
Influence of Oligomerization State on the Structural Properties 
of Invasion Plasmid Antigen B (IpaB) from Shigella flexneri in 
the Presence and Absence of Phospholipid Membranes†

Philip R. Adam1, Nicholas E. Dickenson2, Jamie C. Greenwood 2nd1, Wendy L. Picking1, 
and William D. Picking1,3,*

1Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 
74078

2Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322

Abstract

Shigella flexneri causes bacillary dysentery, an important cause of mortality among children in the 

developing world. Shigella secretes effector proteins via its type III secretion system (T3SS) to 

promote bacterial uptake into human colonic epithelial cells. The T3SS basal body spans the 

bacterial cell envelope anchoring a surface-exposed needle. A pentamer of invasion plasmid 

antigen D (IpaD) lies at the nascent needle tip and IpaB is recruited into the needle tip complex 

upon exposure to bile salts. From here, IpaB forms a translocon pore in the host cell membrane. 

Although the mechanism by which IpaB inserts into the membrane is unknown, it was recently 

shown that recombinant IpaB can exist as either a monomer or tetramer. Both of these forms of 

IpaB associate with membranes, however, only the tetramer forms pores in liposomes. To reveal 

differences between these membrane-binding events, Cys mutations were introduced throughout 

IpaB, allowing site-specific fluorescence labeling. Fluorescence quenching was used to determine 

the influence of oligomerization and/or membrane association on the accessibility of different 

IpaB regions to small solutes. The data show that the hydrophobic region of tetrameric IpaB is 

more accessible to solvent relative to the monomer. The hydrophobic region appears to promote 

membrane interaction for both forms of IpaB, however, more of the hydrophobic region is 

protected from solvent for the tetramer after membrane association. Limited proteolysis 

demonstrated that changes in IpaB’s oligomeric state may determine the manner by which it 

associates with phospholipid membranes and the subsequent outcome of this association.
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Introduction

Type III secretion systems (T3SS) are used by numerous Gram-negative bacteria to 

introduce effector proteins into target eukaryotic cells.1–3 The type III secretion apparatus 

(T3SA) consists of a cytoplasmic bulb, a basal body that spans the entire bacterial envelope, 

a surface-exposed needle,4–6 and a complex of proteins poised at the distal end of the needle 

that controls secretion.7,8 Shigella flexneri uses its T3SS to cause apoptosis in macrophages 

and invade cells of the human colon as a first step in causing shigellosis.3 The S. flexneri 

T3SA needle is a polymer of MxiH arranged around a helical axis and its nascent tip 

complex consists of a pentamer of invasion plasmid antigen D (IpaD).8 In the presence of 

bile salts, IpaD undergoes a structural transition that leads to the recruitment of the 

hydrophobic translocator protein IpaB to the T3SA needle tip.7,9–11 While the precise 

function of IpaB at the needle tip is not yet clear, it appears to be required for sensing 

contact with host cell membranes to facilitate the injection of additional T3SS proteins. 

Upon contact with phospholipid membranes, a second hydrophobic translocator protein, 

IpaC, is recruited to the needle tip and secretion becomes fully activated.12 It has been 

proposed that IpaB and IpaC form the translocon pore through which effector proteins are 

injected to induce the cytoskeletal rearrangements that ultimately lead to bacterial entry into 

the host cell.13–15

IpaB and IpaC are maintained in a soluble state within the Shigella cytoplasm by 

individually associating with the chaperone invasion plasmid gene C (IpgC).16,17 Previous 

work suggests that the IpaB-IpgC complex is a heterodimer with the interaction mediated by 

the primary sequence within the N-terminal portion of IpaB.17–19 Transit of IpaB to the 

T3SA needle tip occurs after separation from IpgC, which remains in the bacterial 

cytoplasm to carry out other processes.16 Once at the tip, IpaB’s hydrophobic nature allows 

it to recognize and penetrate mammalian cell membranes following recognition of specific 

lipid components.12,20 The structural state of IpaB as part of the maturing T3SA needle tip 

complex is unknown, however, evidence from our lab and others indicates that purified IpaB 

can exist as an oligomer and this may have implications with regard to IpaB’s multiple 

functions.21,22 Unfortunately, detailed structure analysis of full-length IpaB is complicated 

by its hydrophobic nature. Purification has been enhanced by co-expression with IpgC 

followed by removal of the chaperone using mild detergents.17 We recently discovered that 

the physical state of IpaB is influenced by the detergents used in its preparation.21 IpaB 

prepared in the mild zwitterionic detergent lauryl-N,N-dimethyldodecylamine N-oxide 

(LDAO) exists primarily as a monomer in solution, while IpaB prepared with the non-ionic 

detergent octyl-oligo-oxyethylene (OPOE) exists in a primarily tetrameric state.21 Both 

forms of IpaB readily interact with liposomes, but only the tetrameric form promotes the 

release of small molecules from liposomes due to the formation of a pore.21 While the 

relationship of this structure to the translocon pore at the T3SA needle tip remains to be 

determined, others have found that alternate oligomeric forms of IpaB can form ion channels 

in macrophage membranes that lead to cell death.22

In this study, spectroscopic analyses were used to analyze the nature of IpaB’s interaction 

with phospholipid vesicles. Because IpaB exists in different oligomeric forms that may be 

relevant to its function at different stages of infection, it is important to explore the nature of 
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IpaB’s interaction with phospholipid membranes and with itself. To identify the IpaB 

regions that promote membrane interaction, we introduced single-cysteine residue 

replacements along the length of the protein. The resulting mutant ipaB genes were co-

expressed in Escherichia coli with ipgC and the resulting protein complex was purified as a 

translocator/chaperone pair. The complex was then dissociated with either LDAO or OPOE 

to give rise to monomeric or tetrameric IpaB, respectively. Each protein was then labeled 

with a sulfhydryl-reactive fluorophore to probe different microenvironments within IpaB, 

including the predicted hydrophobic region (approximately spanning residues 310–420)23 

under different conditions. From our findings, it appears that residues within the IpaB 

hydrophobic region are differentially accessible to quenching agents depending upon 

oligomeric state. Surprisingly, oligomerization appeared to make the hydrophobic region 

more accessible to a charged quenching agent. Furthermore, the oligomeric state directly 

influences the way in which the hydrophobic region interacts with phospholipid membranes 

and the susceptibility of IpaB to proteolysis. A possible model for the organization of 

membrane-interacting regions of IpaB is presented.

Materials and Methods

Cloning, expression, and purification of recombinant proteins

The ipaB coding sequence was cloned into pHS2.24 Primers were designed to mutate 

residues G308 and C309 to Ala-Ser eliminating the native Cys (C309) in IpaB. This change 

had no effect on IpaB’s role in invasiveness or contact-mediated hemolysis activity (data not 

shown) when expressed in the ipaB null mutant S. flexneri SF620 (provided by P. 

Sansonetti, Institut Pasteur, Paris, France). This construct was used as a template for inverse 

PCR in which paired primers were designed to substitute Cys for residues S58, S107, S149, 

S237, A254, A353, S486, and S519. After sequence confirmation, the mutant ipaB genes 

were sub-cloned into pET15b (Novagen, Madison, WI) and used to co-transform E. coli 

Tuner (DE3) (Novagen, Madison, WI) with ipgC/pACYC-Duet 1 17 and grown in Terrific 

Broth containing ampicillin (100 μg / ml) and chloramphenicol (37 μg / ml) at 37°C with 

shaking at 200 rpm to an OD600 of 1.0, moved to 17°C, and induced for 16 hours with 

isopropyl-β-d-thiogalactopyranoside (IPTG). The His-tagged IpaB/IpgC complex was 

purified from the clarified supernatant of the lysed bacteria by immobilized metal affinity 

chromatography (IMAC) followed by hydrophobic interaction chromatography as 

previously described.25 Peak fractions of each mutant IpaB/IpgC complex were collected, 

split into two populations, and bound again to an IMAC column and incubated with either 

0.1% LDAO or 1% OPOE to dissociate the translocator/chaperone complex. The chaperone 

was washed away in the flow-through. To maintain IpaB solubility, the His-tagged IpaB was 

eluted from the IMAC columns in the presence of either 0.05% LDAO or 0.5% OPOE. To 

isolate the monomer from any soluble aggregates, IpaB in 0.05% LDAO was further 

purified using size-exclusion chromatography on a HiLoad 16/60 Superdex-200 preparation 

grade column (GE Health Care, Piscataway, NJ). The proteins were then concentrated and 

dialyzed into 10 mM phosphate (pH 7.4) containing 150 mM NaCl (PBS) containing either 

0.05% LDAO or 0.5% OPOE.
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Shigella contact-mediated hemolysis and invasion of cultured cells

The ability for Shigella expressing mutant forms of IpaB to form translocon pores was 

determined by contact-mediated hemolysis as previously described.26 This assay measures 

the release of hemoglobin from erythrocytes as determined by absorbance at 595 nm. SF620 

strains expressing the IpaB mutants were tested for their contact-hemolytic activity relative 

to SF620 expressing wild-type ipaB (100% contact-mediated hemolysis). This assay 

provided an assessment of IpaB’s ability to properly interact with phospholipid membranes 

in vivo. As a measure of IpaB invasion-related function, the effect of the IpaB mutations on 

the invasive capacity of Shigella was monitored using HeLa cells in a standard gentamycin 

protection assay using SF620 expressing wild-type ipaB as the positive control (100% 

relative invasion).26

Preparation of phospholipid vesicles

All phospholipids and extrusion equipment were purchased from Avanti Polar Lipids 

(Alabaster, AL). All phospholipids were reconstituted in chloroform at 25 mg/ml. Lipid 

formulations were made to contain 66.5 mol % dioleoylphosphatidylcholine (DOPC), 23.5 

mol % dioleoylphosphatidylglycerol (DOPG), and 10 mol % cholesterol and dried under a 

stream of nitrogen. Films were rehydrated in PBS to a lipid concentration of 8.7 mg/ml. 

Films were briefly sonicated using a probe sonicator followed by extrusion through a 100 

nm pore-size membrane at 45°C. Phospholipid vesicles were stored at 4°C and used within 

two weeks.

Phospholipid vesicle dye release assay

To monitor the IpaB-dependent release of small molecules from phospholipid vesicles, 

vesicles were made as described above except that 100 mM sulfo-rhodamine-B (SRB, 

Molecular Probes, Eugene, OR) was included during extrusion. After extrusion, the free dye 

was removed by Sephadex G50 size exclusion chromatography. SRB auto-quenches at this 

concentration within the liposomes. The auto-quenching is relieved upon release from the 

liposomes, which is seen as a time-dependent increase in SRB fluorescence intensity. 

Fluorescence emission was monitored at 584 nm on a Jobin-Yvon FluoroMax-4 

spectrofluorometer as a function of time. The excitation wavelength was 562 nm and the 

slits were set to 2.5 nm. Phospholipid vesicles containing 100 mM SRB were diluted in PBS 

and scanned for 20 sec to establish a baseline level of fluorescence. IpaB mutants in PBS 

containing 0.05% LDAO or 0.5% OPOE were added to a final protein concentration of 100 

nM, mixed, and scanned for 240 sec. Triton X-100 was then added to a final concentration 

of 0.1% to release all fluorophore and the sample was scanned for an additional 20 sec. 

Percent SRB release was calculated by dividing the fluorescence intensity after 240 sec of 

protein-induced fluorophore release by the final fluorescence intensity after complete release 

by Triton X-100. Tetrameric, wild-type IpaB was used as a positive control and IpaD was 

used as a negative control. The concentrations of the detergents used here did not lead to any 

substantial release of SRB (see Suppl. Fig. S1).
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Fluorescence labeling of proteins

IpaB cysteine point mutants were labeled with fluorescein maleimide (FM) as previously 

described.18 Proteins were dialyzed into labeling buffer (50 mM HEPES, pH 7.0, 150 mM 

NaCl, 5 mM tris(2-carboxyethyl)phosphine (TCEP) and either 0.05% LDAO or 0.5% 

OPOE). The TCEP concentration was then reduced to 1 mM by dialysis prior to labeling 

with a ten-fold molar excess FM dissolved in N’,N’-dimethylformamide (DMF). Labeling 

reactions were stirred under a nitrogen stream for 2 h at 25°C. Unreacted dye and the DMF 

were removed from the labeled proteins by binding His-tagged FM-IpaB to an IMAC 

column and washing with binding buffer containing either 0.05% LDAO or 0.5% OPOE. 

The protein was then eluted and dialyzed as described above. It was noted that in all cases 

the monomeric IpaB labeled with better efficiency than did the tetramer (data not shown).

Quenching of FM-IpaB with potassium iodide

Fluorescence emission spectra were collected on a Jobin-Yvon FluoroMax-4 

spectrofluorometer. The excitation wavelength was 493 nm with 5 nm slits. Emission 

spectra were collected from 500–560 nm with 2.5 nm slits with an integration time of 0.1 

sec. Samples were made to contain 100 nM FM-IpaB in PBS, which was incubated for 1 

min in the presence or absence of 0.150 mg/ml liposomes. For each sample, an initial scan 

was taken in the absence of potassium iodide (KI), and then scans were taken following the 

addition of iodide (as KI) to the sample. Fo/F values were determined from the fluorescence 

intensities observed at 518 nm and plotted as a function of iodide concentration. The data 

were fit to the Stern-Volmer equation (Equation 1), where Fo and F represent the 

fluorescence intensity of fluorescein in the absence and presence of KI, respectively, and 

KSV represents the Stern-Volmer quenching constant and is given by the slope of the 

resulting plot.27

Equation 1

To visually present the differences in KSV among the IpaB mutants, a protection index (PI) 

resulting from the addition of phospholipid vesicles was calculated. PI is the ratio of the KSV 

in the absence of phospholipid vesicles to the KSV in the presence of phospholipid vesicles, 

according to the work of Nalefski and Falke (Equation 2).28

Equation 2

We also calculated a protection index resulting from the association of IpaB to form an 

oligomeric state in the absence of liposomes. This is the ratio of the KSV Monomer to the 

KSV Tetramer in the presence of LDAO and OPOE, respectively (Equation 3).

Equation 3

In either case, a PI value >1 indicates that a particular residue was more protected from 

quenching, whereas a PI value <1 indicates increased exposure of that residue to the 
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quenching agent.28 A PI value near 1 indicates that there was no significant change in the 

solvent accessibility for the fluorophore at that residue.28

Proteolysis and identification of proteolytic products

Subtilisin-A (Sigma-Aldrich, St. Louis, MO) was used to detect temporal differences in the 

proteolytic degradation of IpaB monomers and tetramers. Subtilisin A (stock concentration 

= 7–15 units/mg) was used at a final dilution of 1:80,000. Monomeric or tetrameric IpaB (6 

μM) was incubated with 4.4 μg/μl liposomes or an equivalent volume of PBS at room 

temperature for 10 min. Protease was then added and the solution mixed. Samples were 

taken at specified time points and added to SDS-PAGE sample buffer pre-heated to 99°C to 

rapidly stop the proteolytic digestion. Samples were then separated on 12% SDS-

polyacrylamide gels, stained with Coomassie brilliant blue R250 and imaged on an Odyssey 

infrared imager (LI-COR, Lincoln, NE). Selected bands were subjected to LC-MS/MS as 

previously described to determine their sequences.29

Statistical analysis of experimental data

All multi-group analyses were performed using GraphPad Prism Version 6.02 (GraphPad 

Software, Inc. La Jolla, CA). Where indicated, the data were subjected to a one-way 

ANOVA with multiple pairwise comparisons using Tukey’s test. Data were normally 

distributed according to the D’Agostino and Pearson test, and had equal variance according 

to the Brown-Forsythe test.

Results

Cysteine substitutions do not abrogate IpaB’s ability to form membrane pores

IpaB contains a native Cys at position 309 that was mutagenized to Ser to provide a Cys-free 

background for generating the following IpaB single-cysteine variants: S58C, S107C, 

S149C, S237C, A254C, A353C, S486C, and S519C (refer below to Fig. 4A for a schematic 

of residue placement). To ensure the mutations did not negatively affect the ability for IpaB 

to form translocon pores when delivered by the bacterium, an ipaB null strain of S. flexneri 

(SF620) was transformed with a plasmid encoding each ipaB variant. Each new strain was 

then evaluated for its ability to insert a functional pore into erythrocyte membranes (contact-

mediated hemolysis, Table I) and for its ability to restore invasiveness to SF620 using HeLa 

cells, as previously described 24 (Suppl. Table S1). Hemolysis was not dramatically altered 

for any of the IpaB variants, indicating little or no effect on the membrane recognition or 

insertion properties of the protein in vivo (i.e. translocon pore formation). There was a 

moderate decrease in invasiveness for Shigella expressing the IpaB mutants S107C, S149C, 

A254C and A353C, but this was not deemed an obstacle in characterizing the membrane-

interacting potential of the protein.

To demonstrate that the purified IpaB mutants retain the previously described membrane-

active properties when prepared in LDAO and OPOE,17,21 they were used in a liposome 

disruption assay to provide an in vitro measure of pore formation. We previously 

demonstrated that wild-type, tetrameric IpaB prepared in OPOE causes efficient release of 

SRB from liposomes while monomeric IpaB prepared in LDAO does not.21 As expected, all 
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the IpaB mutants in the tetrameric state were able to disrupt the liposomes (Suppl. Fig. S1). 

The IpaB mutants labeled with fluorescein maleimide (FM-IpaB) behaved similarly to the 

unlabeled proteins, indicating that attachment of the FM probe does not alter the membrane 

active properties of IpaB (Suppl. Fig. S2). It is worth noting that IpaB S58C was reduced in 

its ability to disrupt liposomes in vitro (before or after labeling with FM), however, it 

retained approximately wild-type levels of contact-hemolysis and invasiveness in vivo when 

expressed in S. flexneri SF620 (Suppl. Fig. S1 and S2; Table I and Suppl. Table I). It is not 

clear why IpaB S58C shows this slightly modified behavior in vitro but not in vivo, 

however, it could be due to having a role in stable IpaB oligomerization that is overcome in 

vivo by the presence of other T3SS components (e.g. IpaC or IpaD) within the context of the 

complete at the T3SA needle tip. Nevertheless, this reduced lipolytic activity should be kept 

in mind while considering other data pertaining to IpaB S58C because, while not likely, its 

position within the IpaB tetramer structure in vitro may be different than what occurs for 

wild-type IpaB. Meanwhile, the monomeric forms of IpaB allowed very little fluorophore 

release from the liposomes (Suppl. Fig. S1). Chemical crosslinking confirmed that each 

IpaB variant was monomeric or tetrameric in LDAO or OPOE, respectively (data not 

shown). Thus, introduction of these Cys residues did not abrogate IpaB’s previously 

described properties in vivo or in vitro.

Specific sites within IpaB’s hydrophobic region are more accessible when in a tetrameric 
state

FM-IpaB prepared in either LDAO or OPOE was subjected to fluorescence quenching using 

the collisional quencher iodide. The data were plotted according to the Stern- Volmer 

equation (see Suppl. Fig. S3) and the quenching constant (KSV) was calculated for each 

(Table II). When the iodide quenching efficiency of the site-specific FM probes was 

compared, some sites on IpaB were more accessible to quenching agent than others and this 

accessibility was influenced by the IpaB oligomeric state. Because no change in solute 

quenching was observed for the probe at position 107 for the two protein states, this residue 

was used as a reference point for determining the significance of changes at other positions. 

Where appropriate, the pairwise comparison of PI values is discussed. Based upon the 

protective index (PI) calculated for the probe at each position, residue 58 near the N 

terminus experienced the greatest protection from quenching upon oligomerization (Fig. 1), 

however, this mutant also showed a reduced level of lipolytic activity in vitro (see above). 

Small but statistically significant increases in the PI occurred for the probes at positions 149 

and 237 relative to position 107, whereas the PI for the probe at position 254 was small and 

not significantly different from position 107. The PI values for residues 149, 237, and 254 

were not statistically different from each other. When the PI values were compared pairwise, 

residues 237 and 519 were not significantly different from each other. These data suggest 

that outside of position 58, the solvent accessibility of the N-terminal half of IpaB is 

minimally impacted by the protein’s oligomeric state.

In contrast to what was observed for residues within the N-terminal portion of IpaB, sites 

located near or within the hydrophobic region of the protein became more accessible to 

iodide quenching (having low PI values) within the tetrameric IpaB (Fig. 1). Residues 309, 

353, and 486 displayed increased quenching when IpaB was tetrameric, with the probe at 
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residue 353 being particularly susceptible to quenching (Fig. 1). These three residues were 

significantly different from the reference residue 107, however, a pairwise comparison 

revealed that the PI values of residues 309 and 486 were not statistically different from each 

other, but they were both quite different from residue 353 which was the most exposed 

residue upon tetramer formation. It thus appears that the IpaB hydrophobic region becomes 

more accessible to polar solutes upon tetramer formation. This was an unexpected result that 

may reveal important information regarding IpaB’s structural organization and its function 

within the context of a tetrameric complex.

The hydrophobic region of tetrameric IpaB is protected from quenching after association 
with liposomes

IpaB is able to associate with phospholipid membranes regardless of oligomeric state.21 The 

efficiency of IpaB-dependent release of small molecules from liposomes is inversely related 

to the size of those molecules,21 suggesting that tetrameric IpaB is a pore-forming protein. 

Thus, we compared the influence of membrane association on the quenching of site-specific 

probes on tetrameric and monomeric IpaB. Iodide quenching was performed in the presence 

and absence of liposomes and the protection index (PI) was calculated from these data (Fig. 

2, Table II). Carboxyfluorescein (CF) was included as a control for the influence of 

liposome addition on the emission properties of fluorescein. The KSV of CF was not altered 

by liposome addition, indicating that the fluorescein moiety did not nonspecifically interact 

with the liposomes (Fig. 2).

In these quenching analyses, the probe at residue 107 was more protected from solute 

interaction after association with liposomes for both monomeric and tetrameric IpaB. 

Likewise, sites within the hydrophobic region of IpaB were protected from iodide quenching 

with the probe at residue 353 becoming least accessible to iodide for both forms of IpaB 

following liposome addition (Table II). Interestingly, the PI and KSV data suggested that all 

three sites within the hydrophobic region (residues 309, 353, and 486) of tetrameric IpaB 

were more protected from quenching agent following association with liposomes than they 

were for monomeric IpaB (Table II, Fig. 2). This may indicate that the hydrophobic domain 

is poised specifically for membrane recognition after IpaB is oligomerized. When the 

oligomeric versus monomeric state was compared in the presence of liposomes, however, 

the majority of the residues had a PI that was much closer to 1.0 (Suppl. Fig. S4). With the 

exception of residues 58 and 353 (Suppl. Fig. S4), these data suggest that after membrane 

association, IpaB monomers and tetramers are largely in the same environment, however, 

only the latter lead to the release of small molecules trapped in membrane vesicles.

The significant increase in the PI value at residue 353 in the IpaB tetramer after membrane 

association (Fig. 2) is partly attributable to the high KSV of this probe for the tetramer in the 

absence of liposomes (Table II). The raw KSV value for the probe at this position on the 

IpaB tetramer is much greater than for the probe at the same position on monomeric IpaB 

prior to liposome addition (Table II). The KSV is reduced at residue 353 on both species 

after liposome addition, however, it is reduced substantially enough upon liposome addition 

for the tetramer that it gives rise to the largest PI value observed in this study (Table II, Fig. 

2). Perhaps more importantly, there is a greater degree of protection for the two positions 
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flanking residue 353 within the IpaB tetramer following membrane association than for the 

monomer. For wild-type, tetrameric IpaB (Cys309), the KSV is higher prior to liposome 

addition relative to the monomer, but this is reversed once liposomes are added. The same 

phenomenon occurred for the probe at position 486, though to a slightly smaller degree. This 

could be a result of differences in the location of the entire hydrophobic region of the 

tetramer relative to that of the monomer with respect to the membrane.

Time-dependent proteolysis suggests differences in how monomeric and tetrameric IpaB 
interact with membranes

Monomeric and tetrameric wild-type IpaB were subjected to proteolysis with subtilisin-A in 

the absence and presence of liposomes to determine how membrane association influences 

the resulting hydrolysis patterns (Fig. 3). We reasoned that oligomerization and/or liposome 

association could cause some regions to be shielded from proteolysis by steric constraint. 

Surprisingly, tetrameric IpaB was more rapidly degraded by subtilisin than monomeric IpaB 

(Fig. 3). We anticipated that the oligomeric form would be more protease resistant due to the 

multiple protein-protein contacts needed for oligomerization. The finding that the monomer 

was more stable in the presence of subtilisin could indicate that LDAO has intrinsic 

stabilizing properties or inhibits subtilisin activity. Therefore, we used IpaD, a Shigella 

needle tip protein that does not interact with liposomes, as a control protein. Subtilisin-A 

degraded IpaD equally well in the presence of LDAO or OPOE (Suppl. Fig. S5). Similar 

results were found for the more hydrophobic protein, bovine serum albumin (Suppl. Fig. 

S6). Therefore, differences in the patterns seen for IpaB after treatment with subtilisin were 

not due to the impact of these detergents on the protease. Thus, it appears that monomeric 

IpaB is more resistant to protease degradation than is the tetramer. These findings suggest 

there are structural differences between the monomer and oligomer, despite the fact that they 

retain quite similar secondary structures.21

The addition of liposomes to monomeric IpaB resulted in a more rapid loss of high 

molecular weight species (Fig. 3) and the prolonged presence of intermediate 

(approximately 45 kDa) polypeptides. These peptides may contain sites that become 

inaccessible to protease following membrane association, while the more rapid loss of full-

length protein could mean that structural changes that expose certain sites within the protein 

occur following peripheral association with the membrane. In contrast, liposomes caused 

little change in the proteolysis pattern of the IpaB tetramer. This suggests that 

oligomerization exposes regions of the protein to proteolysis in the absence of membranes 

and that these same regions remain available for digestion following association with 

liposomes.

Discussion

An essential feature of the Shigella T3SS is its ability to form a translocon pore in target cell 

membranes to facilitate the delivery of host-altering effector proteins. The first hydrophobic 

translocator delivered into the host membrane appears to be IpaB. This is based on the fact 

that ipaC null mutants (lacking the second hydrophobic translocator protein) still retain a 

measureable amount of contact-mediated hemolysis activity, whereas ipaB null mutants 
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possess no such activity.30 Furthermore, purified recombinant IpaB associates with 

phospholipid membranes and is a cholesterol binding protein.20,21 In addition to associating 

with phospholipid membranes, the ability to form higher order complexes capable of 

inducing macrophage death22, smaller oligomers (e.g. tetramers) that can form pores in 

liposomes21, and heterodimers with the chaperone IpgC 17,18 show that IpaB can adopt 

multiple states, perhaps all having physiologically relevant functions. We recently 

demonstrated that IpaB’s quaternary state can be influenced by the detergent used for its 

purification.21 When prepared in LDAO or OPOE, IpaB is a monomer or tetramer, 

respectively.21 Both IpaB oligomeric states retain nearly identical secondary structure.21 

Although both forms of IpaB associate with phospholipid membranes, only the tetramer 

forms pores that release small molecules from liposomes.21 Here, we used a fluorescence 

quenching strategy to identify regions that are affected during IpaB oligomerization and 

interaction with phospholipid membranes.

Residues within the hydrophobic region of IpaB became more accessible to quenching by 

iodide upon oligomerization. While surprising, this observation does suggest that tetramer 

formation is not a result of nonspecific hydrophobic interactions that should result in the 

hydrophobic region becoming less accessible to solvent. This is supported by the formation 

of a distinct tetramer in OPOE rather than a series of heterogeneous species. Furthermore, 

the relatively small size of this complex (tetramer) and the ability to form pores may indicate 

that this form of IpaB is related to the one observed at the T3SA needle tip immediately 

prior to IpaB delivery into target cell membranes. This is speculative and requires detailed 

ultrastructure analysis of the T3SA needle tip for comparison with the purified IpaB 

tetramers and these studies are under way. Nevertheless, one could speculate that the 

observation of increased accessibility of the IpaB hydrophobic region to quenching agent in 

the tetramer would provide a hydrophobic “patch” for the T3SA needle tip to recognize or 

sense contact with a host cell membrane. Loss of this accessibility to quenching agents 

within the IpaB hydrophobic region following membrane interaction could indicate that the 

collective presence of an exposed hydrophobic surface allows the insertion of IpaB 

tetramers into the membranes as a first step in translocon pore formation.

Because the fluorescence data presented here suggest structural differences between 

monomeric and tetrameric IpaB, limited proteolysis experiments were performed. The 

resulting proteolytic patterns suggested that there are structural differences between the IpaB 

monomer and tetramer, however, the results were not entirely expected. It appears that IpaB 

is more sensitive to digestion by subtilisin when the protein is tetrameric rather than 

monomeric. These data may indicate that monomeric IpaB possesses a more compact 

structure that protects its hydrophobic region and renders it less sensitive to proteolysis. 

Interestingly, the IpaB monomer also had the more pronounced change in proteolytic pattern 

after incubation with liposomes, suggesting membrane association alters either accessibility 

to protease cleavage sites or overall protein structure. In contrast, tetrameric IpaB 

demonstrated more subtle changes in proteolytic patterns following membrane association. 

This suggests that sites that are accessible to subtilisin in the absence of membranes largely 

remain accessible following association with a membrane. This occurs along with protection 

of the IpaB hydrophobic region from interaction with the quenching agent iodide. Perhaps 
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tetrameric IpaB, which is capable of forming pores in liposomes, exposes portions of the 

protein outside of the hydrophobic region that are sensitive to subtilisin cleavage and remain 

accessible to solvent after membrane association.

We previously published the crystal structure of an N-terminal region of IpaB and its 

Salmonella homolog SipB and found significant structural homology to the coiled-coil 

domains of the membrane-disrupting colicin pore-forming toxins.31 Further analysis 

indicated that residues 310–370 of IpaB and 320–380 of SipB share sequence homology to 

an α-helical hairpin within the pore-forming domain of colicin Ia, indicating that such a 

hairpin may exist within the hydrophobic regions of IpaB and its Salmonella homologue 

SipB.31 The α-helical hairpin in colicin Ia is responsible for anchoring the colicin pore 

within the targeted phospholipid membrane.32 Thus, the predicted α-helical hairpin in IpaB 

may serve a similar purpose. IpaB’s α-helical hairpin could initiate interaction with a host 

membrane and promote further intimate contact between the IpaB hydrophobic region and 

the membrane. This possibility is supported by the high PIs observed for residues in and 

around this region, most notably residue 353. Recent work suggested that colicin Ia forms an 

oligomeric structure when forming channels in phospholipid membranes,32 which is 

consistent with IpaB’s oligomeric form being more efficient at releasing molecules from 

liposomes. Comparisons between IpaB and colicin Ia are possible since both proteins 

contain an extended coiled-coil,31 an α-helical hairpin that may serve as a membrane 

anchor, and require oligomer formation in order to form a pore.

Based on these and prior findings, we propose an updated organizational model for IpaB 

interactions with itself, IpgC and with model phospholipid membranes (Fig. 4). IpaB 

contains two protein-protein interaction sites in the N-terminal domain (spanning residues 

16–35 and 51–70) which are recognized by the chaperone IpgC.18 Upon release of the 

chaperone, the IpaB N terminus may be involved in intermolecular protein-protein contacts 

within the tetramer, which is supported by the data presented in Figure 1 where residue 58 

near the N terminus was significantly protected by oligomer formation. Other groups have 

proposed that the IpaB C terminus may also be involved in making intermolecular contacts 

that are important for IpaB binding to the T3SS needle tip33, but we do not see obvious 

protection of the C terminus upon IpaB oligomerization. The resulting quaternary 

arrangement exposes the hydrophobic domain to the aqueous environment (Fig. 1). The 

putative α-helical hairpin within the hydrophobic domain may then anchor IpaB in the 

membrane in both physical states (Fig. 2, residue 353), and residues within the tetramer 

regions surrounding the initial contact site may be recruited to allow intimate contact and 

formation of a pre-translocon pore.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Oligomeric state affects quencher accessibility to the hydrophobic region of IpaB
FM-IpaB (100 nM) prepared in LDAO (monomeric) and OPOE (oligomeric) was quenched 

by titration of KI in the absence of liposomes. The protection index (PI) for oligomer 

formation was calculated using Equation 3 as described in Materials and Methods. Mono = 

monomeric IpaB; Tet = tetrameric IpaB. Error bars represent standard deviation of the PI’s 

derived from at least three independent experiments performed in triplicate. The mean PI 

values were found to be significantly different for those residues designated with an * 

relative to the PI value for the probe at position 107 (P < 0.05, one-way ANOVA).
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Figure 2. Protection of FM-IpaB mutants from KI quenching by liposomes
Monomeric and oligomeric FM-IpaB (100 nM) were subjected to quenching in the absence 

or presence of liposomes composed of DOPC, DOPG and cholesterol. The protection index 

(PI) for liposome association was calculated using Equation 2 for each FM-labeled IpaB 

point mutant in both the monomeric (black bars) and tetrameric (shaded bars) states. –Lip = 

no liposomes; +Lip = plus 0.150 mg/ml liposomes. Carboxyfluorescein (CF) was used as a 

control to demonstrate that the addition of liposomes does not arbitrarily affect the 

quenching of fully exposed fluorescein. Error bars represent standard deviation of the PI’s 

derived from three independent experiments performed in triplicate. Statistically significant 

differences between the monomer and tetramer for each IpaB variant in response to 

membrane association are indicated by *, P < 0.05 using Tukey’s multiple comparisons test.
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Figure 3. Proteolytic stability of IpaB is influenced by oligomeric state and liposome interaction
Monomeric (A) or tetrameric (B) IpaB was subjected to proteolysis in the absence or 

presence of liposomes, as indicated above the gel images. Subtilisin A was used at the 

concentrations given in Materials and Methods. Time points (in seconds) are indicated 

above each lane in the gels. Gels were stained with Coomassie blue and imaged on an 

Odyssey infrared imager (LI-COR, Lincoln, NE) to detect low-abundance products. Gels 

shown are representative of at least three independent experiments.
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Figure 4. Functional organization of IpaB with regard to oligomerization, chaperone binding 
and membrane association
(A) IpaB is shown as a single bar with regions believed to be involved in specific 

macromolecular interactions. Residue numbers (100, 200, etc.) are indicated above the bar. 

Chaperone-binding domains (CBD’s) based on experiments performed using a soluble IpaB 

fragment19 are indicated near the N-terminus. This region and sequences near the C-

terminus may also be involved in intermolecular protein-protein interactions (large arrows). 

A coiled-coil domain for which a crystal structure has been solved is also located in the N-

terminal half of IpaB. Less is known about the structure of the C-terminal half of IpaB, 

which contains a prominent hydrophobic region. It is in this region that IpaB may possess a 

hydrophobic α-helical hairpin (indicated) similar to what has been observed in colicins. (B) 

A closer look at the possible position of monomeric (left) and tetrameric (right) IpaB within 

the phospholipid membrane. Initial contact may occur via the immediate region surrounding 

residue 353 with the oligomeric arrangement of the protein then allowing a more intimate 

interaction with the hydrophobic core of the membrane.
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Table I

Contact-Mediated Hemolysis by Shigella Expressing Single-Cys IpaB mutants.

Shigella strain Hemolysis (% of positive control)

SF620 3.2 ± 0.2

SF620 + WT IpaB 100 ± 11.8

SF620 + S58C 114.5 ± 4.0

SF620 + S107C 94.4 ± 1.9

SF620 + S149C 85.2 ± 3.4

SF620 + S237C 112.0 ± 4.0

SF620 + S254C 93.1 ± 8.3

SF620 + A353C 94.4 ± 5.2

SF620 + S486C 97.8 ± 1.8

SF620 + S519C 83.2 ± 3.4

Contact-mediated hemolysis using sheep red blood cells was performed as previously described to determine the impact of individual Cys 

mutations on IpaB’s ability to be delivered into target cell membranes by Shigella.26

The values shown are an average (n = 3) from one of three representative experiments ± standard deviation. WT = wild-type.
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Table II

KSV Values for the Quenching of IpaB by Iodide.

KSV

- Liposomes + Liposomes

Mutant Monomer Tetramer Monomer Tetramer

S58C 6.68 ± 0.11 4.81 ± 0.02 6.62 ± 0.11 4.41 ± 0.02

S107C 5.26 ± 0.19 5.21 ± 0.01 3.98 ± 0.04 3.94 ± 0.02

S149C 7.26 ± 0.18 6.39 ± 0.09 6.22 ± 0.13 5.99 ± 0.07

S237C 5.29 ± 0.06 4.63 ± 0.02 4.01 ± 0.05 4.16 ± 0.02

A254C 7.07 ± 0.24 6.53 ± 0.16 5.66 ± 0.18 5.94 ± 0.13

WT (309C) 4.91 ± 0.05 5.24 ± 0.11 3.96 ± 0.06 3.41 ± 0.04

A353C 4.79 ± 0.02 7.08 ± 0.08 3.29 ± 0.02 3.97 ± 0.02

S486C 5.23 ± 0.07 5.57 ± 0.03 4.62 ± 0.06 4.24 ± 0.02

S519C 5.84 ± 0.04 4.82 ± 0.06 4.71 ± 0.04 4.28 ± 0.03

Carboxyfluorescein (CF) 10.83 ± 0.42 10.69 ± 0.38

100 nM FM-labeled IpaB was subjected to fluorescence quenching by KI as described in Experimental procedures. Shown here are representative 
KSV values with standard errors of linear regression given (n = 3). WT = wild-type.
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