
GPD: A Graph Pattern Diffusion Kernel for Accurate Graph
Classification with Applications in Cheminformatics

Aaron Smalter,
Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, KS
66045

Jun (Luke) Huan,
Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, KS
66045

Yi Jia, and
Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, KS
66045

Gerald Lushington
Molecular Graphics and Modeling Laboratory, University of Kansas, Lawrence, KS 66045
Aaron Smalter: asmalter@ku.edu; Jun (Luke) Huan: jhuan@ku.edu; Yi Jia: jiayi@ku.edu; Gerald Lushington:
glushington@ku.edu

Abstract
Graph data mining is an active research area. Graphs are general modeling tools to organize
information from heterogeneous sources and have been applied in many scientific, engineering,
and business fields. With the fast accumulation of graph data, building highly accurate predictive
models for graph data emerges as a new challenge that has not been fully explored in the data
mining community. In this paper, we demonstrate a novel technique called graph pattern diffusion
(GPD) kernel. Our idea is to leverage existing frequent pattern discovery methods and to explore
the application of kernel classifier (e.g., support vector machine) in building highly accurate graph
classification. In our method, we first identify all frequent patterns from a graph database. We then
map subgraphs to graphs in the graph database and use a process we call “pattern diffusion” to
label nodes in the graphs. Finally, we designed a graph alignment algorithm to compute the inner
product of two graphs. We have tested our algorithm using a number of chemical structure data.
The experimental results demonstrate that our method is significantly better than competing
methods such as those kernel functions based on paths, cycles, and subgraphs.

Index Terms
Graph classification; graph alignment; frequent subgraph mining

1 INTRODUCTION
Graphs are ubiquitous models that have been applied in many scientific, engineering, and
business fields. For example, in finance data analysis, graphs are used to model dynamic

For information on obtaining reprints of this article, please send to: tcbb@computer.org, and reference IEEECS Log Number
TCBBSI-2008-12-0221.
For more information on this or any other computing topic, please visit our Digital Library at www.computer.org/publications/dlib.

NIH Public Access
Author Manuscript
IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2011 March
16.

Published in final edited form as:
IEEE/ACM Trans Comput Biol Bioinform. 2010 ; 7(2): 197–207. doi:10.1109/TCBB.2009.80.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KU ScholarWorks

https://core.ac.uk/display/213422278?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

stock price changes [20]. To analyze biological data, graphs have been utilized in modeling
chemical structures [33], protein sequences [41], protein structures [16], and gene regulation
networks [17]. In web page classification, graphs are used to model the referencing
relationship in HTML documents [47].

Due to the wide range of applications, development of computational and statistical
frameworks for analyzing graph data has attracted significant research attention in the data
mining community. In the past few years, various graph pattern mining algorithms have
been designed [13], [14], [34], [36], [43], [46]. There are also many research efforts
dedicated to efficiently searching graph databases [23], [32], [42], [44]. Much of the work
on analyzing graph data previous to recent years involved unsupervised methods, where
making predictions about graphs is usually not the goal. The research focus is well justified,
since in order to make predictions of graph data we must have a large number of labeled
training samples. Activities such as sample collection and sample labeling are time
consuming and expensive.

With the rapid development of powerful and sophisticated data collection methods, there is a
fast accumulation of labeled graph data. For example, many XML documents are modeled
as trees or graphs and it is important to build classifiers for XML data [45]. As another
example, natural language processing of sentences usually produces a tree (parsing tree)
representation of a sentence. In many social science studies, building automated systems to
classify sentences into several groups [25] is an important task.

What is especially interesting to us is the chemical classification problem in
cheminformatics. Chemical structures have been studied using graph modeling for a long
time [35]. With recently developed high throughput screening methods, the National
Institute of Health has started an ambitious project called the Molecular Library Initiative
aiming to determine and publicize the biological activity of at least a million chemical
compounds each year in the next 5–10 years [2].

With the fast accumulation of graph data including class labels, graph classification, which
we focus on in this paper, is an emergent research topic in the data mining community.
Though classification has been studied for many years in data mining, graph classification is
undeveloped and brings many new challenges. Below, we highlight a few of the new
challenges.

In many existing classification algorithms [4], samples and their target values are organized
into an object-feature matrix X = (xi,j) where each row in the matrix represents a sample and
each column represents a measurement (or a feature) of the sample. Graphs are among a
group of objects called semistructured data that cannot easily conform to a matrix
representation. Other examples in the group include sequences, cycles, and trees. Though
many different features have been proposed for graph data (e.g., paths, cycles, and
subgraphs), there is no universally accepted way to define features for graph data.

Besides choosing the right feature representation, computational efficiency is also a serious
concern in analyzing graph data. Many graph-related operations, such as subgraph matching,
clique identification, and hamiltonian cycle discovery are NP-hard problems. For those that
are not NP-hard problems, e.g., all-by-all shortest distance, the computational cost could be
prohibitive for large graphs.

In this paper, we aim to leverage existing frequent pattern mining algorithms and explore the
application of kernel classifiers in building highly accurate graph classification algorithms.
Toward that end, we demonstrate a novel technique called graph pattern diffusion (GPD)
kernel. In our method, we first identify all frequent patterns from a graph database. We then

Smalter et al. Page 2

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2011 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

label graph nodes with features denoting membership in frequent patterns, and project nodes
of graphs to a high-dimensional space with a specially designed function. Finally, we
designed a graph alignment algorithm to compute the inner product of two graphs. We have
tested our algorithm using a number of chemical structure data sets. The experimental
results demonstrate that our method is significantly better than competing methods such as
those based on paths, cycles, and other subgraphs.

In summary, we present the following contributions in this paper:

• A novel way to measure graph similarity using graph kernel functions.

• We prove that the exact computation of the kernel function is an NP-hard problem
and we have designed an efficient algorithm to approximately compute the graph
kernel function.

• We have implemented our kernel function and tested it with a series of
cheminformatics data sets. Our experimental study demonstrates that our algorithm
performs much better than existing state-of-the-art graph classification algorithms.

The rest of the paper is organized as follows: In Section 2, we discuss the research efforts
that are closely related to our current effort. In Section 3, we define important concepts such
as labeled graphs and graph kernel function, and clearly layout the graph classification
problem. In Section 4, we present the details of our way of measuring graph similarity with
kernel functions. In Section 5, we use real-world data sets to evaluate our proposed methods
and perform a comparison of ours to the current state of the art. Finally, we conclude and
present our future plan in Section 6.

2 RELATED WORK
We survey the work related to graph classification methods by dividing them into two
categories. The first category of methods explicitly collect a set of features from the graphs.
Possible choices are paths, cycles, trees, and general subgraphs [45]. Once a set of features
is determined, a graph is described by a feature vector, and any existing classification
methods such as Classification Based on Association (CBA) [4] and decision tree [28] that
work in an n-dimensional euclidian space, may be applied for graph classification.

The second approach is to implicitly collect a (possibly infinite) set of features from graphs.
Rather than computing the features, this approach computes the similarity of graphs, using
the framework of “kernel functions” [37].

In what follows, we first give a brief review of pattern discovery algorithms from graphs.
Those algorithms provide features for graph classification. We then review the first category
algorithms, which explicitly utilize identified features. We delay the discussion of graph
kernel functions to Section 3 where we discuss kernel function in general and graph kernel
functions specifically.

2.1 Pattern Discovery
Many of the graph pattern mining algorithms adopt a similar criterion to select patterns in a
graph database. Given a graph G, its support value in a graph database is the number of
times the graph occurs in the database.1 If this number is sufficiently large (as compared to a
user specified threshold), the graph G is called a frequent pattern.

Algorithms that search for frequent patterns can be roughly divided into three categories.

1The term occur is formally defined using subgraph isomorphic relation, see Section 3 for details.

Smalter et al. Page 3

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2011 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

The first category uses a level-wise search strategy, including A-priori-based graph mining
(AGM) [18] and frequent subgraph discovery (FSG) [26]. Algorithms in this category mine
frequent patterns in a graph database, starting from selecting frequent single node. From
frequent single node, all candidate frequent single edge are proposed and their frequency are
determined by a linear scan of the related graph database. Both AGM and FSG develop a
graph “join” operation, which takes a pair of graphs with k-edges (k > 0) as input and
produces the common supergraphs of the two graphs with (k + 1)-edges as output. Using the
join operation, the algorithms propose candidates and then select frequent ones from the
candidate subgraphs.

The second category takes a depth-first search strategy, including gSpan [43] and FFSM
[19]. Different from level-wise search algorithms AGM and FSG, depth-first search strategy
utilizes a backtrack algorithm to mine frequent subgraphs. Starting from one frequent graph
G, depth-first search algorithms enumerate the supergraphs of G, select frequent ones, and
perform the search recursively. If none of the supergraphs is frequent, depth-first algorithms
backtrack. The advantage of a depth-first search is a better memory utilization since depth-
first search keeps one frequent subgraph in memory and enumerate its super-graphs, in
contrast to keeping all k-edge frequent subgraph in memory.

The third category of frequent subgraph mining algorithms does not directly work on a
graph space to identify frequent ones. Algorithms in this category first project a graph space
to another space such as that of trees, then identify frequent patterns in the projected space,
and finally reconstruct all frequent patterns in the graph space. We call this strategy
progressive mining. Algorithms in this category include SPIN [15] and GASTON [27].

2.2 Graph Classification
In graph classification, each graph is associated with a target value and the task is to
estimate a good function that maps graphs to their target values. The existing algorithms of
classifying graph data can be divided into two categories. The first approach is to explicitly
collect a set of features from the graphs. Possible choices are paths, cycles, trees, and
subgraphs. Once a set of features is determined, a graph is described by a feature vector.
With a collection of vectorized graph data, any existing data mining method that works in n-
dimensional euclidian space may be applied to do graph classification. In the context of
cheminformatics, explicit pattern features for compounds are often known as structural keys.
A structural key is a bit string denoting presence of certain patterns (such as paths, cycles,
trees, etc.) of interest. This approach has some similarities to our method, in that they both
use pattern information to label graph data. However, in the case of structural keys and other
approaches in this category, the patterns label a graph as a whole, while in our method the
patterns label individual graph nodes.

The second approach of graph classification is to implicitly collect a set of features (possibly
an infinite number of such features) and compute the similarity of two graphs via a kernel
function. The term kernel function refers to an operation of computing the inner product
between two points in a Hilbert space, thus may avoid the explicit computation of
coordinates in that feature space. Graph kernel functions are simply kernel functions that
have been defined to compute the inner product between two graphs. In recent years, a
variety of graph kernel functions have been developed, with promising application results as
described by Ralaivola et al. [29]. Among these methods, some kernel functions draw on
graph features such as walks [22] or cycles [12], while others may use different approaches
such as genetic algorithms [3], frequent subgraphs [8], or graph alignment [9]. Below, we
review some graph kernels.

Smalter et al. Page 4

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2011 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Kashima et al. [22] proposed a kernel function called the marginalized graph kernel. This
kernel function is based on the use of shared label sequences in the comparison of graphs.
Their marginalized graph kernel uses a Markov model to randomly generate walks of a
labeled graph, based on a transition probability matrix combined with a walk termination
probability. These collections of random walks are then compared and the number of shared
sequences is used to determine the overall similarity between two graphs.

The optimal-assignment (OA) kernel, proposed by Fröhlich et al. [9], differs significantly
from the marginalized graph kernel in that it attempts to align two graphs, rather than
compare sets of linear substructures. This kernel function first computes the similarity
between all vertices in one graph and those in another. The similarity between the two
graphs is then computed by finding the maximal weighted bipartite graph between the two
sets of vertices, called the optimal assignment. The authors investigate an extension of this
method whereby certain structure patterns defined a priori by expert knowledge, are
collapsed into single vertices, and this reduced graph is used as input to the optimal-
assignment kernel. One drawback to the optimal-assignment kernel, is that it was recently
proven not positive definite [38], and hence not a Mercer kernel.

The use of a non-Mercer kernel, while technically not guaranteeing a positive semidefinite
kernel matrix, can in practice be a viable approach. Computing a kernel by finding a
maximal weighted bipartite matching was shown to be practically useful by Fröhlich et al.
[9]. The Fröhlich kernel was later shown to be a non-Mercer kernel, and hence the classifier
may not find an optimal solution, yet it still performs well in practice. There has also been
work on probabilistic kernels which are positive semidefinite with a high probability [5].
The kernel function proposed here is based on the optimal-assignment kernel and so is also
not positive definite. The kernel classifier may not be able to converge to an optimal
solution in all cases, but given our results it is able to find reasonable solutions competitive
with true Mercer kernels. In practice, many of the eigenvalues of the kernel matrix obtained
by our method are close to zero (the smallest differ by less than 10−10), with a some larger
positive eigenvalues.

Two relevant nonkernel methods for graph classification are Xrules and graph boosting.
XRules [45] utilizes frequent tree patterns to build a rule-based classifier for XML data.
Specifically, XRules first identifies a set of frequent tree patterns. An association rule: G →
ci is then formed where G is a tree pattern and ci is a class label. The confidence of the rule
is the conditional probability p(ci | G) estimated from the training data. XRules carefully
selects a subset of rules with high confidence values and uses those rules for classification.

Graph boosting [25] also utilizes substructures toward graph classification. Similar to
XRules, graph boosting uses rules with the format of G → ci. Different from XRules, it uses
the boosting technique to assign weights to different rules. The final classification result is
computed as the weighted majority.

Another relevant kernel function is the diffusion kernel [24]. This graph kernel, like ours,
utilizes the idea of letting vertex feature values diffuse to neighbors. However, this kernel is
defined much differently from ours. It uses a matrix exponentiation form and an equation
that describes spread of heat through continuous media. In contrast, our method uses a
simple matching kernel for comparing graphs, and the diffusion process is used only for
approximate feature labeling. Another important difference is that our method incorporates
frequent pattern features for graph matching and comparison.

In the following discussion, we present the necessary background for a formal introduction
to the graph classification problem, and introduce a suite of graph kernel functions for graph
classification.

Smalter et al. Page 5

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2011 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

3 BACKGROUND
In this section, we discuss a few important definitions for graph database mining: labeled
graphs, subgraph isomorphic relation, graph kernel function, and graph classification.

Definition 3.1—A labeled graph G is a quadruple G = V E, Σ; λ where V is a set of vertices
or nodes and E ⊆ V × V is a set of undirected edges. Σ is a set of (disjoint) vertex and edge
labels, and λ : V ∪ E → Σ is a function that assigns labels to vertices and edges. We assume
that a total ordering is defined on the labels in Σ.

A graph database is a set of labeled graphs.

Definition 3.2—A graph G′ = (V′ E′; Σ′ λ′ is subgraph isomorphic to G = (V ; E; Σ λ),
denoted by G′ ⊆ G, if there exists a 1–1 mapping f : V′ → V such that

• ∀v ∈ V′, λ ′ (v) = λ(f(v)),

• ∀(u, v) ∈ E′,(f(u), f(v)) ∈ E and

• ∀ (u, v) ∈ E′, λ′ (u, v) = λ(f(u), f(v)).

The function f is a subgraph isomorphism from graph G′ to graph G. We say G′occurs in G
if G′ ⊆ G. Given a subgraph isomorphism f, the image of the domain V′ (f(V′)) is an
embedding of G′ in G.

Example 3.1—Fig. 1 shows a graph database of three labeled graphs. The mapping
(isomorphism) q1 → p3, q2 → p1, and q3 → p2 demonstrates that graph Q is subgraph
isomorphic to P and hence Q occurs in P. Set {p1, p2, p3} is an embedding of Q in P.
Similarly, graph S occurs in graph P but not Q.

Problem statement: Given a graph space G*, a set of n graphs sampled from G* and the
related target values T ∈ [0,1]of these graphs , the binary graph
classification problem is to estimate a function F : G* → T that maps graphs to their target
value.

By classification, we assume all target values are discrete values, otherwise it is a regression
problem. Below, we review several algorithms for graph classification that work within a
common framework called kernel functions. The term kernel function refers to an operation
of computing the inner product between two points in a Hilbert space. Kernel functions are
widely used in classification of data in a high-dimensional feature space.

3.1 Kernel Functions for Graphs
Kernel functions (and kernel classifiers such as support vector machines) are powerful
computational tools to analyze large volumes of graph data [10]. An advantage of kernel
functions is their capability to map a set of data to a high-dimensional Hilbert space without
explicitly computing the coordinates of the data. This is done through a special function
called kernel function.

A binary function K : X × X → IR is a positive semidefinite function if

(1)

Smalter et al. Page 6

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2011 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

for any m ∈ , any selection of samples xi ∈ X (i = [1, n]), and any set of coefficients ci ∈
IR (i = [1; n]). A positive semidefinite function ensures the existence of a Hillbert space
and a map Φ : X → such that

(2)

for all x; x′ ∈ X. 〈x; y〉 denotes an inner product between two objects x and y. The result is
known as the Mercer’s theorem and a positive semidefinite function is also known as a
Mercer kernel function [30], or kernel function for simplicity.

By embedding the data space to a Hilbert space, kernel functions provide a uniformed
analyzing environment for various data types including graphs, regardless the fact that the
original data space may not look like a vector space at all. This strategy is known as the
“kernel trick” and it has been applied to various data analysis tasks including classification
[37], regression [7], and feature extraction through principal component analysis [31] among
others.

Graph kernel functions are kernel functions that have been defined to compute the inner
product between two graphs. In recent years, a variety of graph kernel functions have been
developed, with promising application results as described by Ralaivola et al. [29]. Among
these methods, some kernel functions are computed using graph features such as walks [22]
or cycles [12], while others may use different approaches such as genetic algorithms [3],
frequent subgraphs [8], or optimal graph alignment [9], although the latter is not guaranteed
positive definite and therefore does not compute a Mercer kernel.

4 GRAPH ALIGNMENT KERNELS
Here, we present our design of a pattern diffusion kernel. We start the section by first
presenting a general framework. We prove, through a reduction to the subgraph
isomorphism problem, that the computational cost of the general framework can be
prohibitive for large graphs. We then present our pattern-based graph alignment kernel.
Finally, we show a technique we call “pattern diffusion” that can significantly improve
graph classification accuracy in practice.

4.1 Graph Similarity Measurement with Alignment
An alignment of two graphs G and G′ (assuming |V [G]|≤|V [G′]|) is a mapping π : V [G] →
V [G′]. Given an alignment π, we define the similarity between two graphs, as measured by a
kernel function kA, below:

(3)

Note that this mapping is not strictly 1–1 since the larger graph contains nodes that are not
mapped to any node in the smaller graph. However, it is 1–1 if considering only the subset
of nodes from the larger graph that are mapped to nodes in the smaller one. The function kn
is a kernel function to measure the similarity of node labels and the function ke is a kernel
function to measure the similarity of edge labels. Equation (3) uses an additive model to
compute the similarity between two graphs. The maximal similarity among all possible
mappings is defined as the similarity between two graphs.

Smalter et al. Page 7

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2011 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

4.2 NP-Hardness of Graph Alignment Kernel Function
It is no surprise that computing the graph alignment kernel is an NP-hard problem. We
prove this with a reduction from the graph alignment kernel to the subgraph isomorphism
problem. In the following paragraphs, we assume we have an efficient solver of the graph
alignment kernel problem, we show that the same solver can be used to solve the subgraph
isomorphism problem efficiently. Since the subgraph isomorphism problem is an NP-hard
problem, with the reduction we mentioned before we prove that the graph alignment kernel
problem is therefore an NP-hard problem as well. Note: this section is a stand-alone
component of our paper, and readers who choose to skip this section should encounter no
difficulty in reading the rest of the paper.

Given two graphs G and G′ (for simplicity, assume nodes and edges in G and G′ are not
labeled as usually studied in the subgraph isomorphism problem), we use a node kernel
function that returns a constant 0. We define an edge kernel function ke : V [G] × V [G] × V
[G′] × V [G′] → IR as

With the constant node function and the specialized edge function, the kernel function of
two graphs is simplified to the following format:

(4)

We establish the NP-hardness of the graph alignment kernel with the following theorem:

Theorem 4.1—Given two (unlabeled) graphs G and G′ and the edge kernel function ke
defined previously, G is subgraph isomorphic to G′ if and only if Ka (G, G′) = |E[G]|.

Proof—If: We notice from the definition of ke that the maximal value of Ka(G; G′) is |
E[G]|. Given Ka(G; G′) = |E[G]|, we claim that there exists an alignment function π : V [G]
→ V [G′] such that for all (u, v) ∈ E [G] we have (π(u),π(v)) ∈ E[G′]. The existence of such
a function π guarantees that graph G is a subgraph of G′.

Only if: Given G is a subgraph of G′, we have an alignment function π : V [G] → V [G′]
such that for all (u, v) ∈ E[G] we have (π(u),π(v)) ∈ E[G′]. According to (4), Ka(G; G′) = |
E[G]|.

Theorem 4.1 shows that the graph alignment kernel problem is no easier than the subgraph
isomorphism problem and hence is at least NP-hard in complexity.

4.3 Graph Node Alignment Kernel
To derive an efficient algorithm scalable to large graphs, our idea is that we use a function f
to map nodes in a graph to a high (possibly infinite) dimensional feature space that captures
not only the node label information but also the neighborhood topological information
around the node. If we have such function f, we may simplify the graph kernel function with
the following formula:

Smalter et al. Page 8

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2011 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

(5)

where π : V [G] → V [G′] denotes an alignment of graph G and G′. f(v) is a set of “features”
associated with a node.

With this modification, the optimization problem that searches for the best alignment can be
solved in polynomial time. To derive a polynomial running time algorithm, we construct a
weighted complete bipartite graph by making every node pair (u,v) ∈ V [G] × V [G′]
incident on an edge. The weight of the edge (u,v) is kn f(v), f(u). In Fig. 2, we show a
weighted complete bipartite graph for V [G] ={v1, v2, v3} and V [G′] = {u1, u2, u3}.

With the bipartite graph, a search for the best alignment becomes a search for the maximum
weighted bipartite subgraph from the complete bipartite graph. Many network-flow-based
algorithms (e.g., linear programming) can be used to obtain the maximum weighted bipartite
subgraph. We use the Hungarian algorithm with complexity O(|V [G]|3). For details of the
Hungarian algorithm see [1].

Applying the Hungarian algorithm to graph alignment was first explored by Fröhlich et al.
[9] for chemical compound classification. In contrast to their algorithm, which utilized
domain knowledge of chemical compounds extensively and developed a complicated
recursive function to compute the similarity between nodes, we develop a new framework
that maps such nodes to a high-dimensional space in order to measure the similarity between
two nodes without assuming any domain knowledge. Even in cheminformatics, our
experiments show that our technique generate similar and sometimes better classification
accuracies compared to the method reported in [9].

Unfortunately, using the Hungarian algorithm for assignment, as used by Fröhlich et al. [9]
does not give rise to a true Mercer kernel [38]. Since our proposed kernel function uses this
algorithm as well, it is also not a Mercer kernel. Like in [9], however, we have found that
practically our kernel still performs competitively.

4.4 Pattern Features
The patterns mined through the use of frequent subgraph mining are used as features to label
graph nodes when calculating the kernel between two graphs. Given a set of frequent
subgraphs S, each node is labeled with a binary feature vector of length |S|. Each bit in the
vector corresponds to a frequent pattern. If a graph node has the ith bit set to one, then it is
part of the ith subgraph pattern, otherwise a zero denotes nonmembership. These binary
features are first computed and then a diffusion process, described in the next section, is
used to induce approximate matching of these subgraph pattern features.

4.5 Pattern Diffusion
In this section, we introduce a novel function “pattern diffusion” to project nodes in a graph
to a high-dimensional space that captures both node labeling information and local topology
information. Our design has the following advantages as a kernel function:

• Our design is generic and does not assume any domain knowledge from a specific
application. The diffusion process may be applied to graphs with dramatically
different characteristics.

• The diffusion process is straightforward to implement and can be computed
efficiently.

Smalter et al. Page 9

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2011 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

• We prove that the diffusion process is related to the probability distribution of a
graph random walk (in Appendix). This explains why the simple process may be
used to summarize local topological information.

Below, we outline the pattern diffusion kernel in three steps.

In the first step, we identify a seed as a starting point for the diffusion. In our design, a
“seed” could be a single node, or a set of connected nodes in the original graph. In our
experimental study, we use frequent subgraphs for seeds since we can easily compare a seed
from one graph to a seed in another graph. However, there is no requirement that we must
use frequent subgraphs.

In the second step, given a set of nodes S as seed, we recursively define ft in the following
way.

The base f0 is defined as:

Given some time t, we define ft+1 (t ≥ 0) with ft in the following way:

(6)

In the notation, N(v) is the set of nodes that connects to v directly. d(v) is the node degree of
v, or d(v) = |N(v)|. λ is a parameter that controls the diffusion rate.

Equation (6) describes a process where each node distributes a λ fraction of its value to its
neighbors evenly and in the same way receives some value from its neighbors. We call it
“diffusion” because the process simulate the way a value is spreading in a network. Our
intuition is that the distribution of such a value encodes information about the local topology
of the network.

To constrain the diffusion process to a local region, we use one parameter called diffusion
time, denoted by τ to control the diffusion process. Specifically, we limit the diffusion
process to a local region of the original graph with nodes that are at most τ hops away from a
node in the seed S. For this reason, the diffusion is referred to as “local diffusion.”

Finally, for the seed S, we define the mapping function fS as the limit function of ft as t
approaches to infinity, or

(7)

4.6 Pattern Diffusion Kernel and Graph Classification
In this section, we summarize the discussion of kernel function and show how the kernel
function is utilized to construct an efficient graph classification algorithm at both the
training and testing phases.

Smalter et al. Page 10

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2011 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

4.6.1 Training Phase—In the training phase, we divide graphs of the training data set
 into groups according to their class labels. For example, in binary

classification, we have two groups of graphs: positive or negative. For multiclass
classification, we have multiple groups of graphs where each group contains graphs with the
same class label. The training phase is composed of four steps:

• Obtain frequent subgraphs for seeds. We identify frequent subgraphs from each
graph group and union the subgraph sets together as our seed set S.

• For each seed s ∈ S and for each graph G in the training data set, we use fs to label
nodes in G. Thus, the feature vector of a node v is a vector with
length m = |S|.

For two graphs G; G′, we construct the complete weighted bipartite graph as
described in Section 4.3 and compute the kernel Ka(G; G′) using (5).

Train a predictive model using a kernel classifier.

4.6.2 Testing Phase—In the testing phase, we compute the kernel function for graphs in
the testing and training data sets. We use the trained model to make predictions about graph
in the testing set.

• For each seed s 2 S and for each graph G in the testing data set, we use fs to label
nodes in G and create feature vectors as we did in the training phase.

• We use (5) to compute the kernel function Ka(G; G′) for each graph G in the testing
data set and for each graph G′ in the training data set.

• Use kernel classifier and trained models to obtain prediction accuracy of the testing
data set.

Below we present our empirical study of different kernel functions including our pattern
diffusion kernel.

5 EXPERIMENTAL STUDY
We have conducted classification experiments using 10 different biological activity data
sets, and compared cross-validation accuracies for different kernel functions. In each cross-
validation fold, the data set is divided into training and testing segments. Another internal
cross-validation experiment is performed on the training data in order to select the proper
SVM model parameters. Then, the model is trained with the training data and validated
using the test data. In the following sections, we describe the data sets and the classification
methods in more detail along with the associated results.

We performed all of our experiments on a desktop computer with a 3 GHz Pentium 4
processor and 1 GB of RAM. Generating a set of frequent subgraphs is efficient, generally
taking a few seconds. Computing alignment kernels somewhat takes more computation time,
typically in the range of a few minutes.

In all kernel classification experiments, we used the LibSVM classifier [6] as our kernel
classifier. We used ν-SVC and selected ν from the range 0.1–0.5 using a series of cross-
validation experiments, in increments of 0.1; ν > 0:5 was not used because the SVM
problem became infeasible for many data sets. Our classification accuracy is computed by
averaging over 10 additional trials of a 10-fold cross-validation experiment where the proper
ν has been selected through cross validation on the training data. P-values are calculated
using ANOVA test. Several experimental parameters are summarized in Table 2.

Smalter et al. Page 11

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2011 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

5.1 Data Sets
We have selected 10 data sets covering typical chemical benchmarks in drug design to
evaluate our classification algorithm performance.

The first five data sets are from drug virtual screening experiments taken from [21]. In this
data set, the target values are drugs’ binding affinity to a particular protein. Five proteins are
used in the data set including: CDK2, COX2, FXa, PDE5, and A1A where each symbol
represents a specific protein. For each protein, the data provider carefully selected 50
chemical structures that clearly bind to the protein (“active” ones). The data provider also
deliberately listed chemical structures that are very similar to the active ones (judged with
domain knowledge) but clearly do not bind to the target protein. This list is known as the
“decoy” list. We randomly sampled 50 chemical structures from the decoy list. Since our
goal is to evaluate classifiers, we will not further elaborate the nature of the data set. See
[21] for details.

The next data set, from Wessel et al. [40] includes compounds classified by affinity for
absorption through human intestinal lining. Moreover, we included the Predictive
Toxicology Challenge [11] data sets, which contain a series of chemical compounds
classified according to their toxicity in male rats, female rats, male mice, and female mice.

We use the same way as was done in [14] to transform chemical structure data set to graphs.
In Table 1 for each data set, we list the total number of chemical compounds in the data set,
as well as the number of positive and negative samples.

5.2 Feature Sets
We used frequent patterns from graph represented chemicals exclusively in our study. We
generate such frequent subgraphs from a data set using two different graph mining
approaches: that with exact matching [14] and that of approximate matching. In our
approximate frequent subgraph mining, we consider that a pattern matches with a graph as
long as there are up to k > 0 node label mismatches. For chemical structures typical
mismatch tolerance is small, that is k values are 1, 2, etc. In our experiments, we used
approximate graph mining with k = 1.

Once frequent subgraphs are mined, we generate three feature sets: 1) general subgraphs (all
of mined subgraphs), 2) tree subgraphs, and 3) path subgraphs. We tried cycles as well, but
did not include them in this study since typically less than two cyclic subgraphs were
identified in a data set. These feature sets are used for constructing kernel functions as
discussed below.

5.3 Classification Methods
We have evaluated the performance of the following classifiers:

• CBA. The first is a classifier that uses frequent item set mining, known as CBA [4].
In CBA, we treat mined frequent subgraphs as item sets.

• Graph Convolution Kernels. This type of kernel includes the mismatch kernel
(MIS), based on the normalized Hamming distance of two binary vectors.

• SVM built-in Kernels. We used linear kernel (Linear) and radial basis function
(RBF) kernel.

• GPD. We implemented the graph pattern diffusion kernel as discussed in Section 4.
The parameters for the GPD kernel are diffusion rate λ = 20 percent and diffusion
time τ = 5.

Smalter et al. Page 12

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2011 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

5.4 Experimental Results
Here, we present the results of our graph classification experiments. We perform one round
of experiments to evaluate the methods based on exact subgraph mining, and another round
of experiments with approximate subgraph mining. For both of these two subgraph mining
methods, we selected patterns that were general graphs, tree graphs, and cycles.

We perform feature selection in order to identify the most discriminating frequent patterns.
This supervised process is performed using the training data from each cross-validation trial.
Using a simple statistical formula, Pearson correlation coefficient (PCC), we measure the
correlation between a set of feature samples (in our case, the occurrences of a particular
subgraph in each of the data samples) and the corresponding class labels. Frequent patterns
are ranked according to correlation strength, and the top 10 percent patterns are selected to
construct the feature set.

5.4.1 Comparison between Classifiers—The results of the comparison of different
graph kernel functions are shown in Tables 4 and 5, along with p-values for the significance
of GPD method compared to others. From the tables, we observe that our GPD method
outperforms the other methods on many of the data sets, particularly the protein target data.
While the linear kernel method performs best for to toxicity data sets. In many of these
cases, the difference is significant according to p-values from an ANOVA test. The GPD’s
performance is also confirmed in classifications where tree and path patterns are used.

In Table 3, we compare the performance of our GPD kernel to the CBA method, or
Classification Based on Association. In general, it shows comparable performance to the
other methods. In one data set, it does show a noticeable increase over the other methods.
This is expected since CBA is designed specifically for discrete data such as the binary
feature occurrences used here. Despite the strengths of CBA, we can see that the GPD
method still gives the best performance for six of the seven data sets. The results for the
other toxicology data sets are not shown here because CBA generated errors for this data.
We also tested these data sets using the recursive OA kernel included in the JOELib2
computational chemistry library, and compare this method to CBA and GPD. This method
uses optimal assignment but not pattern features. The features used instead are atom element
and bond type. Note that for the FXa data set, there is no result for OA since it gives an error
on this data set.

In addition, we tested a classifier called XRules. XRules is designed for classification of tree
data [45]. Chemical graphs, while not strictly trees, often are close to trees. To run the
XRules executable, we transform a graph to a tree by randomly selecting a spanning tree of
the original graph. The results show that the application of XRules on average delivers
decreased performance results among the group of classifiers (e.g., 50 percent accuracy on
the CDK2 inhibitor data set), which may be due to the particular way we transform a graph
to a tree. Since we compute tree patterns for rule-based classifier such as CBA in our
comparison, we did not explore further of XRules.

We also tested a method based on a recursive OA [9] using biologically relevant chemical
descriptors labeling each node in a chemical graph. In order to perform a fair comparison
with this method to the other methods, we chose to ignore the chemical descriptors and
focus on the structural alignment.

5.4.2 Comparison between Descriptor Sets—Various types of subgraphs such as
trees, paths, and cycles have been used in kernel functions between chemical compounds. In
addition to exact mining of general subgraphs, we also chose to use approximate subgraph
mining to generate the features for our respective kernel methods. In both cases, we filtered

Smalter et al. Page 13

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2011 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

the general subgraphs mined into sets of trees and sets of paths as well. The results for these
experiments are given in Tables 4 and 5. The results for approximate patterns are not
reported for toxicity data sets due to errors when processing this data.

From Table 4, we see that the results for all kernels using exact tree subgraphs are identical
to those for exact general subgraphs. This is not surprising, given that most chemical
fragments are structured as trees. The results using exact path subgraphs, however, do show
some shifts in accuracy but the difference is not significant.

The results using approximate subgraph mining (shown in Table 5) in contrast to those for
exact subgraph mining (shown in Table 4). The use of approximate patterns appears to
increase the classification accuracy of most other methods more GPD, this makes some
amount of sense considering GPD already uses a diffusion process to approximate the
features.

5.4.3 Effect of Varying GPD Diffusion Rate and Time—We want to evaluate the
sensitivity of the GPD methods to its two parameters: diffusion rate λ and diffusion time.
We tested different diffusion rate λ values and diffusion time values. Each parameter was
varied while the other was held constant.

We can see from Fig. 3 that diffusion rate has various effects on the different data sets. In
some cases, more diffusion is desirable and in other cases less. We do note that some of the
data sets benefit a great deal from diffusion; in particular, the intestinal absorption data show
an increase of 8 percent from using diffusion.

From Fig. 3, we can also see that the performance differences when varying diffusion time
follow the same pattern as those for diffusion rate. That is, most data sets respond
marginally to changes in the parameter, with at least some diffusion preferred. At the longer
diffusion times, the results for some data sets degrade, while for other data sets they
improve.

From these data, we can observe the performance of the GPD method under three different
diffusion conditions: no diffusion, some diffusion, and convergent diffusion. The results
indicating no diffusion (where diffusion rate and time are equal to zero) correspond to exact
matching. Convergence arises when the diffusion process is performed until the approximate
labels stop changing. This situation can be seen in the cases where diffusion is carried out
quickly (with high diffusion rate) or for a long time (long diffusion time). In between these
two cases is the situation where some diffusion has occurred but not until convergence,
which can be seen in the experiments with median parameter values.

Different data sets respond differently to parameters and level of diffusion. Some data such
as intestinal absorption seem to favor a higher degree of diffusion, while others favor less,
such as the toxicity data sets. Still others seem insensitive to diffusion.

6 CONCLUSIONS AND FUTURE WORKS
With the rapid development of fast and sophisticated data collection methods, data have
become complex, high dimensional, and noisy. Graphs have proven to be powerful tools for
modeling complex, high-dimensional, and noisy data; building highly accurate predictive
models for graph data is a new challenge for the data mining community. In this paper, we
have demonstrated the utility of a novel graph kernel function, GPD kernel. We showed that
the GPD kernel can capture the intrinsic similarity between two graphs and has the lowest
testing error in many of the data sets evaluated. Although we have developed a very efficient
computational framework, computing a GPD kernel may be hard for large graphs. Our

Smalter et al. Page 14

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2011 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

future work will concentrate on improving the computational efficiency of the GPD kernel
for very large graphs, as well as performing additional comparisons between our method
other 2D-descriptor and QSAR-based methods.

Acknowledgments
This work has been supported by the Kansas IDeA Network for Biomedical Research Excellence (NIH/NCRR
award #P20 RR016475) and the KU Center of Excellence for Chemical Methodology and Library Development
(NIH/ NIGM award #P50 GM069663).

References
1. Ahuja R, Magnanti T, Orlin J. Network Flows. SIAM Rev. 1995;37(1)
2. Austin C, Brady L, Insel T, Collins F. Nih Molecular Libraries Initiative. Science. 2004;306(5699):

1138–1139. [PubMed: 15542455]
3. Barbu, E.; Raveaux, R.; Locteau, H.; Adam, S.; Heroux, P. Graph Classification Using Genetic

Algorithm and Graph Probing Application to Symbol Recognition. Proc. 18th Int’l Conf. Pattern
Recognition (ICPR); 2006.

4. Bing Liu, YM.; Hsu, W. Integrating Classification and Association Rule Mining. Proc. Fourth Int’l
Conf. Knowledge Discovery and Data Mining; 1998.

5. Boughorbel, S.; Tarel, J.; Fleuret, F. Non-Mercer Kernels for SVM Object Recognition. Proc.
British Machine Vision Conf.,; 2004.

6. Chang, C.; Lin, C. Libsvm: A Library for Support Vector Machines. 2001.
http://www.csie.ntu.edu.tw/cjlin/libsvm

7. Collobert R, Bengio S. SVMTorch: Support Vector Machines for Large-Scale Regression Problems.
J Machine Learning Research. 2001;1:143–160.

8. Deshpande M, Kuramochi M, Karypis G. Frequent SubStructure-Based Approaches for Classifying
Chemical Compounds. IEEE Trans Knowledge and Data Eng. Aug; 2005 17(8):1036–1050.

9. Fröhlich, Wegner J, Sieker F, Zell A. Kernel Functions for Attributed Molecular Graphs—A New
Similarity-Based Approach to ADME Prediction in Classification. QSAR & Combinatorial Science.
2006;25:317–326.

10. Haussler, D. Technical Report UCSC-CRL099-10. Computer Science Dept; UC Santa Cruz: 1999.
Convolution Kernels on Discrete Structures.

11. Helma C, King R, Kramer S. The Predictive Toxicology Challenge 2000–2001. Bioinformatics.
2001;17(1):107–108.

12. Horvath, T.; Gartner, T.; Wrobel, S. Cyclic Pattern Kernels for Predictive Graph Mining. Proc.
ACM SIGKDD; 2004.

13. Horvath, T.; Ramon, J.; Wrobel, S. Frequent Subgraph Mining in Outerplanar Graphs. Proc. ACM
SIGKDD; 2006.

14. Huan, J.; Wang, W.; Prins, J. Efficient Mining of Frequent Subgraph in the Presence of
Isomorphism. Proc. Third IEEE Int’l Conf. Data Mining (ICDM); 2003. p. 549-552.

15. Huan, J.; Wang, W.; Prins, J.; Yang, J. SPIN: Mining Maximal Frequent Subgraphs from Graph
Databases. Proc. ACM SIGKDD; 2004. p. 581-586.

16. Huan, J.; Wang, W.; Washington, A.; Prins, J.; Shah, R.; Tropsha, A. Accurate Classification of
Protein Structural Families Based on Coherent Subgraph Analysis. Proc. Pacific Symp.
Biocomputing (PSB),; 2004. p. 411-422.

17. Huang Y, Li H, Hu H, Yan X, Waterman MS, Huang H, Zhou XJ. Systematic Discovery of
Functional Modules and Context-Specific Functional Annotation of Human Genome.
Bioinformatics. 2007;23:222–229. [PubMed: 17110366]

18. Inokuchi, A.; Washio, T.; Motoda, H. An Apriori-Based Algorithm for Mining Frequent
Substructures from Graph Data. Proc. Conf. Principles of Data Mining and Knowledge Discovery
(PKDD ’00); 2000. p. 13-23.

19. Huan, WWJ.; Prins, J. Efficient Mining of Frequent Subgraphs in the Presence of Isomorphism.
Proc. IEEE Int’l Conf. Data Mining (ICDM); 2003.

Smalter et al. Page 15

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2011 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.csie.ntu.edu.tw/cjlin/libsvm

20. Jin, R.; Mccalle, S.; Almaas, E. Trend Motif: A Graph Mining Approach for Analysis of Dynamic
Complex Networks. Proc. IEEE Int’l Conf. Data Mining (ICDM); 2007.

21. Jorissen R, Gilson M. Virtual Screening of Molecular Databases Using a Support Vector Machine.
J Chemical Information and Modeling. 2005;45(3):549–561.

22. Kashima, H.; Tsuda, K.; Inokuchi, A. Marginalized Kernels between Labeled Graphs. Proc. 20th
Int’l Conf. Machine Learning (ICML); 2003.

23. Ke, Y.; Cheng, J.; Ng, W. Correlation Search in Graph Databases. Proc. ACM SIGKDD; 2007.
24. Kondor, R.; Lafferty, J. Diffusion Kernels on Graphs and Other Discrete Input Spaces. Proc. Int’l

Conf. Machine Learning (ICML); 2002.
25. Kudo, T.; Maeda, E.; Matsumoto, Y. An Application of Boosting to Graph Classification. Proc.

Neural Information Processing Systems (NIPS) Conf; 2004.
26. Kuramochi, M.; Karypis, G. Frequent Subgraph Discovery. Proc. Int’l Conf. Data Mining 2001;

2001. p. 313-320.
27. Nijssen, S.; Kok, J. A Quickstart in Frequent Structure Mining Can Make a Difference. Proc. 10th

ACM SIGKDD; 2004. p. 647-652.
28. Quinlan, JR. C4.5: Programs for Machine Learning. Morgan Kaufmann; 1993.
29. Ralaivola L, Swamidass SJ, Saigo H. Graph Kernels for Chemical Informatics. Neural Networks.

2005;18:1093–1110. [PubMed: 16157471]
30. Schölkopf, B.; Smola, AJ. Learning with Kernels. The MIT Press; 2002.
31. Schölkopf, B.; Smola, AJ.; Müller, KR. Advances in Kernel Methods: Support Vector Learning.

The MIT Press; 1999. Kernel Principal Component Analysis; p. 327-352.
32. Shasha, D.; Wang, JTL.; Giugno, R. Algorithmics and Applications of Tree and Graph Searching.

Proc. ACM Symp. Principles of Database Systems (PODS); 2002.
33. Smalter, A.; Huan, J.; Lushington, G. Structure-Based Pattern Mining for Chemical Compound

Classification. Proc. Sixth Asia Pacific Bioinformatics Conf; 2008.
34. Sun, J.; Papadimitriou, S.; Yu, PS.; Faloutsos, C. Parameter-Free Mining of Large Time-Evolving

Graphs. Proc. ACM SIGKDD; 2007.
35. Tolliday, N.; Clemons, PA.; Ferraiolo, P.; Koehler, AN.; Lewis, TA.; Li, X.; Schreiber, SL.;

Gerhard, DS.; Eliasof, S. Small Molecules, Big Players: The National Cancer Institute’s Initiative
for Chemical Genetics; Cancer Research; 2006. p. 8935-8942.

36. Tong, H.; Koren, Y.; Faloutsos, C. Fast Direction-Aware Proximity for Graph Mining. Proc. ACM
SIGKDD; 2007.

37. Vapnik, V. Statistical Learning Theory. John Wiley; 1998.
38. Vert, P. Computing Research Repository (CoRR), abs/0801.4061. 2008. The Optimal Assignment

Kernel is not Positive Definite.
39. Wale N, Watson I, Karypis G. Comparison of Descriptor Spaces for Chemical Compound

Retrieval and Classification. Knowledge and Information Systems. 2008;14:347–375.
40. Wessel M, Jurs P, Tolan J, Muskal S. Prediction of Human Intestinal Absorption of Drug

Compounds from Molecular Structure. J Chemical Information and Computer Sciences.
1998;38(4):726–735.

41. Weston J, Kuang R, Leslie C, Noble WS. Protein Ranking by Semi-Supervised Network
Propagation. BMC Bioinformatics. 2006;7

42. Williams, D.; Huan, J.; Wang, W. Graph Database Indexing Using Structured Graph
Decomposition. Proc. 23rd IEEE Int’l Conf. Data Eng. (ICDE); 2007.

43. Yan, X.; Han, J. gSpan: Graph-Based Substructure Pattern Mining. Proc. Int’l Conf. Data Mining
2002; 2002. p. 721-724.

44. Yan, X.; Yu, PS.; Han, J. Graph Indexing Based on Discriminative Frequent Structure Analysis.
ACM Trans. Database Systems; 2005. p. 960-993.

45. Zaki MJ, Aggarwal CC. Xrules: An Effective Structural Classifier for Xml Data. Machine
Learning J. 2006;62(1/2):137–170. special issue on statistical relational learning and multi-
relational data mining.

46. Zeng, Z.; Wang, J.; Zhou, L.; Karypis, G. Coherent Closed Quasi-Clique Discovery from Large
Dense Graph Databases. Proc. ACM SIGKDD; 2006.

Smalter et al. Page 16

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2011 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

47. Zhou, D.; Huang, J.; Schöolkopf, B. Learning from Labeled and Unlabeled Data on a Directed
Graph. Proc. 22nd Int’l Conf. Machine Learning; 2005.

APPENDIX
Here, we show the connection of pattern diffusion kernel function to the marginalized graph
kernel [22], which uses a Markov model to randomly generate walks of a labeled graph.

Given a graph G with nodes set V [G] = {v1, v2, …, vn}, and a seed S ⊆ V [G], for each
diffusion function ft, we construct a vector Ut = (ft(v1), ft(v2), …, ft(vn)). According to the
definition of ft, we have Ut+1 = Γ × Ut where the matrix Γ is defined as:

In this representation, we compute the stationary distribution (fS = limt→∞ ft) by computing
Γ∞ × U0.

We notice that the matrix Γ corresponds to a probability matrix corresponding to a Markov
Chain since

• all entries are non-negative and

• column sum is 1 for each column.

Therefore, the vector Γ∞ × U0 corresponds to the stationary distribution of the local random
walk as specified by Γ. In other words, rather than using random walk to retrieve
information about the local topology of a graph, we use the stationary distribution to retrieve
information about the local topology. Our experimental study shows that this, in fact, is an
efficient way for graph classification.

Biographies

Aaron Smalter is a PhD student in computer science in the Department of Electrical
Engineering and Computer Science, University of Kansas (KU). He is a graduate research
assistant with the Molecular Graphics and Modeling Laboratory and is also affiliated with
the Information and Telecommunication Technology Center at KU.

Smalter et al. Page 17

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2011 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Jun (Luke) Huan received the PhD degree in computer science from the University of
North Carolina at Chapel Hill in 2006. He has been an assistant professor in the Department
of Electrical Engineering and Computer Science at the University of Kansas (KU) since
2006. He is an affiliated member of the Information and Telecommunication Technology
Center (ITTC), Bioinformatics Center, Bioengineering Program, and the Center for
Biostatistics and Advanced Informatics—all KU research organizations. Before joining KU,
he worked at the Argonne National Laboratory (with Ross Overbeek) and GlaxoSmithKline
plc. (with Nicolas Guex).

Smalter et al. Page 18

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2011 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Yi Jia is a PhD candidate in the Department of Electrical Engineering and Computer
Science, University of Kansas (KU). He is also a part of the Intelligent Systems Laboratory
and the Bioinformatics and Computation Life-Sciences Laboratory in the Information and
Telecommunication Technology Center at KU.

Gerald Lushington received the PhD degree in theoretical chemistry from the University of
New Brunswick in 1996. He is currently the director of the Molecular Graphics and
Modeling Laboratory at the University of Kansas. He is also a courtesy assistant professor in

Smalter et al. Page 19

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2011 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

the Department of Chemistry and Medicinal Chemistry. He is involved with the K-INBRE
Bioinformatics Core facility, directing of a statewide network of informatics cores aimed at
providing data analysis and data mining support to academic biological research.

Smalter et al. Page 20

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2011 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 1.
A database of three different labeled graphs, each containing some common subgraphs with
Q and S each a subgraph of P.

Smalter et al. Page 21

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2011 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 2.
The maximum weighted bipartite graph for graph alignment. Highlighted edges (v1, u2),
(v2, u1), and (v3, u3) have larger weights than the rest of the edges (dashed).

Smalter et al. Page 22

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2011 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 3.
(a) GPD Classification Accuracy with different diffusion rate. (b) GPD Classification
Accuracy with different diffusion time.

Smalter et al. Page 23

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2011 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Smalter et al. Page 24

TABLE 1

Data Set and Class Statistics

Dataset # G # P # N

CDK2 inhibitors 100 50 50

COX2 inhibitors 100 50 50

Fxa inhibitors 100 50 50

PDE5 inhibitors 100 50 50

A1A inhibitors 100 50 50

intestinal absorption 310 148 162

toxicity (female mice) 344 152 192

toxicity (female rats) 336 129 207

toxicity (male mice) 351 121 230

toxicity (male rats) 349 143 206

#G: number of samples (chemical compounds) in the data set. # P: positive samples. # N: negative samples.

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2011 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Smalter et al. Page 25

TABLE 2

Method Parameters Unless Stated Otherwise as in Fig. 3

Method Parameter Value/Range

ν-SVC ν [0.1,0.2,0.3,0.4,0.5]

Approx. Graph Mining Mismatch tolerance 1

GPD λ 0.2

GPD τ 5

PCC features selected %10

Ranged values are chosen by cross validation.

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2011 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Smalter et al. Page 26

TABLE 3

Comparison of GPD to CBA and Optimal Assignment

Data set GPD CBA OA

CDK2 83* 80 82

COX2 77 77 80*

FXa 88* 86 -

PDE5 89* 87 84

A1A 94* 87 92

intestinal 60* 54 52

toxicity (MR) 51 55* 53

Best accuracy is marked with asterisk.

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2011 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Smalter et al. Page 27

TA
B

LE
 4

C
om

pa
ris

on
 o

f D
iff

er
en

t G
ra

ph
 K

er
ne

l F
un

ct
io

ns
 U

si
ng

 D
iff

er
en

t S
ub

gr
ap

h
Fe

at
ur

e
M

in
de

d
by

 F
FS

M

su
bg

ra
ph

 ty
pe

D
at

a
se

t
G

PD
M

IS
p-

va
l

L
in

ea
r

p-
va

l
R

B
F

p-
va

l

ge
ne

ra
l

C
D

K
2

83
*

71
.8

0.
01

72
.9

0.
01

74
.3

0.
02

C
O

X
2

77
.6

*
54

<0
.0

1
52

.6
<0

.0
1

56
.7

<0
.0

1

FX
a

88
.1

*
63

.2
<0

.0
1

59
.2

<0
.0

1
62

.1
<0

.0
1

PD
E5

89
.4

*
81

.7
<0

.0
1

79
.5

<0
.0

1
81

.9
<0

.0
1

A
1A

94
.4

*
89

.4
<0

.0
1

89
.4

<0
.0

1
90

.5
<0

.0
1

in
te

st
in

al
 a

bs
.

60
.9

3*
48

.9
5

<0
.0

1
52

.0
9

<0
.0

1
49

.7
7

<0
.0

1

to
xi

ci
ty

 (F
M

)
50

.2
3

53
.6

7
0.

08
52

.7
8

0.
22

56
.9

3*
0.

01

to
xi

ci
ty

 (F
R

)
55

.4
1

54
.0

7
0.

46
54

.7
3

0.
5

59
.9

7*
<0

.0
1

to
xi

ci
ty

 (M
M

)
54

.2
3

52
.2

3
0.

4
49

.2
9

0.
07

55
.9

5*
0.

53

to
xi

ci
ty

 (M
R

)
51

.4
5

51
.4

5
1

52
.7

0.
45

59
.3

9*
<0

.0
1

tre
es

C
D

K
2

83
*

71
.8

0.
01

72
.9

0.
01

74
.3

0.
02

C
O

X
2

77
.6

*
54

<0
.0

1
52

.6
<0

.0
1

56
.7

<0
.0

1

FX
a

88
.1

*
63

.2
<0

.0
1

59
.2

<0
.0

1
62

.1
<0

.0
1

PD
E5

89
.4

*
81

.7
<0

.0
1

79
.5

<0
.0

1
81

.9
<0

.0
1

A
1A

94
.4

*
89

.4
<0

.0
1

89
.4

<0
.0

1
90

.5
<0

.0
1

in
te

st
in

al
 a

bs
.

60
.9

3*
48

.9
5

<0
.0

1
52

.0
9

<0
.0

1
49

.7
7

<0
.0

1

to
xi

ci
ty

 (F
M

)
50

.2
3

53
.6

7
0.

08
52

.7
8

0.
22

56
.9

3*
0.

01

to
xi

ci
ty

 (F
R

)
55

.4
1

54
.0

7
0.

46
54

.7
3

0.
5

59
.9

7*
<0

.0
1

to
xi

ci
ty

 (M
M

)
54

.2
3

52
.2

3
0.

4
49

.2
9

0.
07

55
.9

5*
0.

53

to
xi

ci
ty

 (M
R

)
51

.4
5

51
.4

5
1

52
.7

0.
45

59
.3

9*
<0

.0
1

pa
th

s

C
D

K
2

82
.2

*
63

<0
.0

1
64

.5
<0

.0
1

80
.2

0.
01

C
O

X
2

77
.1

*
51

.2
<0

.0
1

50
.6

<0
.0

1
52

.7
<0

.0
1

FX
a

89
.6

*
74

.1
<0

.0
1

74
.9

<0
.0

1
87

.9
0.

03

PD
E5

91
.3

*
73

.6
<0

.0
1

70
<0

.0
1

79
.7

<0
.0

1

A
1A

93
.3

*
90

.4
<0

.0
1

90
.4

<0
.0

1
90

.8
<0

.0
1

in
te

st
in

al
 a

bs
.

49
.1

9*
48

.1
4

0.
72

48
.7

2
0.

87
47

.6
7

0.
62

to
xi

ci
ty

 (F
M

)
52

.3
2

54
.2

4
0.

41
53

.1
8

0.
61

57
.2

5*
0.

03

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2011 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Smalter et al. Page 28

su
bg

ra
ph

 ty
pe

D
at

a
se

t
G

PD
M

IS
p-

va
l

L
in

ea
r

p-
va

l
R

B
F

p-
va

l

to
xi

ci
ty

 (F
R

)
54

.4
4

55
.1

6
0.

69
53

.9
3

0.
7

59
.8

6*
<0

.0
1

to
xi

ci
ty

 (M
M

)
56

.3
1

51
.0

7
0.

04
51

.1
6

0.
05

56
.4

6*
0.

94

to
xi

ci
ty

 (M
R

)
51

.9
2

52
.9

1
0.

51
51

.9
2

1
54

.9
1*

0.
05

B
es

t a
cc

ur
ac

y
is

 m
ar

ke
d

w
ith

 a
st

er
is

k.
 A

cc
ur

ac
y

is
 g

iv
en

 a
s a

 p
er

ce
nt

, a
lo

ng
 w

ith
 p

-v
al

ue
s c

om
pa

re
d

to
 G

PD
 in

 th
e

se
co

nd
 c

ol
um

n
fo

r o
th

er
 m

et
ho

ds
.

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2011 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Smalter et al. Page 29

TA
B

LE
 5

C
om

pa
ris

on
 o

f D
iff

er
en

t G
ra

ph
 K

er
ne

l F
un

ct
io

ns
 U

si
ng

 D
iff

er
en

t S
ub

gr
ap

h
Fe

at
ur

es
 M

in
ed

 b
y

A
pp

ro
xi

m
at

e
M

at
ch

in
g

su
bg

ra
ph

 ty
pe

D
at

a
se

t
G

PD
M

IS
p-

va
l

L
in

ea
r

p-
va

l
R

B
F

p-
va

l

ge
ne

ra
l

C
D

K
2

77
.4

*
58

.4
<0

.0
1

58
<0

.0
1

51
.9

<0
.0

1

C
O

X
2

80
.7

83
.2

*
0.

03
82

.3
0.

12
80

.1
0.

71

FX
a

95
.7

*
95

.5
0.

72
95

.5
0.

72
95

.3
0.

51

PD
E5

88
.4

*
86

.7
0.

16
86

.7
0.

16
85

.8
0.

03

A
1A

91
.3

*
56

.9
<0

.0
1

50
.6

<0
.0

1
54

.3
<0

.0
1

in
te

st
in

al
 a

bs
.

59
.4

2*
49

.8
8

<0
.0

1
52

.7
9

<0
.0

1
52

.6
7

0.
01

tre
es

C
D

K
2

77
.4

*
58

.4
<0

.0
1

58
<0

.0
1

51
.9

<0
.0

1

C
O

X
2

80
.7

83
.2

*
0.

03
82

.3
0.

12
80

.1
0.

71

FX
a

95
.7

*
95

.5
0.

72
95

.5
0.

72
95

.3
0.

51

PD
E5

88
.4

*
86

.7
0.

16
86

.7
0.

16
85

.8
0.

03

A
1A

91
.3

*
56

.9
<0

.0
1

50
.6

<0
.0

1
54

.3
<0

.0
1

in
te

st
in

al
 a

bs
.

59
.4

2*
49

.8
8

<0
.0

1
52

.7
9

<0
.0

1
52

.6
7

0.
01

pa
th

s

C
D

K
2

75
.9

*
58

<0
.0

1
62

.7
0.

01
53

.1
<0

.0
1

C
O

X
2

81
*

78
.4

0.
08

76
.7

0.
03

79
.1

0.
27

FX
a

94
.9

*
92

.7
<0

.0
1

92
.6

<0
.0

1
92

.5
<0

.0
1

PD
E5

87
.7

*
78

.8
<0

.0
1

79
.9

<0
.0

1
86

.7
0.

16

A
1A

95
.8

*
70

.6
<0

.0
1

72
.3

<0
.0

1
83

.5
<0

.0
1

in
te

st
in

al
 a

bs
.

53
.7

2*
51

.5
1

0.
35

53
.1

4
0.

78
50

.4
7

0.
19

B
es

t a
cc

ur
ac

y
is

 m
ar

ke
d

w
ith

 a
st

er
is

k.
 A

cc
ur

ac
y

is
 g

iv
en

 a
s a

 p
er

ce
nt

, a
lo

ng
 w

ith
 p

-v
al

ue
s c

om
pa

re
d

to
 G

PD
 in

 th
e

se
co

nd
 c

ol
um

n
fo

r o
th

er
 m

et
ho

ds
.

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2011 March 16.

