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Abstract

Background and Objectives—Alcohol abuse complicates treatment of HIV disease and is

linked to poor outcomes. Alcohol pharmacotherapies, including disulfiram (DIS), are infrequently

utilized in co-occurring HIV and alcohol use disorders possibly related to concerns about drug

interactions between antiretroviral (ARV) medications and DIS.

Method—This pharmacokinetics study (n=40) examined the effect of DIS on efavirenz (EFV),

ritonavir (RTV), or atazanavir (ATV) and the effect of these ARV medications on DIS metabolism

and aldehyde dehydrogenase (ALDH) activity which mediates the DIS-alcohol reaction.

Results—EFV administration was associated with decreased S-Methyl-N-N-

diethylthiocarbamate (DIS carbamate), a metabolite of DIS (p=0.001) and a precursor to the

metabolite responsible for ALDH inhibition, S-methyl-N,N-diethylthiolcarbamate sulfoxide

(DETC-MeSO). EFV was associated with increased DIS inhibition of ALDH activity relative to

DIS alone administration possibly as a result of EFV-associated induction of CYP 3A4 which

metabolizes the carbamate to DETC-MeSO (which inhibits ALDH). Conversely, ATV co-
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administration reduced the effect of DIS on ALDH activity possibly as a result of ATV inhibition

of CYP 3A4. DIS administration had no significant effect on any ARV studied.

Discussion/Conclusions—ATV may render DIS ineffective in treatment of alcoholism.

Future Directions—DIS is infrequently utilized in HIV-infected individuals due to concerns

about adverse interactions and side effects. Findings from this study indicate that, with ongoing

clinical monitoring, DIS should be reconsidered given its potential efficacy for alcohol and

potentially, cocaine use disorders, that may occur in this population.
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Introduction

Disulfiram (DIS) (Antabuse®) is a U.S. Food and Drug Administration (FDA) approved

pharmacotherapy for the treatment of alcohol dependence. DIS is a relatively irreversible

inhibitor of sulfhydryl-containing enzymes (1). The target enzyme for the pharmacologic

effect of DIS in the treatment of alcohol addiction is aldehyde dehydrogenase (ALDH). This

enzyme converts acetaldehyde to acetate in alcohol metabolism. The increased concentration

of acetaldehyde after alcohol ingestion in the presence of DIS is responsible for the DIS-

alcohol reaction. This reaction is characterized by flushing, weakness, nausea, tachycardia,

and in some instances, hypotension (2). In addition to its use as a deterrent to alcohol

consumption, DIS has shown promise as a potential pharmacotherapy for cocaine abuse (3).

Clinical trials have shown decreases in cocaine and alcohol use with DIS 250 mg daily

administration (4) while human laboratory studies have shown significant decreases in

cocaine “high” and “rush” when cocaine was administered by the intravenous route in a

double-blind, randomized study in which either DIS 0, 62.5 mg or 250 mg daily was

administered chronically (5).

Substance abuse is common in those with HIV infection (6, 7) and the availability of

addiction pharmacotherapy for this population is important. For example, the clinical benefit

of opioid therapies including methadone and buprenorphine to treat opioid dependence,

often in injection drug users who have contracted HIV infection through high risk injection

practices, has been clearly demonstrated (8). However, medications to treat alcoholism are

used infrequently although alcohol abuse is a significant problem complicating the treatment

of HIV disease and has been linked to poor HIV outcomes (9–11). The potential of DIS for

adverse drug-drug interactions with antiretroviral medications (ARV) is a significant

concern that could be a factor in diminishing consideration of use of this medication in those

with alcoholism and HIV disease.

DIS must be bioactivated through a series of intermediates, ultimately forming S-methyl-

N,N-diethylthiolcarbamate sulfoxide (DETC-MeSO), the metabolite proposed to be

responsible for the in vivo inhibition of ALDH (12, 13). Bioactivation of DIS to the active

metabolite associated with the DIS-alcohol reaction, DETC-MeSO, occurs principally via

cytochrome P450 (CYP) 3A4/5, with contributions by CYP1A2, -2A6 and -2D6 (14, 15).
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Inhibition by DIS of CYP450 enzymes, mainly 2E1 (16, 17) and 1A2 (18, 19), and

demethylation function has been reported (20). Therefore, this study investigated any

potential effect on CYP450 enzymes by DIS that might alter the metabolism of ARV,

specifically efavirenz (EFV), ritonavir (RTV), and atazanavir (ATV) since these ARV are

substrates of CYP3A4/5 and -2B6. Also important was the determination of whether DIS

would be efficacious as a treatment for alcohol dependence when co-administered with

ARV that could potentially alter DIS metabolism. For example, EFV has been reported to

induce CYP3A4 activity (21, 22) while RTV is a potent inhibitor of CYP3A4 (23).

Therefore, the effects of ARV administration on DIS metabolism were also examined.

Methods

Forty individuals participated in this project composed of four separate pharmacokinetics

study components with 10 participants enrolled in each component which included

determination of pharmacokinetics for 1. DIS alone, 2. DIS/EFV, 3. DIS/RTV, and 4. DIS/

ATV. The study was reviewed and approved by the Institutional Review Board at the

University of California San Francisco (UCSF) and is registered at ClinicalTrials.gov

(NCT00878306). Participants were healthy subjects with health status determined by

medical history and physical examination, psychological testing (Mini-International

Neuropsychiatric Interview (24), laboratory testing, and cardiogram which were within

normal ranges at baseline (Table 1). Participants were taking no other medications that

might impact CYP 450 function. All participants were confirmed to have no evidence of

HIV infection (by HIV antibody and HIV viral load tests). Participants were tested for

ALDH activity which is a marker of DIS ability to induce a DIS-alcohol reaction (i.e.:

whether DIS would be expected to be effective as a deterrent to alcohol use) and underwent

pharmacokinetics studies in which a within-subjects analysis was used to determine the

effect of ARV combined with DIS on ALDH activity. A between-subjects analysis was used

to examine the effect of ARV on the DIS metabolite, S-Methyl-N-N-diethylthiocarbamate

(DIS carbamate), and the effect of DIS on ARV.

Each study component was conducted independently and was open-label to increase the

safety of the study participants. Participants in the DIS alone group received DIS 62.5 mg

daily for 4 days followed by a pharmacokinetics study over 10 hours. Participants were then

placed on DIS 250 mg daily and received this medication for 4 days followed by another

pharmacokinetics study. Blood samples for DIS alone pharmacokinetics studies were

collected at 0, 0.5, 1, 2, 4, 6, 8, and 10 hours. Volunteers who participated in the DIS/ARV

studies were assigned to receive clinical doses of either EFV 600 mg daily for 10 days or

RTV 200 mg daily for 8 days or ATV 400 mg daily for 8 days. Upon completion of the

dosing period for the ARV, either a 12 hour (RTV) or 24 hour (ATV or EFV)

pharmacokinetics study was undertaken in which ARV samples were collected at 0, 0.5, 1,

1.5, 2, 4, 6, 8, 12 and 24 hours (the latter sample for EFV and ATV studies). Once the ARV

pharmacokinetics study was completed, participants began a 4 day course of DIS 62.5 mg

daily with continued ARV medication followed by a second pharmacokinetics study in

which both DIS and the ARV of interest were sampled as previously described. A four day

washout of DIS with continued ARV administration was followed by a dosing period of 4

days with DIS 250 mg daily. All medication ingestion was observed by study staff with the
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exception of EFV which is generally given in the evening when used for HIV treatment.

Four days prior to the pharmacokinetics studies, EFV dosing was changed to mornings and

all dosing was observed. The final pharmacokinetics study of ARV and DIS 250 mg was

undertaken as described above. Blood samples for ALDH were collected at baseline (prior

to receiving any study medications) and following completion of study medication observed

dosing (e.g.: Day 4 following DIS 62.5 mg daily and Day 4 following DIS 250 mg daily

dosing for DIS alone and similarly following DIS administration in combination with ARV

medications). Each ALDH sample was collected prior to DIS or DIS + ARV dosing at the

time of the pharmacokinetics study. Adverse symptoms were recorded for all participants

using an Adverse Symptoms Checklist (25) that queried for a wide range of adverse

experiences including changes in energy, gastrointestinal symptoms, central nervous system

effects, genitourinary symptoms, and other somatic complaints scored for severity on an

ordinal scale (0–3, with 0=not present, 1=mild, 2=moderate, and 3=severe, maximum

possible score=87). These ratings were administered at baseline, following DIS

administration, following ARV administration, and following administration of ARV and

DIS concomitantly. Upon completion of study procedures, participants received a final

physical examination and laboratory testing to assure that no clinically significant changes

had occurred.

Analytical Assays

Sample Processing

All blood samples were collected in heparinized 6 ml vacutainer tubes. For drug

concentration determination, plasma was separated by centrifugation and stored at −70°C

until shipment. Plasma samples were shipped on dry ice to the University at Buffalo

Translational Pharmacology Research Core and kept at −70°C until assay. Samples were

thawed prior to assays which were conducted as described below. Blood samples for ALDH

determination were collected in heparinized vacutainer tubes and shipped overnight on a

cold pack to the flow cytometery laboratory at Roswell Park Cancer Institute for analysis.

The blood samples were processed for mononuclear cells using histopaque.

ALDH assay

ALDH activity in peripheral blood mononuclear cells was measured using ALDEFLUOR™

Kits. These kits are routinely used to identify stem and progenitor cells expressing high

levels of ALDH (26). Total and control ALDH measurements were performed in triplicate.

Cytofluorometric analysis was performed using a FACSCanto II (BD BioSciences, San Jose,

CA) flow cytometer equipped with 408, 488, and 640 nm lasers. Monocytes were gated and

the net ALDH activity determined by subtracting control from total activity.

S-Methyl-N-N-diethylthiocarbamate (DIS carbamate) and Antiretroviral Assays

DIS carbamate concentrations were determined using ultra performance liquid

chromatography coupled to electrospray tandem mass spectrometry (27). S-Methyl-N-N-

diethylthiocarbamate reference standard (lot number ELZ-125-3, 98% purity) was used to

prepare calibration standards and quality controls and was supplied by Toronto Research
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Chemicals. Ritonavir, atazanavir and efavirenz were quantified using previously published

simultaneous high-performance liquid chromatography (HPLC) assays (28, 29).

Pharmacokinetics and Statistical Analysis

Plasma DIS metabolite and ARV pharmacokinetics were evaluated for each subject.

Standard non-compartmental methods were used to estimate pharmacokinetic parameters

including area under the concentration-time curve (AUCtau,), maximum plasma

concentration (Cmax), time of Cmax(Tmax), elimination half life (T1/2) and oral clearance

(CLss/F), where F is the oral bioavailability. Tmax was estimated by inspection of the raw

data (Phoenix 64, WinNonlin 6.3)

The Kruskal-Wallis test was used to determine the significance of the differences in ARV

pharmacokinetic parameters (e.g.: AUC, Cmax, Cmin) in the absence or presence of DIS 62.5

and DIS 250 mg/d. Determination of differences in effects of ARV on DIS intermediary

metabolite, DIS carbamate, pharmacokinetics parameters were also examined by Kruskal-

Wallis test. ALDH activity was analyzed using a within-subjects approach by paired t-test

with comparison of baseline ALDH and ALDH activity following DIS or DIS/ARV

administration. All differences were considered statistically significant if the p value was ≤

0.05 (two-tailed). Comparisons of participant characteristics were made by one-way

ANOVA.

Results

Study Participants

There were no significant differences in age (range 34–45 years), weight (75–87 kg), gender

(samples ranged from 30–60% women), or cigarette use between any of the groups (0–0.1

packs per day) (Table 1). All samples were comprised of healthy subjects and no diagnoses

of medical, mental, or substance use disorders were identified on completion of screening

procedures. Laboratory indices of hepatic function (alanine aminotransferase (ALT),

aspartate aminotransferase (AST), alkaline phosphatase, and total protein) remained within

normal ranges throughout the study period including baseline values, following ARV

administration, DIS administration and combined ARV and DIS administration (Table 1).

Total bilirubin was significantly increased following ATV administration alone and in

combination with DIS. Cardiograms were obtained at baseline and following DIS

administration, ARV administration or combined administration of ARV and DIS. There

was no evidence for clinically significant changes in QT interval under any study condition

(Table1). Administration of DIS, ARV, or DIS concurrently with any of the ARV produced

no significant changes in adverse symptoms from those reported at baseline.

Pharmacokinetic results

Effect of DIS on ARV

Table 2 A–C shows pharmacokinetic parameters for each of the ARV alone or concurrent

with either dose of DIS for 4 days. Neither dose of DIS had a significant effect on any of the

pharmacokinetic parameters examined including total exposure to ARV over time (AUCtau),

McCance-Katz et al. Page 5

Am J Addict. Author manuscript; available in PMC 2015 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



clearance, maximum plasma concentration (Cmax), time to maximum plasma concentration

(Tmax), and elimination half-life.

Effect of ARV on DIS

Two indices of DIS activity in the presence of ARV medications were examined with

simultaneous, chronic dosing of both the ARV of interest and DIS. The DIS intermediary

metabolite, DIS carbamate, is formed following metabolism via the CYP 450 enzyme

system and, therefore, is one measure of the effect of ARV medications, which have the

potential to alter CYP 450 function, on DIS efficacy. Table 3 shows a dose response for DIS

pharmacokinetics parameters as demonstrated by the DIS metabolite, DIS carbamate, for the

DIS 62.5 mg daily dose vs. the DIS 250 mg daily dose. A significant effect of ARV

administration on pharmacokinetics parameters for DIS 250 mg daily including Cmax, Cmin,

and AUC0–10and for DIS 62.5 mg daily Cmax and AUC0–10was observed. The differences

were related to significantly lower DIS carbamate Cmax, Cmin, and AUC0–10 with EFV

administration (Table 3, Figure 1). The second measure of DIS activity was examination of

ALDH activity. ALDH inhibition is the means by which alcohol metabolism is attenuated

resulting in a noxious reaction with alcohol consumption when clinical doses (DIS 250 mg

daily) are utilized in the treatment of alcohol use disorders. Figure 3 shows reductions in

ALDH activity when DIS 250 mg/d is administered alone (p=0.02) and represents a 44%

decrease in ALDH activity in this sample. ALDH activity is also significantly decreased

when RTV 200 mg/d is administered concurrently with DIS 250 mg/d (p= 0.009) and

represents a 36% decrease in ALDH activity. ATV co-administration with DIS 250 mg/d

resulted in a 16% reduction in ALDH activity (NS). EFV co-administration with DIS 250

daily resulted in the highest levels of ALDH inhibition at 52% (p=0.002).

Discussion

This study shows that DIS can be safely used with commonly prescribed ARV including

RTV, ATV, and EFV. DIS has no effect on the pharmacokinetics of any of these

medications; therefore ARV dose adjustments when using DIS for treatment of substance

use disorders in those receiving these ARV should not be necessary. Two of the ARV

studied had significant effects on DIS metabolism. EFV co-administration was associated

with significant decreases in DIS carbamate and a moderate increase in ALDH inhibition

relative to DIS alone administration. ATV administration with DIS 250 mg daily was

associated with a lack of DIS-associated inhibition of ALDH activity. This indicates that

DIS at standard clinical doses utilized in the treatment of alcohol use disorders is unlikely to

be effective; i.e.: a DIS-alcohol reaction may not occur in an individual receiving an ATV-

containing regimen for HIV infection and DIS for an alcohol disorder.

This study was undertaken because the hazardous use of alcohol as well as alcohol use

disorders are common in those with HIV infection (9–11), yet pharmacotherapies for alcohol

use disorders are infrequently used in the population. This might be largely due to the sparse

evidence currently available on the interactions of DIS and ARV. Informing clinicians of the

safety of DIS with concurrent use of ARV as well as identifying potential problems in the

use of this alcohol pharmacotherapy which has also shown promise in the treatment of
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cocaine dependence (4) may be helpful in increasing the clinical use of DIS in the HIV-

infected population.

Several studies have indicated inhibitory effects of DIS treatment on CYP450 enzymatic

activity (e.g. CYP3A4) which are variable (20, 31, 32). A number of ARV are substrates of

CYP3A4 including those in this study, EFV (22), ATV (33), and RTV (32). DIS was

administered at two doses: 62.5 mg/d and 250 mg/d because these doses have been shown to

diminish acute cocaine responses in humans (5). The finding that neither dose had a

significant effect on the pharmacokinetics of any of the ARV studied suggests that DIS in

clinically relevant doses can be safely used as it pertains to ARV efficacy in HIV-infected

people receiving ARV therapy. Of note, the RTV formulation administered in this study was

an alcohol-containing gelcap. No participants receiving RTV with DIS experienced

symptoms of an alcohol-DIS reaction.

The effect of the ARV on DIS metabolism and ALDH inhibition was consistent with study

hypotheses. EFV is known to induce CYP450 enzyme activity; specifically CYP3A4 (21).

DIS carbamate, an intermediate in DIS metabolism, is metabolized to S-methyl N,N-

diethylthiolcarbamate sulfoxide (DETC-MeSO) by CYP3A4, -2A6, and -2E1 (14) and

therefore, it was expected that levels of DIS carbamate would be lower in those receiving

EFV as compared to those receiving DIS alone. DETC-MeSO is the DIS metabolite

responsible for ALDH inhibition (14). The induction of CYP enzyme activity by EFV would

be expected to produce increased DETC-MeSO which would be manifest as a relative

increase in the inhibition of ALDH activity. This was observed in that ALDH activity

showed the greatest decrease in those receiving EFV and DIS concomitantly with a 52%

decline in ALDH activity observed (baseline 363.07 (40.46) mean (SE) vs. following EFV

600 mg/d and DIS 250 mg/d: 174.75 (23.18) (p = 0.002) (shown graphically in Figure 3). As

a comparison, baseline ALDH activity in those receiving only DIS 250/d was 416.46

(71.41), which declined to 233.89 (26.14) following DIS 250 mg/d administration (44%

decrease from baseline p = 0.020). ATV and RTV were expected to reduce the conversion of

the DIS carbamate to DETC-MeSO due to their inhibition of CYP3A4 (23, 34). Thus, it was

expected that co-administration of these ARV with DIS would be associated with

proportionately less inhibition of ALDH activity relative to disulfiram alone administration.

Among subjects receiving RTV 200 mg/d and DIS 250 mg/d, baseline ALDH activity

[593.17 (54.6)] significantly declined to 377.28 (42.57) (36% reduction) (p=0.009). A non-

significant (16%) decline in ALDH activity from 318.7 (38.91) to 266.36 (39.91) was

observed among subjects receiving ATV 400 mg/d with DIS 250 mg/d (shown graphically

in Figure 2). It is notable that there was significant variation in individual ALDH activity at

baseline; therefore the proportional change in ALDH activity was used as the comparator in

this study. Proportional changes in ALDH activity were consistent with the expected effect

of the ARV on CYP 450 activity.

One difference observed in subjects participating in the ATV and DIS study was an increase

in total bilirubin when ATV was administered alone or with DIS. ATV is known to inhibit

bilirubin glucuronidation by UDP glucuronosyltransferase 1A1 (UGT 1A1) with a resultant

increase in serum bilirubin levels that rapidly reverses on drug discontinuation (35). This

McCance-Katz et al. Page 7

Am J Addict. Author manuscript; available in PMC 2015 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



hyperbilirubinemia occurs without concomitant increases in transaminases and is not

regarded as a sign of liver dysfunction (36).

One of the implications of the effect of ATV on glucuronidation would be in the potential

for inhibition of a contributing pathway for metabolism of some DIS metabolites

(diethyldithiocarbamate, for example). In humans, glucuronidation has been shown to be

responsible for elimination of 1.7% of a single 250 mg dose of DIS while 8.3% of DIS is

eliminated by glucuronidation with chronic dosing (37). The inhibition of glucuronidation

by co-administration of ATV might increase the amount of DIS metabolite that is subject to

CYP 450 metabolism. The inhibition of CYP 3A4 by ATV (34) could result in accumulation

of DIS metabolites and a concomitant decrease in the DIS metabolite responsible for

inhibition in ALDH (DETC-MeSO). We observed a decrease in ALDH inhibition by DIS

when administered with ATV, but we cannot say with certainty the mechanism by which

this occurred since we were unable to measure all of the metabolites formed in the DIS

metabolic pathway.

A question arising from these results is whether DIS at standard clinical doses used in the

treatment of alcohol use disorders (i.e.: 250 mg/d) would be effective as a deterrent to

alcohol use in those receiving antiretroviral therapies that contain either EFV, RTV, or

ATV. It is not possible to answer this question with precision because no studies have

correlated the proportion of reduction in ALDH activity with the occurrence or severity of a

DIS-alcohol reaction. However, in the current study there were two participants who

consumed alcohol within 3 days of discontinuation of DIS 250 mg/d (this occurred

following completion of study procedures). Both reported flushing, and one reported a

sensation of labored breathing while the second alcohol consumer stated that mild nausea

was the most prominent symptom. Each stated that they had started to experience these

symptoms after drinking less than one glass of wine. They were told to immediately

discontinue alcohol use and to come for medical evaluation if symptoms worsened. Both

reported discontinuation of symptoms within a few hours and neither required medical

intervention. ALDH inhibition relative to their baseline ALDH function was determined for

each of these individuals and found to be 31% for one subject and 68% for the second

participant. While inexact, it would appear that the proportion of ALDH inhibition that

occurs in an individual is related to the ability to mount a DIS-alcohol interaction with

alcohol consumption while taking DIS. It appears, then, from these results that EFV would

not be expected to interfere with DIS-mediated ALDH inhibition, nor were any adverse

events associated with the 8% additional ALDH inhibition observed relative to the sample

receiving DIS 250 mg/d alone. RTV administration, while associated with a lesser reduction

in ALDH inhibition over that observed with DIS alone administration is also not likely to

interfere with the occurrence of a DIS-alcohol reaction. ATV administration with DIS 250

mg/d was associated with only a 16% reduction in ALDH activity observed when these

medications were administered concomitantly. This may render DIS at standard clinical

doses as administered in this study ineffective. Human laboratory studies that include

alcohol administration following concomitant administration of clinically relevant doses of

the ARV and DIS would be able to conclusively answer the question of DIS efficacy for

alcohol dependence in those requiring ART that include these HIV therapeutics.
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DIS has also been studied as a treatment for cocaine dependence. The proposed mechanism

by which disulfiram alters cocaine responses has been postulated to be related to inhibition

of dopamine beta hydroxylase activity which occurs through the disulfiram metabolite,

diethyldithiocarbamate (DDTC) (38). Upon oral ingestion, DIS is rapidly reduced to its

corresponding thiol, diethyldithiocarbamate (DDTC) (39) and DDTC inactivates dopamine

beta hydroxylase by chelation. Because this is the first compound formed in the DIS

metabolic cycle; there is no expectation that the effect of ARV on CYP 450 enzyme function

would have an effect on this activity. If the hypothesized mechanism for DIS effect on

cocaine responses is correct, then DIS would still be expected to be effective for treatment

of cocaine use disorders in those receiving ART that contained any of the ARV studied.

There are limitations to this study. The number of ARV studied was limited and sample

sizes were relatively small. To address these limitations, ARV selected for study were those

expected to be likely to have interactions with DIS based on their known clinical

pharmacology, although there are a large number of ARV of potential interest in terms of

interactions with DIS. The study design would have benefitted from an assay to detect

DETC-MeSO and this was planned at the outset of the study. However, the development of

a reliable assay proved challenging leading to the use of DIS carbamate and ALDH activity

as surrogate markers of the effects of the ARV studied on DIS.

In summary, the results of drug interaction studies between three ARV that are frequently

used in the treatment of HIV infection and DIS are reported. No effect of DIS on ARV

pharmacokinetics at standard therapeutic doses of medications was observed, although EFV

lowered DIS carbamate plasma concentrations. EFV and RTV did not interfere with the

development of significant ALDH inhibition by DIS as was observed with ATV

administration, indicating that DIS at standard clinical doses may not be effective in

deterring alcohol use if given concomitantly with ATV.
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Figure 1.
Effect of Antiretroviral Medications on S-Methyl-N-N-diethylthiocarbamate (DIS

Carbamate) at A. Disulfiram 62.5 mg daily or B. Disulfiram 250 mg daily
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Figure 2.
Effect of Disulfiram in Combination with Antiretroviral Medications on ALDH Activity
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Table 1

Sample Characteristics

No ARV
N = 10

Ritonavir
N = 10

Efavirenz
N = 10

Atazanavir
N = 10

Age (yrs) 38.1 (4.2)# 43.4 (2.5) 44.9 (4.0) 33.8 (4.4)

Weight (kg) 75.1 (4.9) 79.7 (6.1) 76.6 (5.5) 87.4 (5.9)

Female 6 [60%] 3 [30%] 4 [40%] 3 [30%]

Race:

  African-American 2 [20%] 3 [30%] 2 [20%] 3 [30%]

  Caucasian 8 [80%] 7 [70%] 8 [80%] 3 [30%]

  Other 0 [0%] 0 [0%] 0 [0%] 4 [40%]

Nicotine Use (packs/day) 0.0 (0.0) 0.1 (0.1) 0.1 (0.1) 0.0 (0.0)

  AST (U/L)

  Normal Range: 10–41 U/L

    Baseline 25.1 (2.1) 28.9 (2.4) 27.3 (1.8) 24.1 (1.8)

    ARV Alone 25.1 (0.8) 32.9 (7.3) 21.7 (1.7)

    DIS 250 mg 27.0 (2.4) 22.9 (0.9) 35.0 (8.7) 29.1 (6.8)

  ALT (U/L)

  Normal Range: 7–35 U/L

    Baseline 23.3 (2.9) 25.4 (2.7) 23.9 (2.5) 21.9 (4.1)

    ARV Alone 20.4 (2.1) 23.6 (3.0) 19.9 (2.4)

    DIS 250 mg 24.4 (3.6) 20.2 (1.8) 37.2 (10.1) 26.8 (5.2)

  ALK Phosphate (U/L)

  Normal Range: 42–98 U/L

    Baseline 73.5 (6.2) 71.8 (4.3) 71.9 (4.3) 85.1 (5.3)

    ARV Alone 65.8 (4.5) 62.5 (6.3) 82.2 (5.3)

    DIS 250 mg 76.3 (7.1) 67.5 (4.1) 80.1 (5.0) 86.6 (5.2)

  Total Bilirubin (mg/dL)

  Normal Range: 0.1–1.2 mg/dL

    Baseline 0.6 (0.1) 0.7 (0.1) 0.7 (0.1) 0.6 (0.1)

    ARV Alone 0.5 (0.0) 0.4 (0.0) 2.3 (0.4)*

    DIS 250 mg 0.6 (0.1) 0.4 (0.0) 0.4 (0.0) 2.0 (0.5)*

  Total Protein (g/dL)

  Normal Range: 6.4–8.3 g/dL

    Baseline 7.4 (0.2) 7.1 (0.1) 7.2 (0.1) 7.4 (0.1)

    ARV Alone 6.6 (0.1) 6.8 (0.1) 6.9 (0.1)

    DIS 250 mg 7.1 (0.1) 6.6 (0.1) 7.0 (0.2) 7.1 (0.1)
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No ARV
N = 10

Ritonavir
N = 10

Efavirenz
N = 10

Atazanavir
N = 10

  ECG QTc (ms)

    Baseline 420.4 (5.4) 409.0 (4.7) 415.1 (4.8) 404.5 (5.0)

    ARV Alone 410.6 (5.6) 415.3 (5.6) 384.9 (6.8)

    DIS 62.5 mg 421.8 (3.9) 409.6 (5.6) 407.0 (8.8) 383.8 (5.9)

    DIS 250 mg 420.8 (6.5) 403.7 (6.3) 403.1 (6.0) 380.4 (7.1)

#
Mean (SE), [ ] percent of sample affected

*
p ≤0.01

Other Race includes Hispanic, Native American, Pacific Islander and Multi-Racial individuals
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Table2

Effect of Disulfiram on Antiretroviral Medication Pharmacokinetics

A. Ritonavir (RTV) pharmacokinetics during disulfiram co-administration

Parameter RTV RTV/DIS62.5 RTV/DIS250 p

AUCtau(h*ng/ml) 9369 (978) 10899 (1069) 10960 (1343) 0.715

Clss/F (ml/h) 22977 (1995) 19992 (2020) 20501 (2161) 0.714

Cmax (ng/ml) 1399 (151) 1669 (243) 1758 (248) 0.568

Tmax (h) 5.0 (1.5–6.0) 4.0 (1.0–6.0) 4.0 (2.0–6.0) 0.332

T1/2 (h) 3.2 (0.5) 2.9 (0.2) 3.0 (0.3) 0.798

B. Atazanavir (ATV) pharmacokinetics during disulfiram co-administration

Parameter ATV ATV/DIS62.5 ATV/DIS250 p

AUCtau(h*ng/ml) 21895 (3407) 25411 (3011) 23127 (3030) 0.698

Clss/F (ml/h) 23515 (4112) 18586 (2867) 21250 (3538) 0.698

Cmax (ng/ml) 2823 (414) 3602 (409) 3571 (467) 0.426

Tmax (h) 4.0 (1.5–6.0) 2.0 (1.5–4.0) 2.0 (1.5–4.0) 0.342

T1/2 (h) 8.3 (1.1) 7.8 (0.8) 7.4(0.7) 1.939

C. favirenz (EFV) pharmacokinetics during disulfiram co–administration

Parameter EFV EFV/DIS62.5 EFV/DIS250 p

AUCtau(h*µg/ml) 166.5 (45.4) 166.3 (57.6) 234.9 (118.7) 0.882

Clss/F (l/h) 10.4 (1.0) 11.2 (1.1) 11.3 (1.0) 0.517

Cmax (µg/ml) 4.6 (0.5) 4.8 (0.9) 4.4 (0.5) 0.983

Tmax (h) 4.0 (1.0–12.0) 4.0 (2.0–8.0) 4.0 (2.0–8.0) 0.862

T1/2 (h) 29.3 (4.7) 29.1 (4.7) 29.3 (4.9) 0.847

*
Note: Values are the mean (standard error of the mean) for 10 subjects who participated in the study in each group, except that the discontinuous

variable, Tmax, is given as median (range).
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Table 3

Comparative pharmacokinetics for S-Methyl-N-N-diethylthiocarbamate (DIS carbamate) following disulfiram

62.5 mg daily or250 mg daily alone or in combination with antiretroviral medications

Study
Condition

Tmax
(hr)

Cmax
(ng/ml)

Cmin
(ng/ml)

AUC0-10
(hr*ng/ml)

DIS62.5 3.8±1.0 8.7±1.9 0.96±0.2 48.4±9.5

EFV+DIS62.5 2.5±0.6 2.2±0.7* 0.28±0.1 16.9±4.2*

RTV+DIS62.5 2.6±0.6 5.9±0.9 0.56±0.30 49.7±9.9

ATV+DIS62.5 3.1±0.6 8.0±1.3 0.90±0.3 49.6±8.5

p value 0.558 0.004 0.271 0.020

DIS250 3.1±0.6 35.6±5.2 7.6±1.1 230.4±29.4

EFV+DIS250 2.4±0.5 11.7±2.9* 1.1±0.4* 103.1±20.3*

RTV+DIS250 2.0±0.4 39.5±5.4 3.9±0.8 328.0±41.8

ATV+DIS250 2.9±0.5 32.1±4.6 5.3±1.4 200.3±27.9

p value 0.483 0.001 <0.0001 0.001

Note: Values are the mean (standard error of the mean) for 10 subjects who participated in the study in each group.

*
Significantly different from the control
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