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Abstract

As proteins evolve, amino acid positions key to protein structure or function are subject to 

mutational constraints. These positions can be detected by analyzing sequence families for amino 

acid conservation or for co-evolution between pairs of positions. Co-evolutionary scores are 

usually rank-ordered and thresholded to reveal the top pairwise scores, but they also can be treated 

as weighted networks. Here, we used network analyses to bypass a major complication of co-

evolution studies: For a given sequence alignment, alternative algorithms usually identify 

different, top pairwise scores. We reconciled results from five commonly-used, mathematically 

divergent algorithms (ELSC, McBASC, OMES, SCA, and ZNMI), using the LacI/GalR and 1,6-

bisphosphate aldolase protein families as models. Calculations used unthresholded co-evolution 

scores from which column-specific properties such as sequence entropy and random noise were 

subtracted; “central” positions were identified by calculating various network centrality scores. 

When compared among algorithms, network centrality methods, particularly eigenvector 

centrality, showed markedly better agreement than comparisons of the top pairwise scores. 

Positions with large centrality scores occurred at key structural locations and/or were functionally 

sensitive to mutations. Further, the top central positions often differed from those with top 

pairwise co-evolution scores: Instead of a few strong scores, central positions often had multiple, 

moderate scores. We conclude that eigenvector centrality calculations reveal a robust evolutionary 

pattern of constraints – detectable by divergent algorithms – that occur at key protein locations. 

Finally, we discuss the fact that multiple patterns co-exist in evolutionary data that, together, give 

rise to emergent protein functions.
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On-going genomic sequencing has generated a huge number of protein sequences. To place 

them into biological context, sequences are usually grouped into protein families that, in 

turn, can be used to reveal sequence/structure/function relationships. A common approach is 

to identify which amino acid positions are constrained during evolution. These positions are 

presumably crucial for the protein’s structure or function, and their mutation can provide 

key insights to a protein’s function. Various algorithms have been devised to detect 

positions that are conserved across a protein family or that vary among alternative 

lineages.1–13 In addition, constraints on corresponding pairs of positions can be detected 

using co-evolution analyses.

Co-evolutionary algorithms seek to identify pairs of positions that vary together across 

evolutionary time. For example, if an amino acid change at position X correlates with a 

change at position Y, positions X and Y are said to co-evolve. Co-evolution suggests that the 

two positions are linked to carry out important structural or functional roles. Such patterns 

can arise from short-range biophysical constraints (such as charge-charge interactions) but 

are also commonly observed between positions that are distant from each other on the 

protein structure, via mechanisms that are not yet fully understood.14–16

Several algorithms, with a range of mathematical foundations, have been devised to quantify 

co-evolutionary patterns in multiple sequence alignments (MSAs).17–27 These algorithms 

determine pairwise scores for all possible combinations of amino acid positions; the top 

pairwise scores indicate the strongest pattern of covariation. Despite searching for a 

common pattern, results from alternative algorithms seldom identify the same top pairwise 

scores.23,28,29 One explanation is that some algorithms have flawed predictions. On the 

other hand, alternative algorithms might detect distinct evolutionary signatures, each 

biologically important. To date, mutagenesis experiments have not identified any single 

algorithm as better than the others for identifying positions with co-evolutionary, mutational 

constraints.1

We hypothesized that deep patterns in co-evolutionary data might be robust to algorithmic 

details and therefore detectable by multiple algorithms. To that end, we treated 

unthresholded co-evolutionary scores as weighted networks (complete graphs) and used 

network centrality measures to identify important nodes. This allowed us to determine 

whether central nodes (positions) were more robustly identified by network analysis than by 

specific edges connecting a pair of positions.

To identify the central positions, we used the pairwise co-evolutionary scores as edges of a 

weighted complete graph to calculate two network centrality scores: degree centrality30 

1Some co-evolutionary algorithms and methods for constructing MSAs do appear to out-perform others in predicting direct structural 
contacts. However, as we noted above, this is not the sole determinant of algorithm success; long range co-evolution can also be 
biologically significant.
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(DC) and eigenvector centrality31 (EVC). For each amino acid position (node), DC simply 

takes the sum of connecting edge weights, whereas EVC takes into account both the weight 

of its connecting edges and the centrality of its connected partners. In practice, we found 

little difference between these metrics; since EVC has an established history in other co-

evolution studies, we focused downstream analyses on these results.

Centrality scores can be rank-ordered to reveal the most central positions of the co-evolution 

network. In analyzing these scores, we first considered whether the central nodes (i) were 

identical to positions with the highest pairwise scores, or (ii) arose from multiple, 

intermediate scores (Fig. 1), corresponding to multiple co-evolutionary constraints from 

other amino acid positions. Indeed, for the protein families of this study, positions with high 

EVC scores were frequently distinct from positions with the highest pairwise co-

evolutionary scores. Furthermore, when results were compared among five alternative co-

evolutionary algorithms, the EVC positions showed better agreement than the top pairwise 

positions. Comparison with experimental results showed that positions with high EVC 

scores have key structural and functional roles in the LacI/GalR and aldolase protein 

families. Thus, EVC calculations detected a robust evolutionary pattern of amino acid 

changes at key protein locations and can be used to guide experimental studies of protein 

function. Finally, we discuss the existence and interplay of multiple patterns in evolutionary 

data that, together, give rise to emergent protein functions.

MATERIALS AND METHODS

Protein families, sequence alignments, and MARS software

The MSA for the LacI/GalR family was constructed in 201132 and further refined in 201328. 

This MSA contains 351 representative sequences from 34 ortholog groups; the full sequence 

set (>2000 sequences) is too large for many calculations. Sequences for the aldolase MSA 

were obtained by iterative rounds of PSI-BLAST33, and manually edited to remove 

redundant sequences. To take advantage of available sequence and structural data, a 

representative subset was aligned using PROMALS3D.34 The remaining sequences were 

clustered based on their sequence identity into groups containing at least one of the 

“representative” sequences in the PROMALS3D alignment. These high sequence identity 

clusters were re-aligned with MUSCLE.35 Group alignments were integrated into the full 

aldolase alignment with the custom software MARS-Prot (Supporting Information, 

Supplementary Methods) using the representative sequences as guides.

The MARS-Prot software is a general tool for integrating new sequences into existing 

sequence alignments that does not perturb the labor-intensive editing that is required to 

produce high quality MSAs. This tool is greatly needed: Extensive ongoing genomic 

sequencing requires frequent updates to existing MSAs. The MARS-Prot algorithm is 

described in Supplementary Methods; references cited therein are cited here.36,37 MARS-

Prot is freely available under an open source license (https://github.com/djparente/MARS).

The LacI/GalR and aldolase protein alignments used in this study are available upon request. 

As a final check, we considered the number of sequences and phylogenetic sampling in 

these MSAs, which has been shown to affect MSA analyses.38,39 For example, co-evolution 
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analyses might return biased results if one lineage of the family were oversampled. To check 

for this possibility, the sequence identity matrix for each MSA was manually inspected to 

ensure that no group of highly similar sequences was over-represented relative to the rest of 

the MSA. In addition, maximum-likelihood phylogenetic trees were inferred using RAxML 

7.0.340 with default parameters under the PROTGAMMABLOSUM62 substitution model. 

Trees were visualized with PhyloWidget41 (Fig. S1). Trees for both families have a stellate 

appearance, indicating that many lineages are represented and that no one lineage dominated 

the calculation.38

Co-evolution analyses

Co-evolution scores were calculated using five alternative algorithms: Explicit Likelihood of 

Subset Co-variation (ELSC22), Observed Minus Expected Squared (OMES21,29), 

McLachlan-based Substitution Correlation (McBASC17,18,20), Statistical Coupling 

Analysis (SCA19), and Z-Normalized Mutual Information (ZNMI23). For ELSC, OMES, 

McBASC and SCA, co-evolution scores were calculated using a software implementation 

by Fodor et. al 22,29. For ZNMI, scores were calculated using our re-implementation of that 

method.28 For all algorithms, positions with >50% gaps or very high conservation (<5% 

sequence variability, which corresponds to sequence entropy < 0.198523), were excluded 

from further analysis. For ZNMI, positions with >10% gaps were further excluded, to match 

its initial implementation by Brown and Brown.23

All analyses were carried out using an ensemble-based approach.23,28 For the LacI/GalR 

MSA, 100 sub-alignments were constructed, each including 90% of the available sequences. 

For each sub-alignment, co-evolution scores were calculated. For each position, the scores 

from the 100 ensembles were averaged; these are reported as the “initial” co-evolutionary 

scores. The ensemble average approach limits the impact that might arise if a few sequences 

are misaligned. As an additional control, we generated a second ensemble containing 50% of 

the sequences and calculated its average co-evolution scores. If the sequences in the starting 

MSA are well sampled, we expect that results for the 50% ensemble will agree with those of 

the 90% ensemble (Table S1).

Note that the ensemble/average approach should only be used to supplement direct 

inspection of the sequences included in an MSA. In other analyses, we showed that this 

control can fail in cases of extreme over-representation, because even randomly deleting 

50% of the sequences leaves a sufficient number of redundant sequences to bias the 

calculations. For example, 75 LacI/GalR sequences fall in the LacI subfamily; their 

sequence identities ranged from 37 to 99% and the subfamily phylogenetic tree had nine 

major branches. When these subfamily sequences were used in co-evolutionary analyses, 

results for the 50 and 90% ensembles were in good agreement. However, for both the 

pairwise and the network centrality scores, the top 20 consensus positions unexpectedly 

included many positions that tolerate multiple substitutions (Table S2), which indicates that 

they are not functionally important. Manual inspection of the LacI subfamily revealed that 

41% of the sequences were >95% identical to each other. Even with a randomized, 50% 

sampling rate, these over-represented sequences are likely to dominate the co-evolutionary 

calculation, leading to the misleading results. This example shows that computed controls do 
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not substitute for manual inspection of an MSA. Note that neither the LacI/GalR nor the 

aldolase families had over-represented sequences.

Like the LacI/GalR family, the aldolase family (1562 sequences) was too large for some 

calculations. Therefore, we constructed an ensemble of aldolase alignments, each with 500 

sequences as the “90%” ensemble. A second ensemble of alignments containing 278 

sequences was used for the “50%” alignment.

For both the LacI/GalR and aldolase families, the 90% and 50% scores had good agreement, 

which indicates that a sufficient number of sequences were included in each alignment. (Fig. 

S2, Table S1). Further analyses therefore focused on only the 90% ensemble.

Next, we considered that alternative co-evolutionary algorithms have divergent responses to 

various properties of MSA columns (such as sequence entropy or random noise) which 

might introduce algorithm-specific noise.29 To account for these contributions, we created 

shuffled alignments by independently randomizing the order of amino acids contained 

within each column. This maintains column properties such as amino acid distribution and 

sequence entropy, but destroys both phylogenetic patterns of evolutionary change and co-

evolutionary relationships between pairs of positions. Shuffled alignments have been used as 

benchmarks for “sector” anlayses42, and various subtractions have been carried out for 

protein-protein co-evolution43,44. However, to the best of our knowledge, this is the first 

time that shuffled alignments have been used to estimate spurious signals arising in intra-

protein covariation analyses. To that end, we performed “co-evolutionary” calculations on 

each shuffled MSA. Then, for each pair of positions, the score from the shuffled MSA was 

subtracted from the score of the unshuffled MSA. This calculation is a linear approximation: 

it assumes that initial (unshuffled) co-evolution scores were the sum of the true signals and 

noise. We refer to the resulting co-evolution scores as “subtracted”.

To determine consensus co-evolution scores for the initial and subtracted data sets, we used 

the method of Parente et al.28, with the variation of using the median Z-score, rather than the 

mean, to rank-order positions. (For more details, see consensus EVC scores, below.)

Z-Normalized decoy adjusted mutual information

In subtracting the MSA noise component to reveal “true” co-evolutionary components, we 

assumed that the magnitude of the noise was the same in the original and shuffled 

alignments. This assumption should hold for ELSC, McBASC, OMES and SCA, but is 

violated by ZNMI. For a pair of positions x and y, ZNMI scores are calculated in a three-step 

process23: (1) the mutual information, MI(x,y), is estimated; (2) MI(x,y) is divided by the 

joint sequence entropy of positions x and y to calculate the normalized mutual information, 

NMI(x,y); and (3) the NMI(x,y) scores are further z-normalized against the joint distribution 

of NMI(x,y) scores for positions x and y. Thus, the third step of this procedure scales the 

joint distribution of ZNMI(x,y) scores to a normal distribution with mean of 0 and variance 

of 1. An assumption of this procedure is that there are true co-evolutionary signals to detect: 

positions with high ZNMI scores are those that co-evolve strongly, relative to each 

position’s own NMI distribution. However, in shuffled alignments, when co-evolutionary 

signals have been destroyed, the ZNMI distribution is still scaled to have a normal 
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distribution with mean 0 and variance 1. Thus, the Z-normalization step of ZNMI would 

spuriously scale the noise of the shuffled alignments to the same level as the co-evolutionary 

signal in the original alignments. Subtracting away the shuffled ZNMI score would therefore 

amplify, rather than eliminate, the influence of noise.

To prevent this undesirable outcome, we performed score subtraction before the Z-

normalization step, by subtracting NMI of each shuffled score from the original score. This 

variant of the ZNMI algorithm we call the Z-Normalized Decoy Adjusted Mutual 

Information (ZNDAMI), mathematically defined as:

(1)

where NMIsub(x,y) is the subtracted NMI score2 (i.e. NMIorig(x,y) – NMIshuf(x,y)) and μxy 

and σxy are the mean and standard deviation of the joint NMIsub distribution for positions x 

and y, namely:

(2)

and

(3)

which depend on the individual distribution mean:

(4)

and variance:

(5)

where N is the number of columns in the alignment that meet the gap criterion (<10% gaps, 

see Methods).

Eigenvector network centrality

To identify central nodes in the ELSC, McBASC, OMES, SCA, and ZNMDAMI co-

evolution networks, we calculated the eigenvector centrality31 for each position in the MSA. 

These calculations were performed on both the initial (unsubtracted) and subtracted pairwise 

co-evolutionary scores (see above). Eigenvector centrality calculations take into account 

both the strength of connectivity and the centrality of strongly connected partners, and has 

been utilized for many diverse applications, including: internet search engines45,46, social 

2As implemented, the NMIsub is actually the original NMI score minus the average NMI score in an ensemble of ten re-shuffled 
alignments.
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network analysis47, political analysis48, fMRI data processing49, and epidemiological 

disease-transmission networks50,51.

A key feature of our calculation is that we did not impose a significance threshold on the 

pairwise co-evolutionary data prior to EVC calculations. Although eventually necessary, we 

deferred thresholding until the end of analyses, which allowed us to detect positions with 

high EVC scores that would have otherwise been missed (Table S3 and Fig. S3). The 

eigenvector centrality score of the i’th position is equal to the i’th row of the dominant 

column eigenvector of the adjacency matrix. That is, for node si, we take

(6)

where Wij are entries of W, the weighted adjacency matrix, corresponding to the weight 

between nodes si and sj. This can be rewritten

(7)

where s is the eigenvector we seek, corresponding to the (necessarily) unique largest 

eigenvalue λ as long as the centralities are non-negative.52 Eigenvector centrality 

calculations were carried out using the NetworkX Python package (http://

networkx.github.io/).

In practice, eigenvector centrality is computed iteratively, as follows: every node is 

initialized with the same starting score. Then, at subsequent iterations, the score of a node is 

(i) set equal to the edge-weighted sum of the current score of its neighbors, and (ii) 

normalized so that the squared sum of the EVC scores is constant. This process is iterated to 

convergence to produce a final eigenvector centrality score for each position. Informally, 

this procedure is analogous to first initializing every node to be equally important, reflecting 

our (initial) ignorance as to which nodes were more central. At every step, nodes that are 

strongly connected to other important nodes are preferentially selected to gain 

disproportionately more “importance,” allowing the iteration to uncover important nodes.

Eigenvector centrality calculations were carried out using the NetworkX python package 

(http://networkx.github.io/). More formally, the eigenvector centrality score of position i in 

the T’th iteration (si,T), in a network of N positions, is given by the iterative system:

(8)

(9)

(10)
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where wi,j is the weight of the edges between positions i and j. For the centrality score to 

converge, scores must be non-negative. This is true for all algorithms except ZNMI, which 

transforms scores to be z-normalized with a mean of zero. Thus, for all algorithms, scores 

were linearly transformed to fall in the range [0,1]. The final eigenvector centrality score 

assigned to position i, si, is given by:

(11)

This procedure is identical to an algorithm called “power iteration” that calculates the 

dominant eigenvector of a matrix. For networks of co-evolutionary scores, power iteration is 

applied to the adjacency matrix of the network.

Network degree centrality

We compared EVC scores to a simpler network centrality score, degree centrality30 (Figs. 

S4–S5 and Table S4). This score computes the total weight of edges directly connected to 

each node. As with the EVC scores, weights were transformed to fall on the interval [0,1] 

for the calculation.

Network comparisons and consensus

In comparing various sets of results (e.g. initial versus subtracted pairwise scores, or 

pairwise versus EVC scores), we had no a priori reason to assume that scores should be 

linearly related. Thus, we used a non-parametric measure – Spearman R2 – which can detect 

any monotonic relationship between two variables. Similarity was quantified by calculating 

Spearman R2 for the edge weights assigned to each pair of positions in the network. This 

parameter ranges from 0.0–1.0.

For comparing EVC scores to experimental data, we determined consensus scores using 

results from all 5 algorithms for each position. Since each co-evolution algorithm uses a 

different output scale (e.g. Fig. 2A–B), each set of scores was first Z-normalized to 

standardize the mean and variance values. This prevents one algorithm from dominating 

downstream calculations. The Z-normalized EVC scores of the 5 algorithms were then used 

to determine a median EVC score for each position. Results were compared to crystal 

structures from the aldolase (PDB: 1xfb) and LacI/GalR families (PDBs: 1efa, 1wet, 1rzr, 

2nzv, 3oqo, and 1byk).53–59 Molecular graphics were created using UCSF Chimera 1.8.60

TEA-O analyses

To determine which amino acid changes in each MSA track with phylogeny, we used TEA-

O analyses (http://nava.liacs.nl/kye/TEA-O/)9. Results for the LacI/GalR family were taken 

from Tungtur et al.32 These results were shown to be independent of the method used for 

generating a phylogenetic tree. Similar analyses were performed for the aldolase family, 

using the phylogenetic tree shown in Fig. S1.
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RESULTS

For this study, we used the LacI/GalR transcription regulators and the family of 1,6-

bisphosphate aldolase (“aldolase”) (Table S1). The LacI/GalR family comprises bacterial 

paralogs with sequence identities that range from ~19–99%.32 The aldolase family was 

chosen as another family with highly divergent sequence identities (~19–99%), but 

comprising orthologs instead of paralogs. These “class I” aldolase homologs are found in all 

animals, plants, and green algae.61

Analyses of co-evolutionary networks

Co-evolution analyses generate a large number of pairwise scores (N2, where N is the 

number of columns of amino acid positions). Most often, these scores have been rank-

ordered to identify the top pairwise scores or organized into an all-vs-all heatmap (e.g.42). 

Alternatively, co-evolution scores have been re-cast as networks. For example, several 

studies imposed a threshold (such as Z ≥ 4) on the pairwise co-evolution scores and created 

networks in which top-scoring positions correspond to nodes and co-evolution scores 

correspond to edges.62–65 A useful depiction of thresholded networks is the “circos” plot.27 

Recently, we used all co-evolution scores to weight the edges between all nodes to directly 

compare outcomes for related protein families.28 Here, we have analyzed pairwise co-

evolution scores as unthresholded networks to identify features that are robustly identified 

by mathematically-divergent algorithms.

To identify robust features, each MSA of this study was analyzed using five common co-

evolution algorithms with diverse mathematical foundations: (i) OMES measures a χ2-like 

goodness-of-fit parameter21,29; (ii) McBASC generalizes the correlation coefficient to 

categorical data17,18,20; (iii) ELSC22 and (iv) SCA19 take a perturbative approach; and (v) 

ZNMI23 uses an information theoretic approach to measure shared information content. As 

expected, for all MSAs, the five algorithms generated different rank orders for the 

unsubtracted pairwise scores (Table 1; Fig. 1C and Figs. S6–S9). Pairs that were assigned a 

high co-evolution score by one algorithm were often assigned moderate or low scores by 

another. When only the top score was considered for each position (in network formalism, 

the maximum edge weight, “MEW”), algorithm agreement did not improve (Table S5).

We next attempted to reconcile results by correcting for the different algorithm sensitivities 

to non-coevolutionary signals, such as sequence entropy and random noise.29 To estimate 

these spurious signals, we created “shuffled” alignments by separately randomizing the 

amino acids within each column of the LacI/GalR and aldolase MSAs. This maintains 

column properties such as amino acid distribution and sequence entropy, but destroys both 

phylogenetic patterns between and co-evolutionary relationships within naturally-evolved 

sequences. All co-evolutionary calculations were repeated for the shuffled alignments, and 

for each pair of positions in the co-evolution network, the shuffled scores were subtracted 

from those of the unshuffled MSAs. When the final scores were compared, the subtraction 

process only modestly improved comparisons of pairwise scores between alternative 

algorithms (Table 1). However, as discussed below, subtraction improved centrality scores 

to a greater degree.
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Notably, when comparing the pairwise scores, no single algorithm appeared to perform 

“better” than the others. A criterion frequently used to indicate algorithm success is 

mutational sensitivity of top scoring positions. For the LacI/GalR family, most of the 

positions with top, subtracted pairwise scores are sensitive to mutagenesis, regardless of the 

algorithm (Fig. S10).

Thus, we were curious whether deeper patterns in co-evolutionary data would also identify 

functionally important positions, and whether they would be more robustly detected by 

multiple algorithms. This required that we first consider how and when co-evolution scores 

are thresholded: Like most other metrics of evolutionary patterns in MSAs, co-evolution 

scores are continuous, with no clear breaks to separate “important” from “not important”. 

Threshold choice is always arbitrary: Conservative thresholds eliminate meaningful data; 

liberal thresholds may include data with no meaning. In this work, we deferred thresholding 

as long as possible. We chose to analyze co-evolution scores as unthresholded, weighted 

networks (e.g. Fig. 1A–B), using graph theory to calculate network centrality.

Network centrality can be calculated in a number of different ways.66 Most existing methods 

were developed for social network analyses. Methods such as “closeness” and 

“betweenness” centrality measure the number of steps between nodes66, and thus do not 

make sense for the complete graphs created by unthresholded, pairwise co-evolution scores. 

In contrast, both degree (DC)30 and eigenvector (EVC)31 centrality measure the effect of 

one node on all other nodes, based on the weights of the connecting edges. Whereas DC 

simply sums the weight of edges connected to each node, EVC accounts for the centrality of 

neighboring nodes as well. DC and EVC might identify the same nodes, but in principle 

EVC is sensitive to more subtle network effects. In the current study, DC results agreed 

strongly with EVC results (Fig. S4–S5). For simplicity, we focused remaining analyses on 

EVC results.

We first compared that the top EVC scores to the top pairwise co-evolutionary scores 

(MEW, defined above). Notably, the MEW and EVC scores do not consistently correlate, by 

either Spearman correlation coefficients (Table S5) or by Jaccard indices (Fig. S3). Thus, we 

conclude that EVC calculations for the LacI/GalR and aldolase families identify a group of 

amino acid positions that is distinct from the pairwise positions. That is, the centrality 

calculations can discriminate positions with many moderate scores from those with one 

strong but many weak scores (e.g., Fig. 1B vs 1C). Furthermore, if pairwise co-evolution 

scores were thresholded (limited to the top scores) prior to downstream analyses, several 

positions with high EVC scores would not be detected.

Next, we compared the EVC scores calculated by the alternative co-evolutionary algorithms. 

Agreement among EVC scores was greatly improved over all comparisons of pairwise 

scores, and across the whole range of scores. For the EVC scores determined for the initial 

(un-subtracted) networks, almost all comparisons showed better correlation than the 

pairwise co-evolutionary scores (Table 1, Fig. 2C vs Fig. 2E; Figs. S6–S49 vs. S11–S14). 

Subtracting noise from the co-evolution scores prior to EVC calculations usually further 

improved R2 values (Table 1; Fig. 2 D vs Fig 2F; Figs. S13–S14). Agreement indicates that 

network centrality is a robust feature of the co-evolutionary data, in contrast to the pairwise 
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scores, which show more variability among algorithms. In addition, we noted that positions 

with high EVC scores were highly connected to each other within the network of co-

evolution scores (e.g. Fig. 1A–B). However, like the pairwise co-evolution scores, EVC 

connectivity was not obligatorily related to structural proximity (Figs. 3–4).

Finally, we considered an ongoing concern about co-evolution algorithms – the extent to 

which the covariation analyses distinguish true “co-evolution” from amino acid changes 

related to phylogeny.43,67,68 Similar considerations have been raised for the first eigenvector 

of co-evolutionary data.42,44 The rationale for our approach was that, if phylogeny is 

contributing a great deal to the covariation/EVC scores, then positions with top scores in 

phylogenetic algorithms should correlate with those identified by algorithms that are 

designed to identify amino acids changes that correlate with phylogenetic branches. Several 

algorithms have been devised to detect this pattern.1–3,9 Of these, TEA-O9 is convenient for 

comparison with coevolution analyses: TEA-O separately scores “specificity” positions that 

change at the later branches from “conserved” positions that correspond to the primary 

branches. Due to their conservation, most of the latter are excluded from co-evolutionary 

analyses.

To that end, we compared EVC scores to TEA-O scores for the LacI/GalR and aldolase 

families. As expected, positions with high TEA-O “conserved” scores show essentially zero 

correlation with EVC scores for either family (data not shown). For the LacI/GalR family, 

EVC scores show comparable correlations with TEA-O specificity scores as they do with 

each other (Table 1). However, the aldolase EVC scores show lower correlation with TEA-

O (Table 1) than they do with each other.

The different correlations may arise because the LacI/GalR family is comprised of paralogs 

(and thus its MSA could have a stronger phylogenetic signal), whereas the aldolase family is 

comprised of orthologs. Such differences among protein families could help explain why 

estimating and correcting for the contributions of phylogeny to intra-protein covariance has 

been challenging. Further, the presence or absence of phylogeny in the covariation signal 

does not diminish the fact that the top EVC positions are important to structure and function 

in both LacI/GalR and aldolase families (next section). The possible implications of co-

existing and overlapping patterns in evolutionary data are included below, in the Discussion.

Eigenvector central positions are important for structure and function

To assess biological significance, we compared the known structural properties and 

mutational sensitivities of the top 20 EVC positions. To that end, we first determined a 

consensus set of positions (see Methods). This was motivated by the fact that, although EVC 

calculations greatly improved agreement between co-evolution algorithms, agreement was 

never 100%. In choosing this number of sites, we also considered the problem of 

thresholding. The histograms of EVC scores (diagonals of Figs. S11–S14) show distinct 

populations of scores, and the top 20 scores fall within the top population. In many cases, 

the 21st (or lower-ranked) EVC position also fell within this population and might therefore 

also be functionally important; global analyses that avoid such thresholding are discussed 

below.
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In the aldolase family, the top 20 EVC positions fall near (i) the active site, (ii) the inter-

subunit interface or (iii) along the surface on the same face as the ligand binding pocket. 

(Fig. 3, magenta and green spacefilled) Eight of these positions (35, 106, 107, 145, 148, 270, 

275 and 300) contact active site residues and a 9th (position 43) directly participates in 

catalysis. (Of the eight catalytic residues, six are highly conserved and therefore cannot co-

evolve). Since these positions fall in crucial functional locations, they are likely to contribute 

to aldolase function. We speculate that sequence changes at these positions might fine-tune 

the active site geometry and catalytic parameters to the ecological niche of each organism.

In the LacI/GalR family, the top 20 positions were compared to the extensive structural, 

mutational and computational studies that have been performed on several paralogs. 

Eighteen of the top EVC positions are sensitive to mutation in LacI; 19 positions are located 

in structural regions that are clearly important (Fig. 4; Table S6)53–57,69–80. Indeed, the top 

20 EVC positions reads as an elite list of functionally important positions: In addition to the 

comprehensive LacI mutagenesis study,70,79,80 many of these positions were individually 

targeted for mutagenesis after in-depth structure/function analyses and molecular dynamics 

simulations suggested (and experiments confirmed) their importance. The two positions that 

lack known mutational response (27 and 102) have only been mutated in LacI. These 

positions might be key in other LacI/GalR proteins; we recently demonstrated that mutating 

nonconserved positions can have widely different outcomes among homologs.77

As we noted above, setting an arbitrary threshold for top EVC positions might miss 

important information about other positions. To consider the full range, we color-coded each 

all amino acids in each structure, according to their rank-ordered EVC scores. Given the 

continuum of shades that represents the range of scores (Figs. 5, S15, and S16 color bars), it 

is striking that structural regions emerge that are dominated by one color. For the LacI/GalR 

family, positions assigned high EVC scores cluster in the interior of the protein (Figs. 5, 

white and S16, magenta), especially near the binding sites of the allosteric effector ligand 

and DNA operator and along the inter-monomer interface. In the aldolase family, the top 20 

consensus positions were representative of the global pattern: Positions with higher 

centrality scores were generally found on the protein interior (Fig. S15D), at the 

tetramerization interaction surface (Fig. S15C), and on the same surface of the protein as the 

active site (Fig. S15A). In contrast, the opposite surface – far from the active site – generally 

had lower EVC scores (Fig. S15B).

DISCUSSION

Pairwise co-evolution of amino acid positions provides an incomplete view of protein 

evolution. Science’s common understanding of protein structure/function relationships 

suggests that multiple amino acids should be constrained together during evolution. Direct 

calculations for detecting larger groups of co-evolving positions have been limited by the 

sheer number of output scores, which increase exponentially. (For a protein with N 

positions, pairwise co-evolution calculates N2 scores; three-way co-evolution would 

calculate N3 scores, etc.) Thus, investigators have turned to analyses of pairwise data to 

identify multiply constrained positions.25,42,62,81–83 For one implementation of SCA, 

spectral decomposition of pairwise scores was used to determine the first eigenvector, but 

Parente et al. Page 12

Proteins. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



results were found to be heavily influenced by the sequence conservation for each 

position.84 Here, we have avoided such spurious signals via the use of shuffled alignments 

to estimate and subtract non-coevolutionary signals. Our results show that subtracted EVC 

scores contain information about amino acid positions key to structure and/or function of the 

LacI/GalR and aldolase families.

Strikingly, our analyses reconciled the contradictory results from alternative co-evolution 

algorithms, showing that this deeper signal of evolutionary change is robust. Other strengths 

of EVC calculations are that they (i) are mathematically guaranteed to have a unique top 

eigenvalue52, (ii) provide a tractable means to detect positions that are constrained by 

multiple partners, and (iii) defer problems introduced by thresholding until the final 

analyses. Positions with large EVC scores appear to largely follow the pattern that can be 

seen qualitatively in Fig. 1B: Some positions must simultaneously reconcile co-evolutionary 

constraints from many other positions. For these positions, no single constraint is strong, but 

many are moderate (Fig. 1B). This contrasts with the case illustrated in Fig. 1C: When two 

positions have strong co-evolutionary constraints between them, this can override the 

influence of most other positions (which subsequently manifests as low pairwise scores).

Despite the increased correlation over pairwise data, the EVC correlations do not perfectly 

reconcile the alternative algorithms. First, for aldolase, the correlations between SCA and 

other algorithms are lower (R2 <0.5) than the other comparisons. Perhaps SCA (i) is not an 

appropriate analysis for this family or (ii) detects a different evolutionary signal for this 

family than the other algorithms. Second, for the LacI/GalR family, half of the EVC 

algorithm correlations had R2 values less than 0.5 (Table 1), whereas those for aldolase 

(except SCA) were generally above 0.7. We speculate that this is related to the fact that the 

LacI/GalR family comprises paralogs, whereas the aldolase MSA contains only orthologous 

sequences. The lower LacI/GalR EVC correlations were not explained by the range of 

sequence identities in its MSA, since the aldolase MSA spans a comparable range (Table 

S1). Nevertheless, the EVC correlations were a significant improvement over pairwise 

correlations; every prior step of the calculations had much worse correlations.

In addition, we wish to stress that our results do not imply that EVC positions are a priori 

more important to structure or function than positions with other types of evolutionary 

patterns. Instead, we propose that protein evolution should be thought of as having many 

types of constraints that affect different groups of positions, some of which is captured by 

pairwise co-evolution and others by EVC calculations. Still other patterns include highly 

conserved positions10 and changes that track with phylogeny.1–3,9 We have also observed 

that, as one common scaffold evolves functional diversity, the positions under evolutionary 

pressure can move to different locations.28

To date, all of these evolutionary patterns appear to identify mutationally sensitive positions, 

and there is no reason to constrain “importance” to just one pattern of change. Indeed, our 

previous studies show that a large number of positions, representing a variety of 

evolutionary patterns, contribute to the evolution of altered LacI/GalR protein 

function.28,32,77 We expect similar results for other protein families. Even families that 

comprise a single ortholog – such as aldolase – likely evolve functional variation that is 
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appropriate for distinct biological niches. (In the case of aldolase, the central metabolism of 

each organism must adapt to variations in nutrient availability.)

Finally, some positions might be described by multiple evolutionary patterns. One 

possibility (although not dominant in the LacI/GalR or aldolase families) is that positions 

with top pairwise scores are also top EVC scores. Another possible overlap is between 

positions with strong co-evolution and phylogenetic scores: The fact that covariation can 

occur from either co-evolution or phylogeny is usually seen as a drawback to these 

calculations, but the changes of some co-evolving pairs might also track with phylogeny. 

The same is true for EVC positions, as may be the case for the LacI/GalR family. Nor does 

the overlap diminish the functional significance of positions with top EVC scores, as shown 

by their sensitivity to mutagenesis and/or their key structural locations. Finally, the aldolase 

data show that EVC scores are not always dominated by phylogeny, because EVC and TEA-

O scores show lower correlations than the EVC scores with each other (Table 1). As we 

noted above, each protein family may have different phylogenetic contributions to 

covariation scores; a strong difference could occur between families that comprise orthologs 

vs those comprising paralogs.

One remaining question is whether positions with different types of evolutionary patterns 

have different mutational responses. Conserved positions almost always exhibit what we 

recently called “toggle” behavior77 – at a given position, most amino acid substitutions 

abolish function; furthermore, compensatory changes at other positions are seldom 

identified. Mutational results for positions with high pairwise co-evolutionary scores have 

been harder to predict.77 Figure S10 shows that many of the top pairwise positions in LacI/

GalR also act as functional toggles when mutated individually. For co-evolving pairs of 

positions, early expectations were that their mutations would compensate each other. 

However, results from double mutant cycles have not shown clear-cut patterns; some show 

no linkage between co-evolving pairs of positions62, others show epistasis (non-additivity), 

with the caveats that non-additivity was not always predictable or uniquely limited to the co-

evolving positions.85–87

Given the high prevalence of epistasis that has been documented for changes at 

nonconserved positions during evolution88–91, we expect that EVC positions will also show 

non-additivity for combinatorial mutations. Indeed, for the LacI/GalR family, mutational 

epistasis has already been documented among several of the top 20 EVC positions.92 

Furthermore, multiple substitutions at three top EVC positions in LacI/GalR (51, 52, and 55) 

reveal a “rheostat” behavior: That is, the multiple variants for one position could be rank-

ordered to show a progressive effect on function that spanned orders of magnitude. It is 

intriguing to consider (i) whether the strong edges between high EVC positions can predict 

which groups of positions will show non-additivity with each other; or (ii) whether positions 

that have both strong EVC and strong phylogeny scores (such as in LacI/GalR) have 

different mutational outcomes than positions that have either strong EVC or strong 

phylogenetic scores (such as in aldolase).

In conclusion, EVC network centrality detects positions that can be important to protein 

structure and function. Furthermore, EVC calculations are more consistent between 
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algorithms than pairwise co-evolution scores, indicating that these central nodes are a robust 

property of co-evolution networks.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Network representation of co-evolutionary scores for the LacI/GalR family
Note that these networks depict co-evolutionary scores, not structural contacts. (A) In this 

example, the ZNMI algorithm was used to calculate pairwise co-evolution scores. High 

scores are represented as thick edges; weak scores are represented with thin edges. Each 

node corresponds to an MSA column (amino acid position); node sizes and colors are scaled 

according to EVC scores (large, black = high, small, white = low). For figure clarity, only 

the top ~4% of edges are shown; however, all edge weights (co-evolution scores) were used 

for EVC calculations. From the network shown in A, individual nodes and their edges are 
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highlighted in panels (B) and (C), to illustrate the difference between a top EVC position 

with many moderate scores (B) and a position with a high, pairwise co-evolution score but a 

low EVC score (C).
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Fig. 2. Eigenvector centrality scores show better correlation between co-evolution algorithms 
than do pairwise scores
The example shown is for the aldolase family. Histograms show the distribution of co-

evolutionary scores from (A) ELSC and (B) McBASC. Between these two algorithms, 

correlation of (C) initial (unsubtracted) or (D) subtracted pairwise co-evolution scores have 

modest correlations, as indicated by their Spearman R2 values. However, correlation of (E) 

unsubtracted or (F) subtracted EVC scores is greatly improved, as indicated by larger R2 

values.
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Fig. 3. Top EVC Positions for Aldolase
This view of aldolase is looking into the active site of one monomer. The top 20 consensus 

EVC positions (35, 43, 47, 53, 56, 106, 107, 122, 145, 148, 168, 169, 193, 214, 234, 237, 

267, 270, 275, and 300; magenta and green spacefilled) of tetrameric human aldolase C are 

shown on one monomer (PDB: 1xfb58). Active site positions are highlighted in dark gray. 

EVC positions in contact with active site residues are highlighted in green; those without 

contact are highlighted in magenta.
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Fig. 4. Top EVC Positions for LacI/GalR
The top 20 consensus EVC positions (17, 27, 29, 51, 52, 55, 57, 98, 102, 117, 125, 150, 157, 

160, 161, 193, 220, 291, 293, and 321; spacefilled black) for the LacI/GalR family were 

mapped onto the homodimeric structure of LacI (PDB: 1efa53). The DNA (ribbon at top of 

structure) and the bound allosteric effector ligand, (orthonitrophenyl-β-D-fucopyranoside, 

spacefilled white) are highlighted to show binding sites.

Parente et al. Page 24

Proteins. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. Global structural analysis LacI/GalR EVC scores
The homodimeric structure of LacI (PDB: 1efa53) is color-coded based on the rank order of 

each positions’ EVC score (high scores, white; low scores black). Bound DNA is shown at 

the top of the figure in gray. Inducer ligands bind in the central pocket of each monomer. 

Given the range of available scores (color bar at the top of the figure), it is striking that some 

structural regions are dominated by similar scores. For example, the inducer binding site is 
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surrounded by positions with high EVC scores (very light gray and white). This figure is 

shown in color in Fig. S16.
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