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Abstract
Conformational changes upon protein-protein association are the key element of the binding
mechanism. The study presents a systematic large-scale analysis of such conformational changes
in the side chains. The results indicate that short and long side chains have different propensities
for the conformational changes. Long side chains with three or more dihedral angles are often
subject to large conformational transition. Shorter residues with one or two dihedral angles
typically undergo local conformational changes not leading to a conformational transition. The
relationship between the local readjustments and the equilibrium fluctuations of a side chain
around its unbound conformation is suggested. Most of the side chains undergo larger changes in
the dihedral angle most distant from the backbone. The frequencies of the core-to-surface interface
transitions of six nonpolar residues and Tyr are larger than the frequencies of the opposite,
surface-to-core transitions. The binding increases both polar and nonpolar interface areas.
However, the increase of the nonpolar area is larger for all considered classes of protein
complexes, suggesting that the protein association perturbs the unbound interfaces to increase the
hydrophobic contribution to the binding free energy. To test modeling approaches to side-chain
flexibility in protein docking, conformational changes in the X-ray set were compared with those
in the docking decoys sets. The results lead to a better understanding of the conformational
changes in proteins and suggest directions for efficient conformational sampling in docking
protocols.
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Introduction
Protein structure-function relationships with the focus on conformational changes upon
protein-protein association have been the subject of extensive research, including systematic
studies on protein sets1; 2; 3; 4; 5; 6; 7; 8; 9; 10 and specific proteins.11; 12; 13; 14; 15; 16 The
theory of such conformational changes has been evolving from the early “lock-and-key”
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concept,17 through the induced-fit model18 and the allosteric model,19 to the paradigm of the
conformational selection and population shift.20; 21; 22; 23; 24; 25; 26; 27 The knowledge and
understanding of these conformational changes have been accumulated and implemented in
algorithms for predicting the structure of protein complexes, as evidenced by the CAPRI
experiment.28 Still the conformational changes upon the formation of a complex are one of
the greatest challenges for researchers studying protein interactions. A direct way to tackle
this problem is to study the differences between the unbound and the bound structures of the
same protein1; 2; 6 or the differences between the alternative conformations in unbound
proteins.4; 5 An encouraging factor is the growth of the PDB,29 which has been the source
for studies of the side-chain conformations in proteins in general.30; 31; 32; 33; 34; 35; 36; 37

In the 90’s when only a few proteins had both bound and unbound structures known,38 Betts
and Sternberg2 studied 39 pairs of bound and unbound proteins, with only eight of the
complexes having unbound structures of both binding proteins. Recently side-chain
transitions were analyzed on a set of 124 protein complexes with known unbound structures.
6 Currently, such sets (called docking benchmark sets because of their primary use in
docking validation) contain a significantly larger and growing number of complexes.39; 40

Our DOCKGROUND non-redundant benchmark set40 used in this study has 233 protein
complexes, 99 of them having unbound structures of both binding proteins (134 complexes
have unbound structure for one of the proteins).

Protein structures reveal a rich variety of conformational changes that occur at different
scales upon binding.41 This includes domain motions, local folding-unfolding transitions,
transitions between regular secondary structure elements in “chameleon sequences”, 42; 43

disorder-to-order transitions,43; 44 and other changes in protein backbone and side chains.
Although in general the different types of the conformational changes may be inter-related,
in this study we focus on the conformational changes in the side chains. This choice is
motivated by the fact that the majority of protein complexes in the non-redundant
benchmark sets39; 40 have small Cα RMSD between bound and unbound structures. Indeed,
71% of the DOCKGROUND set40 used in this study has Cα RMSD < 2 Å for 71% of the
complexes. The Benchmark set from Weng’s group39 has interface Cα RMSD < 2.2 Å for
84% of complexes. Thus studying conformational changes in the side chains is important for
the development of better protein-protein docking procedures.45; 46; 47; 48; 49 The focus on
the side chains also follows the “divide-and-conquer” paradigm: elucidating the side-chain
conformational changes first, then proceeding to the backbone flexibility, and eventually to
their combination (planned for our future study).

Previous studies related to the side-chain conformational changes analyzed the dynamics of
the changes.50; 51; 52; 53; 54 The scale of the conformational change was found to be
determined to a significant extent by the residue’s surrounding (the environment effect). The
effect appears as a decreased number of rotamers in the buried residues in comparison with
the surface residues,50; 51; 53 as a small RMSD between bound and unbound states of pocket
side chains,3 or as reduced fluctuations of the center of mass of such residues.55 The side-
chain dynamics made it possible to differentiate the roles of the interface residues in
binding, and develop a concept of anchor and latch residues that show restricted mobility
and pass through similar conformations in molecular dynamics trajectories of the bound and
unbound states.50; 54 The concept was extended to include conserved residues at protein
interfaces with similar properties.53 The influence of the conformational changes on the
binding entropy has been studied.52 Guharoy et al.6 found that the interface residues
undergo more significant conformational changes and often have higher energies than the
other surface residues.

Our study presents an analysis of the conformational changes of the core and the surface
side chains accompanying non-covalent protein heterodimerization. We show that the
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mechanism and the scale of the conformational changes depend on the side chain length and
the proximity of the dihedral angle to the protein backbone. Long side chains, with three or
more dihedral angles, are more often subject to large conformational transitions (~120° of χ
angle change). Shorter residues, with one or two dihedral angles, typically undergo small
conformational changes (~40°) leading to local readjustments. We suggest that the local
readjustments result from the equilibrium fluctuations of the side chain around its unbound
conformation. The results show that about one tenth of the complexes in our study went
through the local interface changes only. All other complexes are subject to the interplay of
the large conformational transitions and the local readjustments. In most residues, the largest
conformational changes occur in the dihedral angle most distant from the backbone. The
opposite trend is found in the residues with symmetric aromatic (Phe and Tyr) and charged
(Asp and Glu) groups, where the χ angle closest to the backbone changes most. The study
also reveals the interface conformational changes leading to disorder-to-order transitions and
changes of the residue surface area that result in core-to-surface and surface-to-core
transitions.

Results and Discussion
Analysis of unbound-to-bound conformational changes in crystal structures

Comparison of the dihedral angles values in bound and unbound residues was performed on
the DOCKGROUND docking benchmark set containing the bound and unbound structures
of same proteins (see Methods). The results (Fig. 1) reveal two trends: (1) generally the
extent of the conformational changes increases with the increase of the number of dihedral
angles in the side chain, and (2) the extent is larger for the surface interface residues than for
the surface non-interface and the core residues. The relatively smaller conformational
changes in the core can be explained by the tight packing. A number of the surface non-
interface residues are part of the crystal packing interfaces. The relatively smaller
conformational changes in the surface non-interface residues may suggest that the crystal
packing interactions on average are weaker than interactions across the biological interfaces.
However, the exact contribution of the crystal packing effect in the non-interface residues is
beyond the scope of this study, which is focused on the analysis of the residues at the
biological interfaces.

The results show that Pro, Cys and His have larger conformational changes at the non-
interface surface than at the interface (Fig. 1). However, the increase is not statistically
significant. The average RMSD of the interface residues with one, two, three, and four
dihedral angles is 0.75, 1.22, 1.94 and 2.54Å, and the average root-square deviation of the
dihedral angles (RSD, see Methods) is 40.5°, 55.1°, 111.3° and 135.0°, correspondingly.
Since the dihedral angle tend to cluster near 180°, 60°, and -60° (the trans, gauche+, and
gauche− conformations), one can conclude that the side chains with one or two χ angles
undergo local conformational changes, whereas the side chains with three or four χ angles
can undergo a conformational transition between the energy minima. Moreover, since the
average RSDs for the long side chains (the ones with more χ angles) vary around 120° (the
distance between two adjacent energy minima), one can assume that the conformational
transitions most likely occur in a single χ angle. Other dihedral angles in the long side chains
as well as those in the short side chains typically undergo a local readjustment upon the
binding. It is worth noting that all long side chains are polar, except Met. Among the side
chains with two and one χ angles Asn, His and Ser, which show the largest average dihedral
angle RSD in the group, are also polar. Three non-polar residues Cys, Pro and Phe, and
polar Tyr have the smallest changes of dihedral angles. Cys and Pro are the least variable in
terms of RMSD. One can assume that the difference in the degree of conformational
changes of polar and nonpolar residues may result from different packing around these
residues. The nonpolar residues have high propensity for the tightly packed protein core,
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whereas the polar residues often have exposed conformations that loosen their structural
surrounding allowing more space for change.

The test of statistical significance (Supplementary Materials, Tables S1-S4) showed that the
difference between the average RMSDs as well as the average RSDs of the core and the
surface non-interface residues is statistically significant for all amino acids, with P-values
much less than the significance level of 5%. Still, the corresponding average changes in the
core and at the non-interface surface in terms of RSD/RMSD are highly correlated. The core
– interface and the non-interface surface – interface correlations were also high. The high
correlation reflects the larger flexibility of the longer side chains observed in all protein
regions (Fig. 1). The difference between the average RMSDs/RSDs of the core and the
interface was statistically significant for all residues except Cys, which is one the most
uncommon residues at protein interfaces and can form disulfide bonds restricting the scale
of the conformational changes upon binding.56 The difference between the average RMSDs/
RSDs of the surface non-interface and interface was statistically significant for about half of
the residues. Among the most conserved interface residues (Trp, Phe and Met57) only Met
had P-value < 5% for both metrics. Trp had P-value = 3.8% for the difference between the
average RMSDs and P-value = 5.5% for the difference between the average RSDs. Phe had
P-values > 5% in both cases. Four of the five charged residues (Arg, Glu, Lys and Asp) had
P-values within the significance level for the difference between the average RMSDs. Arg,
Glu and Lys also had P-values within the significance level for the difference between the
average RSDs.

The local readjustments of the short side chains likely occur due to the thermal fluctuations
of dihedral angles. Since the thermal fluctuations deviate on average ±20° from the
equilibrium,58 one can estimate the average χ angle RSD (Eq. 1) due to the thermal

fluctuations as . For the side chains with one or two χ angles (n = 1 or 2) we

obtain  and  which are in excellent agreement with the statistically-
derived average RSDs Δχ1 = 40° and Δχ2 = 55.1° (see above). The thermal fluctuations
likely play a role of the “lock-and-key lubricant” providing plasticity of interfaces needed
for the exact fit upon binding. The average RSDs Δχ3 = 111.3° and Δχ4 = 135.0° in the

longer side chains deviate from the fluctuations-based estimates  and .
The deviations increase with the increase of the number of the χ angles from 2 to 4. The
increase of the deviations may be explained by the ability of the longer residues to establish
interactions across interface earlier than the shorter residues. Indeed, binding proteins
“optimize” conformations of the long residues at the early stages of their approach. The
short residues get involved at later stages of binding, and thus have less time for
conformational sampling. The increase of the deviations also points toward a greater role of
the induced fit mechanism in comparison to the “lubricated lock-and-key” mechanism for
the longer side chains. The results show that the “lubricated lock-and-key” mechanism only
is present in 11% of the complexes in the set. The rest 89% of the complexes are subject to
the interplay of both the induced fit and the “lubricated fit” mechanisms. In 66% of the
complexes there are 1 to 4 conformational transitions per interface, which on average
consists of 18 residues.

The share of the conformational transitions, defined as conformational changes ≥ 100° in
one of χ angles, among all the conformational changes is larger for the side chains with three
or four χ than for the side chains with one or two χ (Fig. 2). The conformational transitions
at the interface occur more frequently than at the non-binding surface and in the core. This
observation is in agreement with the results of Guharoy et al.6 obtained on a smaller set of
complexes using different definitions of surface and interface. The data in Fig. 2 show that
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only His residue has a higher frequency of the conformational transitions at the non-binding
surface. Thr, Cys, Ile, Asn and Phe have similar frequencies of the interface and non-
interface surface conformational transitions. The probability of the interface transitions >
100° simultaneously in several dihedral angles decreases significantly with the increase of
the number of the dihedral angles. The dihedral angle change associated with the rotation of
a symmetric group in Asp, Phe, Tyr and Glu cannot exceed 90°; thus these residues do not
undergo conformational transitions simultaneously in all χ angles (Fig. 2).

To further detail the picture, we computed average changes of each χ angle in the amino
acids (Fig. 3). Six of the nine side chains with two dihedral angles had larger changes of the
outer angle (χ2) in comparison with the near-backbone angle (χ1). The same trend was
observed for all the side chains with three and four χ angles with the exception of Glu,
which is slightly more prone to the changes in the first and second χ angles. Two amino-acid
side chains with aromatic groups (Phe and Tyr) and two charged amino acids (Asp and Glu)
showed an opposite trend where the outer χ changes less than the near-backbone one. This
trend is explained partly by the reduced interval of variability of the outer χ due to the
symmetry of the amino acid’s terminal groups.

In agreement with earlier studies43; 44; 59 the results indicate that binding can decrease
structural disorder at protein interfaces. Four percent (164 residues) of all interface residues
in the set had disorder-to-order transition upon binding. The disordered residues were
defined as those with missing coordinates in the crystal structure. Most of the disordered
residues (39%) were Ala, Gly, Glu, or Thr. On the other hand, only 11% of the disordered
residues were Cys, His, Phe, Ile, Pro, Trp, or Tyr. This observation is in agreement with the
classification of amino acids into order-promoting and disorder-promoting ones44 and
correlates well with the amino acids ability to fluctuate.55

An important conformational aspect of protein association is the changes of the residue
surface area upon binding. The rate of the core-to-surface interface transitions (Fig.4),
calculated as a percentage of all transitions, varied from 10 – 11% (Tyr, Val, and Phe) to 4%
(Asn, Glu and Lys). Examples of the core-to-surface interface transitions are shown in Fig. 5
and 6. The rate of the surface-to-core interface transitions varies from 2% (Pro) to 8% (Met).
Interestingly, on average, the rate of the core-to-surface transitions exceeds that of the
surface-to-core transitions for all amino acids, except Asn.

To test the statistical significance of the differences between the corresponding rates of the
core-to-surface and surface-to-core interface transitions, the jackknife test was applied
(Supplementary Materials, Table S5). Each protein complex in the benchmark set was left
out, one at a time, and the rest of the complexes were used to calculate the rates of the
transitions. Then, the excluded complex was put back in the set, and a next complex was left
out, etc., continuing through all the complexes. Finally, the mean rates and their standard
deviations were calculated. The unpaired and paired two-sample t-tests showed that the
differences between the rates of the transitions are statistically significant for all the amino
acids, with P-values close to zero. This is explained by the fact that the standard deviations
of the mean rates are by one or two orders of magnitude smaller than the difference between
the rates of the core-to-surface and surface-to-core interface transitions.

The largest difference between the rates is observed in six nonpolar residues, Ala, Val, Pro,
Ile, Leu, Phe, and a polar Tyr. At protein interfaces, Tyr often has been identified as a hot
spot.60 The bias in the core-to-surface transitions towards the nonpolar residues suggests
that protein-protein interactions may perturb an unbound interface to increase the nonpolar
interface area, thus increasing the hydrophobic contribution to the binding free energy (a
major force stabilizing protein complexes). To test this hypothesis, we calculated average
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changes of polar and nonpolar interface areas induced by binding. On average, the binding
increases both the polar and nonpolar interface areas in the complex. However, the increase
of the nonpolar area is greater for all classes of complexes: ΔSp =17.4±7.5Å2 and
ΔSn=38.3±17.2Å2 for antibody/antigen; ΔSp=25.9±7.8Å2 and ΔSn=32.9±12.8Å2 for
enzyme/inhibitor; and ΔSp=12.9±6.1Å2 and ΔSn=24.2±9.7Å2 for other (ΔSn,p is the change
of the nonpolar or polar interface area).

Two typical scenarios of the core-to-surface transitions were observed, as illustrated in Fig.
5 and 6. In the first scenario, a core side chain does not change conformation, but other
residues in the vicinity change conformations to increase the side-chain surface (e.g., Phe41
and Lys224 in Fig. 5 and Leu102, Pro107 and Met129 in Fig. 6). In the second scenario,
both the side chain and its neighbors change their conformations (e.g., Leu99 in Fig. 5). A
case where a core side chain undergoes a conformational change and its structural neighbors
within 5 Å stay unchanged was not observed.

Implications for protein docking
Side-chain flexibility is an important factor in the development of protein docking
approaches.45; 46; 49; 61; 62; 63 Thus comparison of conformational changes in
experimentally determined structures with those modeled by computational approaches is
useful for assessing the flexible docking methodology. Protein-protein docking decoys sets
contain the structures of predicted complexes, both incorrect (false-positive matches) and
near-native ones. For comparison with the observed unbound-to-bound conformational
changes in the X-ray structures, we calculated the average RMSDs and RSDs between the
native unbound structures and the top-ranked docked structures, as well as the most accurate
(closest to the co-crystal structure) near-native docked structures in the “bound
perturbations” and “unbound perturbations” sets by Gray et al.64 These sets were chosen
because they were generated by a protocol that involves explicit modeling of the side chain
flexibility in binding. The modeling of the side chains in the “bound perturbations” and the
“unbound perturbation sets is based on the experimentally determined bound and unbound,
correspondingly, conformations of the backbone.

We performed the test of statistical significance of the difference between experimentally
and computationally determined conformational changes in 18 amino acid types
(Supplementary Materials, Tables S6-S9). The results showed that the difference between
the average RSD/RMSD in the benchmark set and in the “bound” decoys set for the most
accurate near-native structures is statistically significant, at the significance level of 5%, for
15 (RSD) and 17 (RMSD) amino acids in the core, 13 (RSD) and 11 (RMSD) at the non-
interface surface, and 7 (RSD) and 4 (RMSD) at the interface. The test of the average
conformational changes in the “unbound” decoys set gave similar results. The difference
between the average RSD/RMSD in the benchmark set and in the unbound decoys set for
the most accurate near-native structures is statistically significant for 15 (RSD) and 14
(RMSD) amino acid types in the core, 13 (RSD) and 13 (RMSD) non-interface surface
amino acids, and 7 (RSD) and 5 (RMSD) interface amino acids. The lack of statistical
significance may indicate that the modeled chains follow the trend of the unbound-to-bound
changes in the X-ray set. However, the likely reason for the higher percentage of statistically
indistinguishable comparisons at the surface, and especially at the interface, is a smaller
number of the amino acids, due to the smaller size of the interface vs. non-interface surface
vs. core.

Despite the statistical differences between the average unbound-to-bound and unbound-to-
decoy conformational changes, we found high correlations between these changes in terms
of RSD/RMSD, with correlation coefficients 0.90 – 0.96. The correlation remained high
when the top-ranked structures were substituted for the most accurate ones. The high
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correlation reflects the larger flexibility (conformational freedom) of the longer side chains,
similar to the above interpretation of the high correlation between RSD/RMSD values in the
core and at the non-interface and interface surface in the X-ray structures. Modeling of the
longer side chains results in larger structural amplitudes, and thus larger values of RSD/
RMSD, which correlate well with the larger RSD/RMSD for longer side chains in crystal
structures (Fig. 1). Thus such high correlation is not necessarily an indication of accurate
modeling. The fact that the average RSD/RMSD unbound-to-bound values in the X-ray set
and the corresponding average unbound-to-decoy values in the modeled set in most cases
are statistically significantly different indicates that there is room for improvement in
modeling.

Generally, the side chain rotamer libraries, often used in flexible docking, may not be
sufficient for an adequate modeling of the side chain conformational changes upon binding.
More efficient techniques for modeling of the side-chain flexibility could utilize the average
(or the most probable) changes of the dihedral angles (Fig. 3) in local sampling, and the
probabilities of the inter-rotamer conformational transitions (Fig. 2 and Kirys et al., in
preparation).

Conclusions
Knowledge of the conformational changes upon protein binding is essential for
understanding molecular mechanisms of life processes and our ability to model cell
phenomena. The study focuses on the side-chain conformational changes in protein
heterodimerization. The results indicate that short and long side chains have propensities for
different mechanisms of the conformational changes. Long side chains with three or more
dihedral angles are often subject to the induced fit mechanism resulting in a conformational
transition. Shorter residues with one or two dihedral angles typically undergo local
conformational changes not leading to a conformational transition. The relationship between
the local readjustments and the equilibrium fluctuations of a side chain around its unbound
conformation is suggested. The local readjustments were dominant in 11% of the
complexes. All other complexes were subject to the interplay of the induced fit and the local
readjustments. We showed that most of the side chains undergo larger changes in the
dihedral angle most distant from the backbone. The amino acids with symmetric aromatic
(Phe and Tyr) and charged (Asp and Glu) groups show the opposite trend where the near-
backbone dihedral angles change the most. The frequencies of the core-to-surface interface
transitions of six nonpolar residues and Tyr are larger than the frequencies of the inverse,
surface-to-core transitions. The binding increases both polar and nonpolar interface areas.
However, the increase of the nonpolar area is larger for all considered classes of the protein
complexes, suggesting that the protein association perturbs the unbound interfaces to
increase the hydrophobic contribution to the binding free energy. To test modeling
approaches to side-chain flexibility in protein docking, conformational changes in the X-ray
set were compared with those in the bound and unbound docking decoys sets. The results
lead to a better understanding of the conformational changes in proteins and suggest
directions for more efficient conformational sampling in docking protocols.

Methods
The results were obtained on a non-redundant benchmark set of 233 non-obligate protein-
protein complexes from the DOCKGROUND resource http://dockground.bioinformatics.ku.edu.40;
65 The set contains unbound structures of both proteins for 99 complexes and the unbound
structure of one of the proteins for 134 complexes. The structures were selected from PDB,
based on the following criteria: sequence identity between bound and unbound structures >
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97%, sequence identity between complexes < 30%, and homomultimers and crystal packing
complexes excluded.

Conformational changes between unbound and bound conformations were considered for
each of the protein side chains in the set. The conformational changes were expressed in
terms of the root mean square deviation (RMSD) of the atoms coordinates and the root
square deviation (RSD) of the dihedral angles

(1)

where n is the number of the dihedral angles in a side chain, i is the index of a dihedral angle
χi, and b and u indicate bound and unbound conformations. Function

(2)

gives the shortest distance between the dihedral angels on the circle. The values of the
dihedral angles were taken from 0° to 360°, except the last angles in Phe, Tyr, Asp and Glu,
which were taken from 0° to 180° due to the symmetry of aromatic and charged groups.66

The dihedral angles analyzed for Arg were χ1-4, because the tip of the side chain containing
χ5 is planar. The dihedral angles were determined using Dang program
http://kinemage.biochem.duke.edu/software/dang.php. The conformational changes were
placed in eighteen groups corresponding to standard amino acids (Gly and Ala were not
considered). The average conformational changes and the standard deviations were
computed for the interface residues (surface residues at protein interfaces), non-interface
surface residues, and core residues. Surface residues were defined as those with the relative
solvent accessible surface area (RASA) > 25%, as determined by NACCESS.67 Interface
residues were defined as those losing > 1 Å of their surface upon binding.53

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Average conformational change between unbound and bound residues. (A) Change in
Cartesian coordinates (RMSD), and (B) change in dihedral angles (RSD, see Methods). The
residues are sorted left to right according to the increasing number of χ angles and increasing
mass (if the number of χ is the same). Standard deviation is shown for the interface residues.
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Figure 2.
The share of conformational transitions. The conformational transitions are defined as those
with Δχ ≥100° in any of the dihedral angles. (A) Percentage of conformational transitions in
all conformational changes between unbound and bound structures. (B) Percentage of
simultaneous conformational transitions in one (light gray), two (dark gray), and three
(black) χ angles for interface residues. The percentage for four χ angles is negligible (not
shown). The percentage of conformational changes <100° in each dihedral angle is shown
by open bars.
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Figure 3.
Average dihedral angle change for different structure regions. The change between unbound
and bound conformers is shown for the core (■), non-interface surface (▽) and interface
(▲) residues. Standard deviation is shown for the interface residues.
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Figure 4.
Frequencies of transitions between surface and core at the interface.
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Figure 5.
Core-to-surface interface transitions in porcine pancreatic trypsin induced by soybean
trypsin inhibitor. The bound structure is in magenta, and the unbound one is in blue. The
bound/complex structure is 1avw 68and the unbound trypsin structure is 2a31.69 Phe41
keeps its conformation, while undergoing a core-to-surface transition with the relative
solvent accessible surface area (RASA) change from 16.9% in the unbound state to 28.6% in
the bound state, due to the conformational change in Lys60, which has two alternative
unbound conformations. Lys224 keeps its conformation, while increasing its RASA from
24.1% to 28.2% due to the conformational change in Tyr217 (ΔRASA= 14.3%). Leu99
changes RASA from 19.9% to 34.4% due to its own conformational change and the change
in Asn97 (ΔRASA=16.2%).
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Figure 6.
Core-to-surface interface transitions in TEM-1 β-lactamase induced by β-lactamase inhibitor
protein-II. The bound structure is in magenta, and the unbound one is in blue. The bound/
complex structure is 1jtd70 and the unbound TEM-1 is 1m40.71 Leu102 keeps its
conformation, while undergoing core-to-surface transition with RASA change from 18.6%
in the unbound state to 30% in the bound state, due to the conformational change in Gln99,
which has two alternative unbound conformations. Pro107 keeps its conformation, while
changing RASA from 22.3% to 34.1% due to the conformational changes in Tyr105
(ΔRASA=49.9%) and Lys111, which has two alternative unbound conformations. Met129
keeps its conformation, but changes RASA from 17.4% to 44.7% due to the conformational
changes in Tyr105 and Lys215, which has two alternative unbound conformations. Glu104
changes RASA by 30.3%.
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