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Abstract

Host body response to a foreign medical device plays a critical role in defining its fate post 

implantation. It is thus important to control host-material interactions by designing innovative 

implant surfaces. In the recent years, biochemical and topographical features have been explored 

as main target to produce this new type of bioinert or bioresponsive implants. The review discusses 

specific biofunctional materials and strategies to achieve a precise control over implant surface 

properties and presents possible solutions to develop next generation of implants, particularly in 

the fields of bone and cardiovascular therapy.

1. Introduction

In recent years, biomaterial-based medical implants have gained much acceptance across the 

medical community because of their ability to modulate local inflammatory responses, 

replace or restore the integrity of damaged tissues that are no longer functional and attenuate 

adverse tissue reactions1. However, once they are implanted in the body a layer of plasma 

proteins such as fibrinogen, albumin and fibronectin can coat their surfaces that leads to 

adverse host responses such as coagulation, complement activation as well as the 

recruitment of innate immune cells. Acute inflammation is then generally followed by 

chronic immune responses2 that subsequently progress into a foreign body reaction. In this 

last stage macrophages can undergo fusion to form foreign body giant cells3, 4 and be 

responsible for the fibrosis encapsulation of the medical device. In most of the cases, this 

last step impose a major impediment for successful in vivo performance of the implant 5. For 
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example, in the case of cardiac pacemakers, formation of a dense capsule can attenuate the 

propagation of the electrical signal while in intravascular stents, fibrosis can cause a re-

narrowing of the stented area6.

Hence, it is imperative that we develop strategies to tailor the material surface properties 

before implanting them so as induce favourable host-material interactions. For instance, to 

design vascular grafts and heart valves we opt for biomaterials that can efficiently resist 

protein adhesions and eliminate the chance of thrombosis and immunogenic responses7. 

However, this paradigm is not applicable to all applications as immune response and the 

consequent remodelling can sometimes be important in defining the success of certain 

implants and for its integration with the host tissue 8. This concept can be applied for 

example to bone grafts, in which the process of healing is regulated by close interactions 

among cells of the immune system, osteoclasts and osteoblasts9. Recently, macrophages 

have been considered as target to regulate bone morphogenesis due to their ability to 

polarize into pro-inflammatory and anti-inflammatory phenotypes and affect different stages 

of bone healing8. With more such evidences, biomaterials-based research is now focused on 

exploring immune modulation mechanisms to invent osteoinductive materials.

Furthermore, a precise understanding of the host response to changes in surface properties of 

biomedical implant is essential for fabricating a successful device for cardiac and bone 

applications10. In fact, surface chemistry and topography represent some of the important 

factors that can be effectively manipulated to control immunological responses such as 

cytokines expressions, monocyte differentiation, macrophage and dendritic cell activation 

and protein adsorption11, 12. Chemical and topographical characteristics can be varied using 

several strategies to generate specific pattern or coatings on the biomaterial surface. Such 

coatings can also contain drugs or specific immunomodulatory proteins capable of exerting 

active control over the behaviour of local immune cells13, 14.

Our objective in this review is to delineate currently available techniques and strategies for 

controlling the surface properties of biomedical implants. Specifically, we will discuss the 

principles behind the preparation of both inert and immunomodulatory surfaces and the 

criteria governing their design. Further attention will be shed on how these strategies can be 

harnessed for fabricating new biocompatible medical implants for cardiac and bone 

applications. In addition, we will highlight the persisting impediments with these 

technologies and potential solutions for their successful applications in the field of 

cardiovascular and bone diseases.

2. Bioinert surfaces: general considerations

Interactions between host proteins and implant surfaces are linked with various important 

biological reactions and cascading effects of host immune system. Non-specific binding of 

unwanted proteins on the implant surface, also known as biofouling, can be one such type 

interaction that leads to graft rejection by host system. This early stage can lead to a foreign 

body reactions causing a possible implant failure. This process can be avoided by designing 

bioinert or biomimetic surfaces that can prevent protein adsorption and the accompanying 

immune responses. A possible strategy to achieve this goal is to modify the surface 
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properties of implantable devices using biocompatible polymer coatings capable of limiting 

protein attachments15. These polymer layers should be mechanically and chemically robust 

to sustain surface deposition on the implant, withstand sterilization and implantation 

procedures and most importantly retain their stability in vivo. Such a polymer coating can 

help achieve better control over several critical parameters such as the surface free energy, 

chemical composition, wettability and steric repulsion.

Each of these key factors can be tweaked to control the protein adsorption by synthesizing 

polymers with suitable chemical, physical and interfacial free energy properties. Interfacial 

free energy provides a measure of the driving force for the adsorption of proteins and cells 

on to a solid surface influencing the host response to a biomaterial16. Thickness of the 

coating along with the temperature, pressure and friction of the surrounding biological fluids 

are some of the key factors that determine the free energy at the interface. Polymeric 

coatings with low interfacial energies to water and blood represents the best choice in order 

to reduce protein adsorption on implants. In addition, the chemical composition of the 

polymer used along with its wettability also play a significant role in determining the degree 

of protein entrapment17.

Generally, hydrophobic coatings have higher affinity for proteins with respect to hydrophilic 

ones as the adsorption generally occur through hydrophobic interactions18. The presence of 

hydrophilic groups such as hydroxyl -OH, amine – NH2 or carboxyl units –COOH can 

change the level of water on the surface of materials. This layer of water molecules can 

indirectly provide a low interfacial free energy with the biological fluids and reduce the 

tendency of proteins to adhere to the implant. Moreover, it has been recently demonstrated 

that the arrangement of water molecules at the polymer interface changes according to the 

polymer coating and can impact the degree of protein adsorption19. Another important 

component is also the ability of the polymer coating to provide a certain degree of steric 

repulsion to limit protein adsorption. Poly(ethylenglycol) (PEG) is one such standard choice 

for polymer coating20. PEG chains length and conformation combined with its high degree 

of hydration and flexibility can create a barrier to protein adsorption21.

Considering the above mentioned fundamental aspects, the following section will discuss in 

detail the currently available polymer coatings and strategies to engineer bio-inert surfaces. 

Furthermore, specific attention will be given to surface coatings for cardiovascular implants, 

that aims to enhance compatibility with the blood.

2.1 Strategies to design bio-inert polymeric coatings

Bioinert coatings can be applied on a variety of materials including metallic, ceramic and 

polymeric surfaces. However, not all types of surfaces contain active and functional groups 

for chemical conjugation. This is the case of polymer surfaces that generally has to undergo 

a step of chemical pre-treatment or irradiation to be further functionalized22. Physical 

techniques can also be utilized for activating the surface for coupling bioinert polymers. This 

includes UV and gamma irradiation, electron beam, corona discharge, ion beam, laser and 

plasma treatment.
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UV irradiation represents a fast and low cost process that allows for photo-grafting 

polymeric chains on the surface of biomedical implants. The reaction is generally carried out 

in the presence of a biocompatible photoinitiator that can break down into radicals 

responsible for the surface activation. Upon formation of free radicals from the 

photoinitiator, vinyl monomers in the surrounding solutions will act to propagate the radical 

reactions leading to the formation of grafted polymer chains on the surface of the implants23. 

Nevertheless, one of the persisting concerns with the use of UV is that the process may not 

only alter the surface of the implant but also its bulk properties. In fact, if the material 

becomes too stiff after UV exposure, the risk of thrombosis in the case of cardiovascular 

implants such as synthetic vascular graft can dramatically increase24. This problem can be 

overcome by using short wavelength radiation in the extreme ultraviolet region (EUV) that 

would result in the modification of a very thin layer (<100 μm) of the medical device. Thus, 

allowing for surface modification without inducing changes to the bulk.

An alternate strategy to introduce reactive sites on the material surfaces would be to employ 

plasma treatment. In this approach, the biomaterial surface is exposed to high energy 

radiation consisting of atoms, molecules, ions and radicals generated by gaseous mixture 

(CO2, O2, N2, NH3, and H2), vacuum arc or a laser source25, 26. This technique can 

specifically modify hydrophilicity, roughness as well as the chemical composition without 

changing the bulk properties of medical devices.

Once the required functionality has been introduced on the implant surface following the 

possible strategies above described, multiple methodologies can be pursued to apply the 

desired polymeric coating. The type of coating can be chosen considering several parameters 

including the anchoring site, polymer topology and steric effect that can influence its 

stability. Self assembly, non covalent physisorption and covalent binding of polymer brushes 

represent some of the well-established strategies to generate polymeric bioinert coatings. A 

brief description of these techniques will be provided in the following subsections.

2.1.1 Self-assembly monolayers (SAMs) and physisorptions of polymeric 
multilayers—Self-assembly monolayers (SAMs) can be considered as molecular 

assemblies that are generally created by the spontaneous adsorption of organic molecules on 

a solid surface such as metal implants27. In general, molecules used to obtain SAM consist 

of three parts: a head anchor group (such as thiol, silane, phosphate and cathecol), an alkyl 

chain and functionalized end regions28. The head anchor has to provide a stable attachment 

of the coating to the surface and usually the ones having multifunctional groups represent a 

better option to achieve an increased stability of the coating29 (Fig 1a).

These monolayers generate homogeneous structures with high stability due to strong inter-

chain interactions that can affect surface wettability and friction. However, one of the 

disadvantage of SAM technique is that it is not possible to obtain dense coating on the 

surface of bioimplant due to steric effect that can limit the corresponding “anti-biofouling” 

activity.

Another possibility is represented by physical adsorption on chemically inert polymeric 

surfaces. Such anti-fouling coatings are usually made of amphiphilic block copolymers like 
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poly (ethylene glycol)-b-poly(propyleneoxide) PEG-PPO, poly(llysine)-b-poly(ethylene 

glycol) PLL-PEG, that are adsorbed through hydrophobic or electrostatic interactions 

respectively30, 31. In contrast to a single layer, multilayers of physically adsorbed polymers 

offer a better control over the thickness of the coating and pose as a useful strategy to obtain 

a higher surface coverage. Moreover the presence of possible hydrophilic, hydrophobic or 

covalent crosslinking during multilayer formation can increase the general stability of the 

coating32, 33 (Fig 1b).

2.1.2 Polymeric brush coatings—Apart from physical interactions, covalent bonding of 

polymer brushes offers a unique platform to exert desired surface properties on implants. 

Polymer brush coating present a series of advantages including the presence of 

multifunctional groups in the branched structure, that permit a further modification with 

biological molecules and also exhibits controlled swelling and wettability34. Furthermore, 

parameters such as molecular weight and crosslinking density can be controlled over the 

process of grafting, guaranteeing a defined 3D architecture. Specifically, densely grafted 

polymeric brush can act as barrier to limit undesired interactions between the surface of the 

implants and the immunological components. “Grafting to” and “grafting from” are the two 

distinct approaches used for the preparation of polymer brush coatings34, 35 (Fig 1c).

The former involves a reaction of pre-functionalized polymers with a surface that contains 

the necessary complementary groups. This approach cannot produce high grafting density as 

the presence of previously included polymeric chains can hamper the introduction of new 

ones36. Due to this limitation, the latter “grafting from” strategy embodies the most 

attractive strategy for the preparation of brush coatings. Particularly, it involves the 

immobilization of specific initiators on the surface of biomaterials that starts the process of 

monomer polymerization. “Grafting from” can allow for a higher graft density that is mainly 

regulated by the initiator density on the material surface. Nevertheless, low initiator 

efficiency and variable diffusion of the monomer to the active polymerization site are some 

of the persisting drawback of this technique37, 38. These limitations usually results in the 

formation of brushed coating with a broader chain length distribution respect to SAM. 

“Grafting from” can be applied on both organic and inorganic surfaces and this process of 

brush polymer formation can be obtained following several methods such as atom transfer 

radical polymerization (ATRP), initiator transfer terminator polymerization (INIFERTER) 

and reversible addition fragmentation chain transfer (RAFT)39-41. Different type of polymer 

brushes can be produced using these techniques including neutral, zwitterionic, homo and 

block-co-polymer44, 45. All the proposed approaches so far can be chosen according to the 

material surface and the type of biomedical implant designed for a particular application. 

Moving further, state-of-the-art techniques for modulating cardiovascular implant surfaces to 

prevent undesired host responses such as thrombogenesis and inflammatory responses will 

be discussed.

2.2 Bioinert surfaces for cardiovascular implants

One of the main obstacles that we still need to overcome while developing cardiovascular 

implants is their compatibility when exposed to blood 42. Specifically, it is desirable to 

obtain surface properties that can avoid thrombogenesis, the major concern for vascular 
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grafts, stents and heart valves. This can be achieved by preventing platelet adhesion and 

activation, hence reducing the chance of thrombosis. As discussed above, a possible 

approach to achieve this goal can be the formation of anti-fouling polymer coatings on the 

surface of medical devices. Interesting examples of this include hydrophilic neutral coatings 

that can impart protein resistance to a surface with the help of PEG43 and oligo ethylene 

glycol (OEG)44 polymers. These polymers have been easily grafted on Nitinol stents, 

Dacron, expanded polytetrafluoroethylene (ePTFE) and polyurethane (PU) heart valves45. A 

detailed analysis of chemical strategies using PEG and its derivates as polymer brush coating 

has been reported elsewhere46. Apart from PEG and OEG that exhibit excellent antifouling 

properties to a wide variety of proteins, other synthetic polymers generally defined as 

poly(2-oxazoline)s (POXs) such as poly(2-methyl-2-oxazoline) (PMeOX), poly(2-ethyl-2-

oxazoline) (PEtOX), and polypropyloxazoline are promising starting material for the 

preparation of amphiphilic coatings with similar properties of PEG47, 48. At the same time 

zwitterionic polymer brush coatings are another emerging class of anti-fouling coatings that 

possess positive and negative charges in equal number. Because of their presence, these 

coatings are highly hydrated inducing extremely limited protein adsorption.

An interesting example is represented by phosphorylcholine (PC)-based polymers brushes 

such as 2-methacryloyloxyethyl phosphorylcholine (MPC)49, 50 that mimic the property of 

PC, a phospholipid found in the cell membrane, that is capable of preventing proteins and 

platelet adhesion. MPC coatings have been used to cover ePTFE vascular grafts and stents 

surfaces to increase their blood biocompatiblity51. Sulfobetaine (SB)52, 53 and 

carboxybetaine (CB) derivates54 are other emerging classes of zwitterionic polymer brushes 

that are potentially useful as coating to prevent platelet adhesion. Apart from polymer 

coatings, an alternate way of addressing this problem could be covering the surface of 

implants with passive coatings made of less inflammatory proteins such as haemoglobin or 

albumin. However, this approach is not much reliable as pre-absorbed proteins can undergo 

passive exchange and displacement with the ones present in plasma such as fibrinogen55.

These examples highlight the importance of passive coatings, trying to avoid or minimize 

the contact with the biological components of blood. However, the presence of bioactive 

functional groups in their external layer can pave the way for further modifications including 

entrapment of drugs and small biological cues. This concept has been widely investigated in 

the cardiovascular field in order to come up with interesting and smart designs that can play 

a direct role in controlling the host response.

2.3 Bioactive surfaces for cardiovascular implants

Bioactive coating can be a highly useful technology for cardiovascular applications, 

particularly to reduce adverse biological reactions such as thrombosis and inflammation. 

The innovative solutions proposed for these two important aspects will be briefly described 

in the following two sections.

2.3.1 Antithrombotic surfaces for cardiovascular implants—To restrict 

thrombosis, two different bioactive coatings can be utilized including anticoagulant and 

fibrinolytic interfaces. In the first case, surfaces of biomedical implants should be modified 
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in order to include biological molecule capable of minimize thrombin formation. Thrombin 

is the key enzyme involved in blood coagulation and in this sense immobilizing heparin on 

the surface of implants could represent a solution. Heparin is a natural polysaccharide 

capable of binding antithrombin (AT-III) and forming a complex that is responsible for the 

inhibition of thrombin56. Heparin can be immobilized using physical adsorption through 

ionic bonding. In this case, heparin can be absorbed via electrostatic interaction in the 

presence of cationic agents such as benzalkonium chloride or tridodecylmethylammonium 

chloride (TDMAC)57. In a one year long study, vascular grafts made of heparin-ePFTE were 

found to provide resistance to thrombosis and significantly reduced early graft failure 58. 

Additionally, the stability of heparin coatings can be enhanced using covalent grafting 

strategies that can be realized through cross-linking reactions involving one of the several 

functional groups present in heparin chain such as hydroxyls, carboxylic, or amines 

functionalities. However, it is essential that after grafting the biological activity of heparin is 

preserved. Polymer brushes made of poly(oligo(ethylene glycol) methyl ether methacrylate) 

(POEGMA)59 and diblock polymer POEGMA-b-poly(N-hydroxysuccinimidyl 

methacrylate) (PNHSMA)60 were used to covalently link heparin, combining in the same 

system antifouling properties and the inhibition of thrombin. Table 1 summarizes a brief list 

of recent examples of heparin based coatings.

Despite its importance as coating for blood-contacting devices, heparin immobilization have 

a few side effects including osteopenia and thrombocytopenia. Moreover, the ability of 

heparin to bind various bioactive molecules such as growth factors and plasma proteins 

could determine inflammatory responses caused by heparin itself or the polymer coating 

used61. For this reason other inhibitors has been explored as potential candidates to hinder 

thrombin activity or its production. Hirudin, a potent natural inhibitor of thrombin, has been 

covalently grafted to several materials in cardiovascular tissue engineering application. As 

for heparin, chemical conjugation can alter the bioactivity of hirudin and selective 

attachment using the Ɛ-ammino groups of Lys instead of the N-terminus were found to 

preserve the inhibitor activity against thrombin62. Hashi et al. has recently used PEG as a 

spacer to covalently link the C-terminus of r-hirudin to a biodegradable small-diameter 

microfibrous vascular graft fabricated using electrospun poly (L-lactide) (PLLA)63. The 

hirudin coating caused a reduction in adherent and activated platelets on the vascular graft 

and increased patency six months after implantation into rat carotid arteries.

Covalent conjugation of others thrombin inhibitors has been tested. For example Yang et al. 
have tried to conjugate bivalirudin on plasma polymerized allylamine coated 316L stainless 

steel. The presence of bivalirudin was able to prolong clotting time, limiting adhesion and 

activation of platelets and fibrinogen. Moreover, in vivo studies indicated that thrombus 

formation was reduced by a rapid growth of intact endothelia on the bivalirudin-coated 

surface64. Another possible strategy to create bioactive coating with anticoagulant properties 

is to bind on the surface nitric oxide (NO). In fact NO can limit platelet adhesion and 

thrombus formation on the surfaces of cardiovascular implants65. Several NO-donor 

compounds can be chosen modulating the rate and mechanism of NO release. Covalent 

grafting to pendant groups is the most common strategy to include NO-releasing 

compounds. A particular class of NO donors are diazeniumdiolates that can be linked to 

different polymer such as polyvinyl chloride (PVC), PU or ePTFE vascular grafts 66, 67. In 
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addition to limiting platelet adhesion, NO-coatings can guarantee a reduction in smooth 

muscle cell proliferation and promote endothelial cell proliferation that can be extremely 

important in defining long-term patency of vascular grafts66.

As mentioned above, an alternate way to improve blood biocompatibility of medical 

implants for cardiovascular applications is to produce fibrinolytic surfaces. In this case, the 

coating should be able to local activate the endogenous fibrinolytic system reducing the 

formation of thrombus. One of the main strategies to achieve this goal has been reported by 

the intrdocution of lysing groups on the surface that present high affinity for plasminogen a 

key factor in the fibrinolytic system68. Chen et al. have proposed PU modification with 

polymer brush made of lysine-poly(2-hydroxyethyl methacrylate) Lys-(PHEMA) which is 

able to bind selectively plasminogen capable of causing rapid clot lysis on the surface69. 

Similarly, in another study, poly(OEGMA-co-HEMA) copolymers grafted on polyurethane 

surface were further functionalized with lysine groups showing selective binding of 

plasminogen and low adsorption of fibrinogen and other plasmatic proteins70.

2.3.2 Bioactive surfaces to control immune response in cardiovascular 
implants—Bioactive coatings for cardiovascular implants surfaces should be also designed 

taking in consideration the immune response. In fact, the interaction between the immune 

and coagulation systems can profoundly affect the fate of implanted biomaterials71. An 

important aspect to consider is the suppression of complement activation and its fixation on 

the surface of medical devices72. To obtain this control over the immune responses, bioactive 

coatings should be able to suppress the immune response once implanted in vivo along with 

their antithrombotic properties. This can be achieved by grafting in the polymeric coatings 

bioactive molecules such as growth factors or specific receptor and antibodies. For example 

factor H a protein present in serum can inhibit complement activation and has been used as a 

strategy to control the complement inflammatory response73.

In an interesting study, Andersson et al. created a hybrid surface in which the anti-

coagulation properties were combined with a specific complement-inhibitory effect due to 

the presence of factor H74. In specific Pluronic™, a class of triblock copolymers consisting 

of a block of polypropylene oxide (PPO) surrounded on each side by polyethylene oxide 

(PEO) blocks was chemical conjugated with factor H and tested with human serum showing 

promising results in terms of reducing complement inflammatory cascade. Alternatively, to 

chemical strategies that can be costly another possible solution is to bind on the surface 

peptides that show high affinity for factor H. In another study, Lambris et al. have identified 

a specific peptide (5C6) capable of specifically capture factor H without altering its 

functional activity75. At the same time, it is even possible to consider the possibility to bind 

on the surface receptor or biological proteins to reduce cell inflammatory adhesion. CD47 is 

a ubiquitously expressed trans-membrane protein that functions as a biological marker of 

self- recognition and showing the ability to C-influence inflammatory cell attachment. In a 

recent study, recombinant CD47 was modified with a poly-lysine tag to the terminus and 

covalently linked to polyvinyl chloride (PVC) surfaces. PVC modified with CD47 was able 

to inhibit both platelets and neutrophils adhesion81. Other interesting examples report 

instead the immobilization of the human complement receptor 1 (sCR1), that is another 

important inhibitor of the classical and alternative complement activation pathways82, 83.
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2.4 Bio-mimetic surfaces for cardiovascular implants

The polymeric coatings discussed so far presents well-grounded solutions to design 

advanced blood-compatible material surfaces. However, concerns arise when these coatings 

are checked in vivo as they can be susceptible of cracking and wear leading to undesired 

host responses such as thrombosis, microembolism and late inflammation reactions84, 85.

For this reason, researchers have started to explore other avenues including the possibility to 

create bio-mimetic surfaces using endothelial cells (EC). It is well known that EC can play 

an important role to regulate coagulation, and prevent platelet adhesion and activation86. In 

fact, they can secrete NO that promotes vasodilatation and inhibits clot formation87. In 

addition, ECs can induce fibrinolysis by secreting tissue plasminogen activator to dissolve 

fibrin clots and thrombomodulin to inhibit the coagulation cascade. For these reasons, 

strategies are aimed to include a layer of EC on the outer surface of cardiovascular implants. 

These may be achieved by two different approaches; one can be to implant EC coated 

medical devices and other one can be to promote in situ endothelialization by exploiting the 

innate angiogenesis system. In the case of engineered vascular grafts it is important to 

consider that EC should form a confluent and continuous surface with tight adherent 

junctions. The integrity of these junctions is important as a disruption of this layer can cause 

exposure of the sub-endothelial tissue matrix inducing platelet activation and aggregation88.

Complete endothelial coverage of the surface of cardiovascular devices is fundamental to 

avoid thrombogenesis post implantation. In order to achieve this goal, it is necessary to 

modulate the surface properties of cardiovascular implants to increase EC attachment. This 

can be made possible by working on physical cues such as microtopography89 and 

nanotopography90 of the medical device, particularly in the case of metal stents. In fact, 

topographical cues can modulate not only cell attachment but also morphology and cellular 

behaviour. Particulary, it exherts a profound effect on the process of endothelialization. 

Inclusion of cell adhesive peptides derived from the extracellular matrix demonstrates 

another possible solution to enhance cell adhesion and migration on implant surface91, 92. 

However, an important thing to consider while biofunctionalizing the outer surface of the 

implant is that the affinity of these adhesive peptides can not only promote EC proliferation, 

but also can induce platelet adhesion, thus eventually making it thrombogenic93. It is thus 

critical to confirm the stability and nature of the adhering cells once the medical device is 

implanted in vivo. In particular, the endothelial monolayer should be able to sustain the 

surface shear stress caused by blood flow. For example, in prosthetic heart valves the surface 

shear stress can exceed 500 dyn/cm2 which is much higher than what EC can withstand94. In 

a recent study, Frendl et al. emphasized that endothelial adhesion is not alone sufficient to 

withstand ultra-high shear stress environment regardless of the adhesive nature, type and 

concentration of the ligand used on pyrolitic carbon surfaces. This problem was overcome 

by producing microfabricated trenches on the pyrolitic carbon surfaces that allowed a 

sensible reduction on the value of shear stress detected by cells, that retained their confluent 

monolayer when exposed to 600 dyn/cm2 95. This approach represents an important advance 

in the design of biomimetic surfaces that can retain the monolayer of endothelial cells intact 

when exposed to higher shear stress (Fig 2).
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As an alternative to EC, endothelial progenitor cells (EPCs) that are able to differentiate into 

functional EC, represent another interesting cell source to promote medical device-based 

endothelialization96. Interestingly, synthetic materials can be coated with specific molecules 

such as antibodies97, 98, growth factors99-101 genes102, 103 and aptamers104 to recruit 

circulating EPCs and generate an autologous endothelium surface.

3. Designing biointeractive coatings to support implant integration in bone

In previous sections, we have discussed the different strategies to suppress adverse host 

immune responses and increase blood biocompatibility of medical implants. However, these 

strategies hold limitations when considering prosthesis that have to undergo a process of 

remodelling to restore functionality of damaged tissues. For example, bone grafts made of 

polymeric materials should be able to integrate with the host and guide formation of new 

bone105. For such applications, several physical cues such as porosity, roughness, 

topography and chemical conjugation of growth factors needs to be considered to promote 

bone healing. A lot of effort has been made to design new surfaces and interactive coatings 

for orthopaedic implants to promote osseointegration. Moreover, surfaces of orthopaedic 

implants can also be tailored to modulate the immune responses rather than to simply 

suppress it. In fact, the healing process as well as the integration of the medical device 

within the bone tissue can be actively controlled by the immune system. This new area of 

research interest is defined as osteo-immune modulation. Although still in its early stage of 

development this area of research is progressively gaining importance due to the increased 

understanding of the complex cellular and molecular interactions between the immune and 

skeletal systems106.

The following section explores in details the new types of interactive coatings developed for 

metal and polymer implant-based bone regeneration. In addition, the design of recent 

immune-modulatory strategies for bone osseointegration will be articulated in an attempt to 

provide new insights on advanced materials for bone therapy.

3.1 Surface modification with bioactive materials to promote osseointegration

Orthopedic implants such as joint prostheses, plates and screws serve the purpose of 

providing mechanical and structural support to the damaged area. In addition, they should 

enhance healing and easily integrate with the surrounding host tissue. Among the materials 

used metal represent the first choice when mechanical and structural support is essential and 

some examples of recent strategies to modify the surface of metal orthopaedic implants are 

reported in Table 2.

One of the widely used approaches is to change the surface properties working on the 

topographical characteristics of the implants or by introducing specific functional groups. 

Regarding for example metal implants, an increase in surface roughness can increase the 

surface area leading to osteoblast differentiation with higher expression of alkaline 

phosphatase (ALP) and osteocalcin expression respect to smooth surfaces107 . Moreover, the 

presence of NH2 or OH groups can increase the wettability improving cell attachment in 

vitro on titanium implants108. It has also been investigated how the type of functional group 

can actually influence the conformation of the adsorbed proteins such as fibronectin. The 
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different active conformation of fibronectin can influence the type of integrin used for 

osteoblast attachment and indirectly influence the relative differentiation109.

Another possible way to enhance osseointegration can be the deposition on the surface of 

biomaterials that can mimic the chemical composition of natural bone. In this category, it is 

possible to include calcium phosphate (CaP) like coatings such as hydroxyapatite (HA). HA 

coatings can be introduced following several techniques including pulse layer deposition and 

electrostatic multilayer assemblies using the layer-by-layer technique. These coatings have 

been widely investigated not only for their osteoinductive properties but also for their 

potential use as carriers of growth factors, bioactive molecules, and DNA110. In a study by 

He et al., hydroxyapatite (HA)/collagen coatings were used as carrier of recombinant human 

bone morphogenetic protein-2 (rhBMP-2) and RGD peptide (RGD). The results showed 

significant improvement in mesenchymal stem cell (MSC) adhesion, proliferation, and 

differentiation on collagen-modified HA coatings that can be potentially used for early 

fixation of bone implants15. Similarly, in a recent study hydroxyapatite nanoparticles were 

complexed with chitosan to design nanoscale non-degradable electrostatic multilayers. 

These were then linked with a degradable poly (β-amino ester) based film having 

physiological amounts of rhBMP-2 to form an osteoinductive coating for MSC111. Still 

concerns related to the efficacy112 and safety of HA coatings are yet to be overcome mainly 

due to their possible fragmentation in vivo113 that is responsible for inflammation, delay in 

osseointagration and osteolisis. This problem can be addressed by reducing thickness of the 

coating as well as by increasing their homogeneity114.

Other possible coatings to promote osseointegration are the ones made of silicate-based 

bioceramic that are generally applied using plasma spray methods, showing higher bonding 

strength to titanium implants respect to HA coatings119. This aspect is important as poor 

binding could lead to detachment of the coating from the titanium implants limiting their 

long-term stability once implanted in vivo. However, silicate based materials such as CaSiO3 

present high dissolution rate in biological fluids and attempt has been made to increase their 

chemical stability by incorporating Zn ions in their structure120.

A possible alternative to CaP and silicate coatings is the fixation of bioadhesive coatings on 

the implants surfaces by entrapping or adsorbing ECM proteins, peptides121, growth 

factor122 or DNA123. To achieve these objectives several available techniques can be 

considered including immobilization, hydrogels and layer-by-layer coatings. 

Immobilizations of peptides that contain cell binding domains represent one of the most 

investigated strategies to improve osseointegration in orthopaedic implants. Such peptides 

are more stable than large proteins and are able to withstand harsh treatments without losing 

their biological activity124. Among them, the ones containing RGD sequences have been 

largely investigated, however their lack of selectivity in integrins binding reduce their 

potentiality as enhancer of osseointegration125. To achieve better results different peptides 

displaying a more selective integrin binding have been proposed as alternative to the RGD 

sequence126. For instance, titanium implants have been coated with a triple helical peptide, 

GFOGER derived from α1 (I) chain of type I collagen that has specific affinity for integrin 

α2β1. The Ti surfaces treated with the peptide showed higher ALP activity and calcium 

content compared to the ones uncoated127.
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Immobilization can be extended not only to peptides but also to cytokines and growth factors 

although their biological activity can be reduced after this process. For this reason in general 

it is necessary to introduce a layer on the implant surface that can be used to link the growth 

factor. Kashiwagi et al. reported the formation of a bioactive layer of artificial protein on 

titanium surface with the help of titanium binding motifs fused to the N-terminal of 

BMP-2128. In a similar study Naskar et al. immobilized silk fibroins on titanium surface to 

facilitate the initial cell adhesion followed by improved cell spreading and better 

mineralization in order to achieve enhanced osseointegration. The immunological responses 

along with the effect of cytokines on osteoblast adhesion and function were investigated 

showing that the silk fibroin from non-mulberry source could be potentially used for better 

osteogenesis on orthopedic implants129. Apart from immobilization of adhesive proteins or 

peptides, polymeric hydrogels can be an alternative method to coat orthopaedic implants 

with bioactive molecules. A gel layer can be simply obtained by soaking the orthopaedic 

device into polymeric solutions that contain the biomolecule of interest prior hydrogel 

formation. This simple technique can be applied to coat implant with complex geometry 

although this method cannot be considered reproducible as variability can occur from batch 

to batch. In a study by Stadlinger et al., various hydrogels were tested as coating of titanium 

implants loaded with TGF-β1/BMP-4 growth factors using collagen, decorin and 

chondroitin sulphate. The results indicate that a collagen/chon- droitin sulphate coating was 

the most effective among the tested hydrogels in promoting osseointegration130.

Layer-by-layer coating is another widely used strategy. It consists of alternate repeated 

soaking of implants into polyelectrolyte solutions with opposite charges. This technique 

allows a better control over the loading efficiency and the release kinetics of the entrapped 

biomolecule respect to hydrogel coatings. In fact, several important parameters can be 

chosen such as the number of layers, type of polyelectolyte and the concentration of the 

biomolecule. The layer-by-layer approach have been studied Macdonald et al. to promote 

delivery of different growth factors such as VEGF and BMP-2122, 131 (Fig 3). Here, a layer 

by layer coating was used as carrier for the dual release of rhBMP-2 and rhVEGF165. The 

first one was released over a period of 2 weeks, while rhVEGF165 eluted from the film over 

the first 8 days. The sequential delivery of growth factors has been used to target both blood 

vessel formation and bone formation. Most importantly, both growth factors retained their 

efficacy and an improvement in bone formation was observed compared to the system with 

the delivery of only one growth factor132.

3.2 Surface modification with osteoimmunomodulating factors to promote 
osseointegration

The immune and the skeletal system share several regulatory pathways. Extensive research 

over the last two decades has demonstrated the influence of the immune system on the 

regulation over bone healing106, 133. This important cross-talk among the two systems could 

be a useful tool for the design of a new generation of “immuno-informed” biomaterials 

capable of positively interact with the immune system rather than trying to dampen its effect. 

In fact, the innate immune system can play an important role in bone repair and maintaining 

its homeostasis. Among the cells of the innate immunity, macrophages have been identified 

as key elements for bone repair134. According to the micro-environment, macrophages can 

Pacelli et al. Page 12

J Mater Chem B Mater Biol Med. Author manuscript; available in PMC 2016 September 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



display different polarization states into the pro-inflammatory M1 type and the anti-

inflammatory M2 type. M2 population can be further subdivided into M2a (anti-

inflammatory), M2b (immune-regulatory) and M2c (remodelling) mainly due to their 

surface receptor expression and cytokine secretory profile4. However, there is plasticity 

among macrophage phenotypes, meaning that they possess a continuum of phenotypes for 

distinct biological functions.

Macrophage polarization can be influenced by biochemical and biophysical cues that are 

more inherently to the material properties of the surface of the implants. In fact, 

macrophages rely for their migratory, phagocytic and mechano-sensing activities mainly on 

short lived focal complexes, point contacts and podosomes135. In this regard, topographical 

cues including surface roughness, specific surface area, scale and shape of the feature35 

represent example of biophysical parameters that can be finely tuned to control macrophage 

cytoskeleton mediated mechanisms and influencing their response in bone healing. A lot of 

studies have been oriented in understanding the relation between macrophage phenotype and 

topographical cues of biomaterial surfaces136, 137. For example, Chen et al. found out that 

surface with 1 μm wide gratings showed the lowest inflammatory response compared to 

nanogratings and planar controls137 (Fig 4). Same results were confirmed in other studies 

where topographical features of different polymeric microfibers in the range of 1 to 5 μm 

showed well acceptance after implantation in vivo respect to other with higher gratings 138.

Apart from topographical characteristics, also mechanical properties can profoundly 

influence macrophage phenotype139. In fact, macrophage elasticity can be modified by the 

substrate stiffness. For example Blakney et al. showed that hydrogel stiffness did not impact 

macrophage attachment, but was able to influence their morphology and corresponding 

phenotype. In fact, hydrogels with lower stiffness led to reduced macrophage activation and 

a less expression of TNF-α, IL-1β, and IL-6140. Considering all these factors to design 

better orthopaedic implants, scientists are now trying to decipher all the unique surface 

properties that control macrophage polarization in an attempt to enhance the process of 

osseointegration. For instance, titanium topography of orthopaedic implants is one of the 

factors that has been an object of intense research over the years. In a recent study by Calvo-

Guirado et al., biomechanical comparison of bone response to commercially pure titanium 

screws with four different types of surface topographies was investigated. In specific, the 

surface of the titanium implants were sandblasted, acid-etched or treated with a combination 

of the two techniques along with a four group in which also a discrete crystal deposition 

(DCD) of HA was applied. Implants were placed in the tibial metaphysis of 30 rabbits and 

this study indicated that only titanium with increased surface roughness showed statistically 

significant increase in osseointegration, 56 days after implantation141. Apart from 

conventional HA coatings used in the previous study, ceramic containing bioactive elements 

such as Mg, Si and Sr have also been proved to have immunomodulatory effects that can 

enhance in vivo osteogenesis. For example clinoenstatite coatings (MgSiO3) or bioactive 

ceramic having Mg, Si and Sr (Sr2MgSi2O7) are capable of controlling macrophage 

differentiation into the M2 lineage while inhibiting inflammation and osteoclastic 

activity142, 143. Similarly, titanium surface hydrophilicity has been proven to accelerate 

implant osseointegration in humans144. In a recent study, the mechanism behind this 

modulatory effect has been further investigated by evaluating the inflammatory cytokine 
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expression profile in a murine macrophage cell line. Results illustrated how the increased 

hydrophilicity can decline the pro-inflammatory response by activating NF-κB signalling145. 

Importantly, MSCs co-cultured with macrophages in 3D scaffold led to a significant 

decrease in the secretion of soluble factors related with inflammation and chemotaxis 

including IL-6 and MCP-1 compared to 2D settings146.

To further investigate the influence of macrophage over tissue remodelling, post 

implantation, other studies have been carried out. Brown et al. explored whether the 

presence of a cellular component in ECM scaffolds influence macrophage phenotype. 

Acellular matrices were shown to elicit a predominantly M2 type response and resulted in 

constructive remodelling, while those containing a cellular component presented M1 

polarization response leading to deposition of dense connective tissue and scarring147. Very 

recently, a novel approach to assess osteogenesis in vitro has been proposed by Chen et 
al.148. In their study the osteogenic capacity of cobalt incorporated with β-tricalcium 

phosphate (TCP) was assessed using a coculture of MSCs and macrophages and compared 

with the traditional “one cell type” method. Macrophage phenotype switched to M1 in 

response to TCP. The group also performed in vivo studies to support their in vitro findings. 

This study represents an important example that combines both immune and skeletal system 

together and represents a smart approach for in vitro testing of ortheopedic implants and 

predicts their behaviour once implanted in vivo.

4. Conclusion and Future Directions

To conclude, the review highlights the currently available strategies to control the surface 

properties of biomedical implants for cardiovascular and bone therapy applications and 

possible solutions to control the adverse host responses. Emerging approaches to control 

host immune responses against the foreign medical implants using bioactive molecules and 

polymers are also underscored. It can be stated without any reservation that significant 

advancements have been made in developing different types of bioinert surfaces to prevent 

non specific protein adsorption. With respect areas where we still need to improve is to close 

the gap between in vitro and in vivo study outcomes. The main cause for this mismatch with 

respect to cardiovascular implants is probably due to the incomplete understanding of the 

specific mechanisms involved in the cross-talk between the immune system and the 

coagulation mechanism. A better understanding of the underlying pathways, which bridge 

the gap between the two systems, will significantly contribute to improve the biomaterial 

coating strategies, suppress thrombosis and host complement activation systems. Since 

thrombus formation involves several complex mechanisms, surface modifications that 

address only one possible way to block its formation does not present a holistic strategy to 

manufacture successful cardiovascular implants. It is imperative to integrate several coating 

strategies with complementary strengths to build smarter next-generation biomaterial-based 

medical implants.

In near future, strategies to engineer the ideal bioinert coatings can be harnessed from the 

nature considering the vast number of nonbiofouling surfaces present. In a recent study by 

Leslie et al., such a concept has been put forward and demonstrated by fabricating a 

bioinspired, omniphobic coating surface capable of repelling blood and suppressing biofilm 
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formation149. To do this, a slippery liquid-infused porous surface (SLIPS) was synthesized 

following the Nepenthes pitcher plant's example, that uses a layer of liquid water to create a 

low friction surface that prevents attachment of insects. Such bioinspired materials thus 

signify an innovative approach that may lead to the discovery of successful coatings in the 

field of biomedical devices.

Our second objective was to shed lights on the current research works in the field of surface 

chemistry and material interfaces to control host biological responses and tissue integration. 

This is extremely important in case of orthopaedic implants, in which osseointegration is a 

necessary step to accelerate bone healing. We believe the innovative coatings illustrated in 

this review, particularly the ones which consider immune responses as a useful resource to 

promote bone healing, has immense potential for future clinical applications.

Ideally, the next generation orthopaedic implants should be able to deliver the optimal 

amounts of growth factors within the bone healing area while exerting a possible control 

over the immune responses. One possible way could be the entrapment on the surface of 

growth factors recruiting M1 macrophages over an initial period of time to initiate 

vascularization followed by the sustained release of other cytokines to recruit M2 

macrophages, that will help the formation of a mature and stable vasculature. However, very 

little is known about the specific roles of the two macrophage phenotypes M1 and M2 in the 

different musculoskeletal diseases and healing phases. Growing understanding of these 

mechanisms to regulate macrophage polarization will help pave the way in developing more 

advanced orthopaedic implants with emerging surface bioengineering techniques. 

Microfabricating organ-on-a-chip in vitro models capable of mimicking the cross-talk 

between osteoblast and macrophage could play a highly beneficial role in the advancement 

of these technologies.
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Figure 1. 
Overview of available techniques for bio-inert coatings. a) Schematic of a SAM containing 

examples of typical head and tail domains, b) Illustration of physisorption, layer-by-layer 

coatings through electrostatic interaction and presence of internal crosslinking among layers 

to increase stability, c) grafting-to and grafting-from strategies. Reprinted with permission 

from 28 and 35. Copyright 2014 John Wiley and Sons and Copyright 2013 Royal Society of 

Chemistry.
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Figure 2. 
Endothelialization; Micro-topographical manipulation for endothelial cell retention at high 

shear stress: a) Computational fluid dynamic simulation of carbonized surface channel based 

bioreactor under chronic ultra-high shear stress. Etched silicon channels (b) were used as a 

substrate for carbon deposition. c) Fluorescent image showing the retention of endothelial 

cells at 600 dynes/cm2 after 48 h in culture, d & e) Fluorescent images highlighting the 

absence of plasminogen activator inhibitor (PAI-1), an activator of fibronolysis in collagen I 

and fibronectin coated channels respectively under sheared and static conditions. Reprinted 

with permission from ref 95. Copyright 2014 Elsevier.
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Figure 3. 
Osseointegration using growth factor. a) Bare macroporous polycaprolactone/b-tricalcium 

phosphate (50wt% PCL/50wt% bTCP) waffle cylinder scaffold, with diameter of 10 mm and 

height of 2.5 mm. b & c) Three dimensional (3D) μCT reconstructions of intramuscular 

implanted scaffolds in rats. No detectable bone formation was found after 4 and 9 weeks in 

bare scaffolds. d) Schematic of polyelectrolyte multilayer films (PMF) using the layer-by-

layer method entrapping rhBMP-2 on the surface of the scaffold. e & f) 3D μCT scans of 

scaffold with PEM releasing rhBMP-2 was able to promote bone formation only to the 

periphery of the scaffold. g) PEM coating containing both rhBMP-2 and rhVEGF165. h & i) 

3D μCT scans of scaffold releasing both growth factor showed ectopically bone formation at 

4 weeks with a significant increase after 9 weeks. Reprinted with permission from ref. 131 

Copyright 2011 Elsevier.
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Figure 4. 
Influence of elasticity and topography on macrophage polarization. a & b) confocal images 

of macrophages cultured on substrate with different elasticity showing a decreased presence 

of filapodia in less rigid surface (1.2 kPa). b) Quantification of actin polymerization in 

macrophages cultured in different elastic surfaces. d) Photomicrographs of adherent 

macrophage cells on PDMS gratings and controls of constant height (at 350 nm): planar 

control (Column 1), 300 nm gratings (Column 2), 500 nm gratings (Column 3) and 1 mm 

gratings (column 4). Figure a-c reprinted with the permission from ref 139 and figure d-f 

from ref 137. Copyright 2010 Elsevier.
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Table 1

Innovative recent heparin based coatings for cardiovascular implants.

Substrate/Coating Coating strategy In vitro/in vivo studies Ref.

Duraflo™ heparin and sirolimus Layer-by-layer APTT assay, drug release studies (drug eluiting 
stent)

76

Amino-silanized titanium/Heparin and 
collagen Type-IV

Layer by layer platelet adhesion test, APTT assay 77

NiTi shape memory alloy/Heparin UV-pretreatment and physical 
adsorption

hemolytic tests, dynamic clotting time experiments, 
platelet binding tests

78

316L stainless steel/heparin Chemical conjugation using 
dopamine and HMA

APTT assay, HUVECs & HASMCs proliferation 
studies/subcutaneous implantation in white rabbits

78

Nanofibers/Heparin Chemical conjugation using 
diamino-poly(ethylene glycol) as 
linker

Antitrombogenic activity tests/implantation in rats 79

Titanium/PEG and Heparin carbodiimide covalent coupling 
method

APTT assay/HUVECs adhesion and proliferation 
studies

80

APTT: activated partial thromboplastin time, HUVECs: Human Umbilical Vein Endothelial Cells, HASMCs: Human Artery smooth muscle cells, 
HMA: hexamethylenediamine.
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Table 2

Recent coating strategies to promote osseointegration

Substrate/Coating Coating strategy In vitro/in vivo studies Ref

Titanium/Sericin-RGD Sericin adsorption followed by 
EDAC/NHS conjugation of RGD

Osteoblast differentiation, Alamar blue assay, RT-PCR 115

Titanium/Nano CaP crystals Dual Acid etching White rabbits tibial and femoral metaphysic implantation 116

Titanium/Ca-P-Si-Na Microarc oxidation, Steam hydro-thermal 
treatment, heat treatment

Rabbits implantation in tibia, Histological analysis, 
implant push out force tests

117

Stainless Steel (316)/ FN7-10 Passive adsorption hMSCs differentiation studies, screw implantation in rats 118

FN7-10: recombinant fragment of human fibronectin, hMSCs Human mesenchymal stem cells, EDAC: ethyl (dimethylaminopropyl) carbodiimide 
and NHS: N-hydroxysulfosuccinimide, CaP: calcium phosphate
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