeling of PPI (docking) 

often have to rely on modeled structures of the interactors, especially in the case of large PPI 

networks. Structures of modeled proteins are typically less accurate than the ones determined by 

X-ray crystallography or nuclear magnetic resonance. Thus the utility of approaches to dock these 

structures should be assessed by thorough benchmarking, specifically designed for protein models. 

To be credible, such benchmarking has to be based on carefully curated sets of structures with 

levels of distortion typical for modeled proteins. This article presents such a suite of models built 

for the benchmark set of the X-ray structures from the DOCKGROUND resource (http://

dockground.bioinformatics.ku.edu) by a combination of homology modeling and Nudged Elastic 

Band method. For each monomer, six models were generated with predefined Cα root mean square 

deviation from the native structure (1, 2, . . ., 6 Å). The sets and the accompanying data provide a 

comprehensive resource for the development of docking methodology for modeled proteins.
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 INTRODUCTION

Genome sequencing efforts have determined a massive amount of protein sequences. At the 

same time, the number of corresponding three-dimensional (3D) structures is far lagging, 

due to the limitations of the experimental techniques for protein structure determination. 

This gap is supposed to be bridged by computational approaches, using experimentally 
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determined structures as templates to model related proteins. The rapidly growing PDB 

provides an opportunity to model a large part of the “protein universe.”1–3 When it comes to 

protein–protein interactions (PPIs), high-throughput experimental techniques (two-hybrid 

analysis, mass spectroscopy, etc.) provide data for recreating interaction networks for many 

organisms and/or biochemical pathways. To understand the mechanisms of these 

interactions, it is essential to have the structures of the protein–protein complexes. However, 

the fraction of experimentally determined PPI structures is even smaller than that for the 

individual proteins, due to a larger number of interactions than the number of individual 

proteins, and a greater difficulty of crystallizing protein–protein complexes.

Computational methods for structural modeling of PPI (docking) historically started with ab 
initio methods based on physical potentials (primarily, van der Waals interactions,4 currently 

increasingly supplemented by knowledge-based approaches (e.g., statistical potentials,5,6 

constraints-driven docking,7 etc.). Following a long-standing pattern in individual protein 

structure prediction, PPI modeling is increasingly employing template-based methods. 

Efforts of several groups8–11 working on sequence-similarity-based PPI modeling have 

concluded that this methodology yields accurate PPI models, given suitable templates. The 

template pool for PPI modeling can be significantly expanded by exploiting structural 

similarity between protein complexes.12 The structural similarity methodology for PPI 

modeling is becoming increasingly popular.13

These efforts have paved the way to large-scale structural PPI modeling.13 However, the 

majority of structures to be docked in such studies will themselves be models of limited 

accuracy. Thus, to directly address the widespread skepticism about the meaningfulness of 

such “double modeling,” comprehensive benchmark studies on a carefully selected set of 

model structures are needed.13 Sets of protein models (“decoys”) are used in structural 

studies of individual proteins14,15 and small ligand–receptor interactions.16 However, the 

existing protein–protein benchmark sets,17,18 are restricted to the X-ray structures, which are 

generally not representative of the potentially limited accuracy of protein models.

In our previous study on the applicability of low-resolution, template-free, protein–protein 

docking to modeled structures,19 a representative nonredundant set of cocrystallized 

protein–protein complexes was used to build an array of models of each protein in the set. A 

procedure was developed to generate the models with root mean square deviation (RMSD) 

of 1, 2, 3, . . ., 10 Å from the crystal structure, by repacking of the secondary structure 

elements. Because of the limited availability of the templates for individual proteins, such 

templates were not utilized in the procedure. Thus, the resulting “simulated models” of the 

proteins, while reflecting the general structural accuracy of the homology models, were not 

necessarily structurally similar to those.

A much greater current availability of the templates provides an opportunity to generate a 

new benchmark set of models, explicitly utilizing the actual homology models of the 

proteins, and thus providing a more adequate benchmarking resource. This article presents a 

set of structures with several levels of controlled inaccuracy, which mimic high-throughput 

homology models. The distortions are 1, 2, . . ., 6 Å Cα RMSD from the X-ray structures of 

proteins in the DOCKGROUND benchmark set.17,20 The models were generated by a 
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combination of homology modeling (HM), simulated annealing (SA), and Nudged Elastic 

Band (NEB) method.21,22 The sets and the accompanying data provide a comprehensive 

resource for the development of docking methodology for modeled proteins.

 METHODS

The set of complexes is a tool for benchmarking the performance of docking procedures on 

protein models. Docking programs take the 3D structures of two separate proteins as an 

input and predict the structure of their complex. To evaluate the prediction, the structure of 

the correct (X-ray) complex should be available. Thus, the benchmark set consists of models 

of the individual proteins (not models of complexes) generated from the corresponding 

structures in cocrystallized complexes. The binary complexes from DOCKGROUND were split 

into two chains, and models were built independently for each of the monomers.

From the initial set of 100 protein complexes (DOCKGROUND benchmark 3), we excluded 37 

complexes with multichain interactors. Six models were built for each of the remaining 126 

single proteins (63 complexes) within the preset accuracy limits (±0.2 Å from 1, 2, . . ., 6 Å), 

resulting in 126 × 6 = 756 models in the final set. Our previous study indicated that proteins 

with RMSD > 6 Å, typically, to a significant extent lose structural recognition characteristics 

at the binding sites. Thus, 6 Å was used as the upper limit in this study.

Each protein sequence in the dataset was first subjected to single-template HM procedure 

with the corresponding native structure excluded from the template pool. Templates for the 

homology models were identified by aligning profile of the target sequence against profiles 

of all nonredundant sequences in PDB using Needleman-Wunsch dynamic programing 

algorithm23 with affine gap penalty24 as implemented in our in-house program.11 Sequence 

profiles were extracted from position-specific scoring matrices obtained by five-iteration 

PSI-BLAST25 search against nonredundant sequence database with the substitution matrix 

BLOSUM62.26 Alignments of identical sequences from the same organism were excluded 

from consideration. The model structures were built by the NEST program from JACKAL 

package27 with default parameters. Assignment of proteins’ secondary structures was by 

DSSP.28 The HM resulted in ~10,000 full-length models, out of which 290 satisfied our 

accuracy criteria (38% of the intended 756 structures in the model set).

The remaining 466 models were generated using NEB method,21,22 in which a low-energy 

pathway between two protein conformations is approximated by a series of images of the 

molecule, with the endpoint images fixed in space. All atoms of each image are connected to 

the corresponding atoms of the previous and next images by virtual elastic “springs” that 

keep the image from sliding down the energy landscape onto adjacent images. The NEB 

pathway was represented by 16 images including endpoints. The first eight frames were 

copies of the starting point, whereas the last eight were copies of the end structure. Pathway 

minimization by a combination of heating and equilibration, as in SA, but applied to the 

entire multi-image system, generated structures with RMSD between the end point RMSD 

values. The procedure started with heating of the system from 0 to 300 K within 20 ps with 

the spring constant between images kNEB = 1 kcal/mol (Stage 1). To increase the linkage 

between images, three short (10 ps) molecular dynamics runs were performed with kNEB = 
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5, 10, and 50 kcal/mol (Stage 2), and the last value was used during all subsequent steps. 

The system was then heated from 300 to 400 K, and from 400 to 500 K and then cooled 

from 500 to 300 K (Stage 3). Each heating and cooling run was conducted within 50 ps 

interval and followed by 50 ps molecular dynamics equilibration run. Finally, the system 

was cooled from 300 to 0 K within 12 ps (Stage 4). Langevin thermostat with collision 

frequency 1000 ps−1 was used for temperature coupling in all NEB calculations, and a 

simple leapfrog integrator was exploited to propagate the dynamics. The generalized Born 

implicit solvent model29 was used in all computations. The nonbonded cutoff distance was 

set at 12 Å. During initial heating and SA stages in 300–500 K temperature range the time 

step of 0.5 fs was utilized; otherwise 1.0 fs value was chosen. The NEB calculations were 

performed by the program sander.MPI from the Amber 10 package30 with Amber ff03 force 

field.31

The models with RMSD within the set limits were selected for further consideration. 

Otherwise the NEB procedure was repeated with new end points selected from the 

intermediate structures of the previous trajectory. As the starting point of the NEB trajectory, 

we used the homology model with the closest RMSD below the intended accuracy level, or 

the native structure of the protein. For the final point of the NEB trajectory, we chose the 

homology model with the closest RMSD above the intended accuracy level. If such model 

was not available, the structure was generated by SA from the starting-point homology 

model (this was the case for 55 monomers in our dataset). We did not use just SA for model 

generation because the absence of the NEB “springs” makes it difficult to control the 

distortion level of the final structure, and also causes considerable distortions of the 

secondary structure elements at high annealing temperatures.

 RESULTS AND DISCUSSION

The outline of the procedure is shown in Figure 1 for 2hle, Chain A. The initial HM yielded 

two models. The first one (with 2.98 Å RMSD) was built using Chain A of 1kgy with 

sequence identity 43.1%. The template for the second model (with 4.99 Å RMSD) was 

Chain A of 1nuk with 42.6% sequence identity. The remaining four models were generated 

by three NEB runs. The start and the end points of the first NEB trajectory were the X-ray 

structure and the homology model with 2.98 Å RMSD, correspondingly. This NEB run 

yielded models with 0.90 and 1.95 Å RMSD. The starting point for the second NEB 

trajectory was the homology model with 3.51 Å RMSD built using Chain B of 1shw 

(sequence identity 42.5%). The final trajectory point was the 4.99 Å model. This run yielded 

the model with 4.04 Å RMSD. The third NEB run had 4.99 Å model, as the starting point. 

The end point (7.50 Å RMSD) was generated from this model by SA with the annealing 

temperature 500 K and heating, equilibration and cooling times 100, 300, and 100 ps, 

correspondingly. The run produced the model with 6.02 Å RMSD. As seen in Figure 1, all 

models have β strands and a globular structure, characteristic to the native structure. The 6 Å 

model has most of the strands with the dihedral angles twisted out of the exact β strand range 

and thus displayed as loops. Free terminal fragment, observed in the native structure (Fig. 1), 

gradually disappears with increasing distortion. Such fragments may introduce a bias for 

shape-complementarity-based docking procedures, and thus were removed from the 

structures.
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 Assessment of models

Protein models may have inaccuracies, in principle, anywhere in the structure. Thus, to 

avoid bias in docking benchmarking, models should have distortions distributed along the 

polypeptide chain. Thus, we considered distribution of distances between Cα atoms of 

corresponding residues in the model and the native structure, as shown in Figure 2 for the 

Chain A of 1r8s. This protein has significant conformational change upon binding, such that 

the secondary structure patterns in bound and unbound states are different [Fig. 2(C)]. The 

interface consists of Residues 28–68 (the residue numbers are from the bound structures) 

and contains a double-stranded β sheet and an α helix [Fig. 2(A)]. Residues 28–35 form a 

loop that enters the binding cleft of the interacting protein. In the unbound protein, this loop 

is assembled in a β strand forming a β sheet with two neighboring interface β strands 

(Residues 36–40 and 45–50). The short interface α helix (Residues 58–64), visible in the 

bound structure, becomes a loop in the unbound structure. The identified templates 

resembled mostly the unbound protein and, consequently, the resulting homology models 

were primarily distorted in the interface area, as can be seen in the 6 Å model in Figure 2(A) 

[shadowed areas in Fig. 2(B)]. The peak in the Cα–Cα diagram for this model, between 

Residues 120 and 140, is caused by insertions and deletions in the alignment with the 

template [Chain C of 1a2k; Fig. 2(C)]. Of the 46 homology models in the 6 ± 0.2 Å RMSD 

range, only three were considered for the final set. The other 43 models were rejected after 

visual inspection of superimposed models and the native structure within the complex. The 

interface loop in these models either had substantial clashes with the partner protein or 

deviated from the X-ray structure such that it did not enter the binding site. The final 

selected model has RMSD 6.01 Å, the closest one to 6 Å.

The binding site distortion (albeit a smaller one) is also observed in the 1 Å model, which 

was obtained from the NEB trajectory with the native X-ray structure and 3.13 Å homology 

model as the start and the end points, respectively. Both peaks in the Cα–Cα distance 

distribution [left-hand panel in Fig. 2(B)] for this model are caused by crystallographically 

unresolved regions in the template 2h16 [gray regions in Fig. 2(C)], which caused these 

parts of the model to be built ab initio (and thus with lower accuracy).

The peaks in the Cα distance distributions, corresponding to nonaligned residues, were 

observed in all models. Such relatively big local distortions are characteristic in homology 

models and cannot be completely avoided. On the other hand, it was shown previously that 

due to the stronger conservation of protein–protein binding sites, alignments of the interface 

sequence fragments tend to contain fewer gaps compared to the rest of alignments.32 Thus, 

for further consideration, we chose models with the least pronounced peaks and, thus, the 

lowest level of distortion in the binding region. Finally, all candidate models were visually 

inspected to exclude those with large distorted parts, corresponding to structural segments 

built ab initio, due to big alignment gaps, or structural defects in the template PDB files.

In the majority of cases, to build the low-energy path between two protein conformations, 

homology models of the same protein were used as the endpoints for NEB. The intermediate 

NEB structures should inevitably reproduce (some) structural properties of the endpoints. 

However, we realize that such correspondence is not strict and may depend on the similarity 

Anishchenko et al. Page 5

Proteins. Author manuscript; available in PMC 2016 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



between the endpoints. In this sense, NEB models are not exactly homology models but 

“homology-like” models.

In our analysis, we investigated the effect of potentially mis-charged residues on the 

structure deformations in our models. Our benchmark set has to contain plausible (typical) 

homology-like models, but not necessarily high-quality ones. The initial set of models was 

obtained by single-template HM using NEST to mimic high-throughput real-case scenario. 

The program uses the default parameters and does not allow user control of the charge state 

of individual residues. The inaccuracies in conformations of individual residues obtained by 

NEST should follow those inherent in homology models. However, this may not hold for the 

NEB models. Comparison of Cα deviations in homology and NEB structures [see 6 Å 

models in Supporting Information, Fig. S1(A)] showed that the histidines in NEB models 

are on average more distorted than in homology models. This difference is statistically 

significant according to two-sample Kolmogorov–Smirnov (K–S) test at 95% confidence 

level.

However, such analysis cannot unambiguously answer the question whether these 

differences are caused by improperly set charges or the modeling procedure itself. To better 

understand the results for histidines, we performed the same analysis for the other 19 amino 

acids. In most cases (92.5%), the K–S test showed statistically significant differences 

between homology and NEB models [Supporting Information Fig. S1(B)]. At the same time, 

the distortions in histidines were similar to the average distortions in all other types of 

residues in NEB models (6 Å models are shown in Supporting Information Fig. S2), 

confirmed by the K–S test. Thus, the modeling procedure itself (NEB) is likely the main 

source of the distortions.

All models were also evaluated based on Cα RMSD values for the interface residues alone 

(Fig. 3). The interface residues in each of the 126 proteins in the set were extracted at 6 Å 

cutoff from the corresponding X-ray structures of the complexes, and superimposed with the 

equivalent residues in the models. The results in Figure 3 show that distortions at the 

interfaces are generally smaller than in full structures, although variations in RMSD are 

high. The correlation coefficient between Cα RMSD of the entire structure and the interface 

is 0.72, which is statistically significant.

Current modeling approaches are assessed in the Critical Assessment of Structure Prediction 

(CASP).33 To show that our final models are similar to those that could be obtained in real-

case scenario, we compared our models with the latest CASP results in terms of correlation 

between overall RMSD and the global distance test GDT_TS score34 (the score is a major 

criterion in CASP for accessing model quality). The GDT algorithm reflects both local and 

global structural distortions by several superimpositions with different cutoff values. At each 

cutoff, the procedure finds superimposition that maximizes the number of Cα–Cα pairs 

within the cutoff. If some distortions are tolerated at large cutoffs, they should still appear at 

smaller ones. The similarity of correlation for both datasets (Fig. 4) indicates 

appropriateness of our procedures for generating structures resembling the real-case scenario 

protein models. The data in Figure 4 also show that each RMSD range contains models of 

different quality (wide distribution of GDT_TS scores) pointing to the overall 
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representativeness of the set. More even distributions of Cα–Cα distances usually correspond 

to the lower values of the GDT_TS score.

 Web interface

The benchmark set of protein models for 63 binary complexes is available within the 

DOCKGROUND resource at http://dockground.bioinformatics.ku.edu/MODEL/request.php (Fig. 

5). The first four columns of the table contain brief information on the complexes, followed 

by six columns with exact RMSD values for the generated models, along with checkboxes to 

select the models for customized download. Cells are colored according to the model type: 

orange for the homology models and green for the NEB models. An option to select all six 

models for a particular protein chain is provided in the last column. The “download all 
models” box downloads the entire benchmark set. The selected models are downloaded as a 

single ZIP file containing PDB files of the models. The ATOM section of the model files 

contains only residues in the initial X-ray structure, but the entire sequence of the chain is 

included in the SEQRES section. Brief information on the model (the model type, HM or 

NEB, RMSD, and GDT_TS values, templates for homology models or end points for the 

NEB trajectory) is in the REMARK section.

If the box “include description in download” is checked, each PDB file is accompanied by a 

PDF file with a detailed description of the model. The PDF file includes a description of 

proteins used as templates for modeling as well as extensive data on the results of the model 

analysis. The file (example in Fig. 6) contains images of superimposed native X-ray and 

modeled structures, information on the model type (HM or NEB), RMSD and GDT_TS 

values, data on the initial X-ray structure and the template used for HM, target/template 

sequence alignment, secondary structure elements, start and end points for the low-energy 

path in NEB models, Cα–Cα distances for superimposed native and model structures, 

distribution of Cα–Cα distances for superimposed structures along the protein sequence, 

BLOSUM62 values for the amino acid sequence of the model, graphical representation of 

the secondary structure elements distribution along the protein sequence, distribution of Cα–

Cα distances for superimposed native and model structures in projections onto the principal 

axes of the molecule, visual representation of the GDT_TS test results, and the location of 

interface residues.

 CONCLUSIONS AND FUTURE DIRECTIONS

The docking approaches often have to rely on modeled rather than experimentally 

determined structures of the interactors. Structures of modeled proteins are typically less 

accurate than the ones determined by X-ray crystallography or nuclear magnetic resonance. 

Thus the utility of approaches to dock these structures should be assessed by thorough 

benchmarking specifically designed for protein models. To be credible, such benchmarking 

has to be based on carefully curated sets of structures with levels of distortion typical for the 

modeled proteins. This article presents such a suite of models based on the benchmark set of 

the X-ray structures from the DOCKGROUND resource (http://

dockground.bioinformatics.ku.edu) by a combination of HM and NEB method. For each 

monomer, six models were generated with predefined Cα RMSD from the native structure 
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(1, 2, . . ., 6 Å). The sets and the accompanying data provide a comprehensive resource for 

the development of docking methodology for modeled proteins.

Our future research will focus on two major directions. First, a larger, more representative 

set of protein models, based on the bound DOCKGROUND benchmark will consist of several 

hundreds of protein–protein complexes, with corresponding arrays of models, as opposed to 

63 in the current set, which is based on the much smaller DOCKGROUND unbound benchmark. 

We will also explore alternative methods for model generation (e.g., threading combined 

with refinement trajectories), which may potentially provide a larger percentage of actual 

models, and decrease or eliminate the fraction of the artificially generated intermediate 

distorted structures. Second, we will systematically benchmark the template-free and 

template-based docking methods to determine their applicability to modeled proteins of 

various accuracies. The results obtained on the smaller set presented in this article will allow 

comparison of the models docking to the docking of unbound X-ray structures (traditional 

benchmark of docking methodologies), whereas the results on the larger set will assure 

greater statistical significance. This will also facilitate the development of the docking 

approaches adequately accommodating the limited accuracy of the protein models.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Model-generating procedure. Models for 2hle, Chain A, are generated by the Nudged Elastic 

Band technique (NEB), homology modeling (HM), and simulated annealing (SA). The base 

structures (green) are used for building the final models (blue). For homology models, the 

templates are shown in parentheses, along with the corresponding Cα RMSD values. Solid 

arrows show the path obtained by the NEB procedure connecting two fixed end points with 

the intermediate structures at intended accuracy levels.
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Figure 2. 
Assessment of model quality. (A) 1 Å and 6 Å models of 1r8s, Chain A, are shown with the 

native structure, along with (B) distributions of Cα–Cα distances between the native and the 

model structures. (C) Secondary structure patterns of bound (1r8s, Chain A) and unbound 

(1rrf, Chain A) states, along with the sequence alignments of 1 and 6 Å models with their 

corresponding templates, show α helices in cyan and β strands in orange. Residues in the 

SEQRES section of the PDB files, which are missing in the ATOM section, are in gray. The 
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interface is shown by the mesh surface in the native 3D structure (A), by the shaded regions 

(B), and by transparent boxes in the alignments (C).
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Figure 3. 
Cα RMSD of the entire structure versus interface.
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Figure 4. 
Comparison of the quality of the distorted protein structures with CASP predictions. CASP 

server predictions are in orange and human predictions are in gray. Models built in this study 

are in red (homology) and blue (NEB).

Anishchenko et al. Page 15

Proteins. Author manuscript; available in PMC 2016 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Web interface for the benchmark set of protein models.

Anishchenko et al. Page 16

Proteins. Author manuscript; available in PMC 2016 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Information on the complex from the accompanying downloadable file. The 4 Å homology 

model of 1ku6, Chain B, is characterized by: (1) images of the superimposed native X-ray 

and modeled structures; (2) information on the model type (HM or NEB), RMSD and 

GDT_TS values; data on the initial X-ray structure (3) and the template (4) used in 

homology modeling, both retrieved from PDB; (5) target/template sequence alignment; (6) 

secondary structure elements in the model structure as defined by DSSP (in Sections 4–6, 

PDF files for NEB models contain information on both proteins, which were used as start 
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and end points of the low-energy path); (7) histogram of Cα–Cα distances for superimposed 

native (X-ray) and modeled structures; (8) distribution of Cα–Cα distances for superimposed 

structures along the protein sequence; (9 and 11) BLOSUM62 values for the amino acid 

sequence of the model from the alignment (5) (Sections 9 and 11 are provided for HM 

models only); (10) graphical representation of the secondary structure elements distribution 

(6) along the protein sequence; (12) distribution of Cα–Cα distances for superimposed native 

and model structures along the protein sequence (8) in projections onto the principal axes of 

the molecule; (13–15) visual representation of the GDT_TS test results; and (16) location of 

the interface residues within the protein sequence.
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