

NIH PUDIIC ACCESS Author Manuscript

Org Lett. Author manuscript; available in PMC 2010 May 31

Published in final edited form as:

Org Lett. 2009 August 6; 11(15): 3434-3436. doi:10.1021/o1901288r.

Mild Decarboxylative Allylation of Coumarins

Ranjan Jana[†], Rushi Trivedi[‡], and Jon A. Tunge^{*,†}

Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045

Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas 66045

Abstract

Allyl esters of 3-carboxylcoumarins undergo facile decarboxylative coupling at just 25–50 °C. This represents the first extension of decarboxylative C–C bond-forming reactions to the coupling of aromatics with sp³-hybridized electrophiles. Finally, the same concept can be applied to the sp²– sp³ couplings of pyrones and flavones. Thus, a variety of biologically important heteroaromatics can be readily functionalized without the need for strong bases or stoichiometric organometallics that are typically required for more standard cross-coupling reactions.

In recent years, significant effort has been devoted to the development of decarboxylative couplings that allow C–C bond forming cross-couplings without the need for preformed organometallics.^{1–3} In avoiding preformed organometallic re-agents, decarboxylative couplings often avoid the use of highly basic reaction conditions and the production of stoichiometric metal waste.^{1c} One remarkable example is the decarboxylative biaryl synthesis developed by Gooβen.² For all its potential utility, such sp²–sp² couplings require decarboxylative metalation of sp²-hybridized carbons which is a relatively high-energy process that utilizes copper cocatalysts at 120–170 °C.2a,b A similar, cocatalyst free, decarboxylative coupling of heteroaromatics was also reported to occur at 150 °C.^{2c} Thus, these promising reactions could still benefit from the development of more mild conditions for the cross-coupling. In addition, the decarboxylative coupling of aromatics and heteroaromatics has not been extended to sp²–sp³ couplings,^{1b,4} which would dramatically expand the structures that can be synthesized by decarboxylative arylation. Herein we report a palladium-catalyzed decarboxylative allylation of coumarins that proceeds under exceptionally mild conditions.

In looking for scaffolds on which to develop decarboxylative allylation of aromatic nucleophiles, we were immediately drawn to coumarins. Coumarins are privileged structures in biological chemistry, and numerous pharmaceuticals are based on development of this basic

^{© 2009} American Chemical Society

tunge@ku.edu .

Department of Chemistry.

[‡]Department of Medicinal Chemistry.

Supporting Information Available Experimental procedures and characterization data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

scaffold (Figure 1).⁵ Of these, warfarin (1) is the most well-known of a class of 3-alkyl coumarins used as anticoagulants. In principle, a decarboxylative allylation of coumarins may provide access to compounds like warfarin and also allow the synthesis of a wide variety of 3-alkylcoumarins for biological screening.

To begin, **4a** was synthesized and treated with Pd(PPh₃)₄ in dry CH₂Cl₂ (Scheme 1). It was gratifying to find the reaction went to 100% conversion, allowing 3-allylcoumarin **5a** to be isolated in 73% yield. In addition to product (**5a**), the reaction forms ca. 10% 6-nitrocoumarin, which results from protonation of a putative coumarin anion equivalent.⁶ It is particularly noteworthy that the decarboxylative metalation took place at just 50 °C. While decarboxylative metalation under neutral conditions is difficult. For example, copper-catalyzed decarboxylation of a related 2-carboxycoumarin takes place at 248 °C in refluxing quinoline. ^{6,7} Moreover, the allylation took place without the need for preformed organometallics that are typically required for the allylation of sp² carbons,^{8,9} and it is more efficient than typical syntheses of 3-allylcoumarins.¹⁰

Next, a range of coumarins were subjected to our standard conditions for the coupling. As can be seen in Table 1, the yields of the coupling are generally good. The reaction is compatible with electron-donating and electron-withdrawing functional groups. This fact argues against simple electrophilic allylation of the coumarin.¹¹ While coumarins with oxygen donors are excellent substrates, an amine-containing substrate (entry 9) provides a relatively low yield of product. Importantly, aryl bromides are tolerated, allowing tandem reactions involving decarboxylative coupling and standard cross-coupling chemistry. Lastly, a thiocoumarin substrate reacts similarly to the coumarin substrate, providing a 63% yield of 3-allyl thiocoumarin (Scheme 2).

Next, we turned our attention to the investigation of the coupling of substituted allyl electrophiles with coumarins (Table 2). The coupling of 2-methallyl alcohol derivatives proceeds smoothly and provides products in somewhat higher yields than those without methallyl substituents (entries 1–3). Importantly, the chemistry is also compatible with 3-alkyl-substituted allyl groups (entries 4–6). This is particularly noteworthy because the coupling is the formal allylation of a very basic vinyl anion. Typically, such strong bases simply induce elimination of the π -allyl palladium intermediates.¹²

In the interest of exploring the features of the coumarin that allow decarboxylative coupling under such mild conditions, several experiments were performed. First, an acyclic analogue of the coumarin (6) was subjected to the standard reaction conditions for decarboxylative allylation of coumarins, and it did not produce any product (eq 1). While the reaction with the acyclic derivative failed, pyrone (7) reacts to form the product of decarboxylative coupling (8) under identical conditions to those used in the coumarin coupling (eq 2).¹³ Thus, the benzenoid ring of the coumarin is not required for reactivity. Lastly, the isomeric chromone derivative 9 provided coupling product (10) in good yield (eq 3), showing that the concept of decarboxylative allylation extends to heteroaromatics other than coumarins.

(1)

Jana et al.

10 mol % Pd(PPh₃)₄

CH₂Cl₂ 50 °C

6 h

9 10 82% (3) While decarboxylative couplings are often used in lieu of standard cross-coupling reactions that are more costly or wasteful, ^{1a,3} decarboxylative couplings are oftentimes complementary to standard palladium-catalyzed coupling reactions. For instance, the decarboxylative sp²– sp³ coupling reported herein can be readily utilized in a tandem decarboxylative allylation/

In conclusion, we have developed an exceptionally mild decarboxylative sp^2-sp^3 coupling that results in the allylation of pharmacologically relevant oxygenated heteroaromatics. Continuing studies are aimed at elucidating the mechanism of this transformation in hopes of defining the reasons that decarboxylative couplings of coumarins and related heteroaromatics are so facile.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Heck olefination sequence to provide coumarin 11 (Scheme 3).

Acknowledgments

We thank the National Institute of General Medical Sciences (1R01GM079644) and the KU Chemical Methodologies and Library Development Center of Excellence (P50 GM069663).

References

 (a) Shimizu I, Yamada T, Tsuji J. Tetrahedron Lett 1980:3199. (b) Tsuda T, Chujo Y, Nishi S.-i. Tawara K, Saegusa T. J. Am. Chem. Soc 1980;102:6381. (c) Rayabarapu DK, Tunge JA. J. Am. Chem. Soc 2005;127:13510. [PubMed: 16190710] (d) Waetzig SR, Rayabarapu DK, Weaver JD, Tunge JA. Angew. Chem., Int. Ed 2006;45:4977. (e) Waetzig SR, Tunge JA. J. Am. Chem. Soc 2007;129:4138. [PubMed: 17371027] (f) Weaver JD, Tunge JA. Org. Lett 2008;10:4657. [PubMed: 18785744] (g) Mohr JT, Behenna DC, Harned AW, Stoltz BM. Angew. Chem., Int. Ed 2005;44:6924. (h) Trost BM, Bream RN, Xu J. Angew. Chem., Int. Ed 2006;45:3109.

- (2). (a) Goossen LJ, Deng G, Levy LM. Science 2006;313:662. [PubMed: 16888137] (b) Goossen LJ, Zimmermann B, Knauber T. Angew. Chem., Int. Ed 2008;47:7103. (c) Forgoine P, Brochu MC, St-Onge M, Thesen KH, Bailey MD, Bilodeau F. J. Am. Chem. Soc 2006;128:11350. [PubMed: 16939247]
- (3). (a) Myers AG, Tanaka D, Mannion MR. J. Am. Chem. Soc 2002;124:11250–11251. [PubMed: 12236722]
 (b) Tanaka D, Romeril SP, Myers AG. J. Am. Chem. Soc 2005;127:10323. [PubMed: 16028944]
- (4). The decarboxylative allylation of silylenol ethers has been reported. (a) Tsuji J, Ohashi Y, Minami O. Tetrahedron Lett 1987;28:2397.. (b) Snider BB, Buckman BO. J. Org. Chem 1992;57:4883.. (c) Coates RM, Sandefur LO, Smillie RD. J. Am. Chem. Soc 1975;97:1619..
- (5). (a) Horton DA, Bourne GT, Smythe ML. Chem. Rev 2003;103:893. [PubMed: 12630855] (b) Estevez-Craun A, Gonzalez AG. Nat. Prod. Rep 1997:465. [PubMed: 9364778] (c) Ngameni B, Touaibia M, Patnam R, Belkaid A, Sonna P, Ngadjui BT, Annabi B, Roy R. Phytochemistry 2006;67:2573. [PubMed: 17070879] (d) Chun K, Park S-K, Kim HM, Choi Y, Kim M-H, Park C-H, Joe B-Y, Chun TG, Choi H-M, Lee H-Y, Hong SH, Kim MS, Nam K-Y, Han G. Biorg. Med. Chem 2008;16:530.
- (6). Worden LR, Kaufman KD, Weis JA, Schaaf TK. J. Org. Chem 1969;34:2311.
- (7). (a) Adams R, Bockstahler TE. J. Am. Chem. Soc 1952;74:5346. (b) Posakony J, Hirao M, Stevens S, Simon JA, Bedalov A. J. Med. Chem 2004;47:2635. [PubMed: 15115404]
- (8). Cross-couplings of coumarins: (a) Zhang L, Meng T, Fan R, Wu J. J. Org. Chem 2007;72:7279.
 [PubMed: 17705544]. (b) Schiedel M-S, Briehn CA, Bauerle P. J. Organomet. Chem 2002;653:200.. (c) Wu J, Yun L, Yang Z. J. Org. Chem 2001;66:3642. [PubMed: 11348165].
- (9). Allylation of sp²-carbon nucleophiles: (a) Kayaki Y, Koda T, Takao I. Eur. J. Org. Chem 2004:4989..
 (b) Del Valle L, Stille JK, Hegedus LS. J. Org. Chem 1990;55:3019.. (c) Kobayashi Y, Watatani K, Tokoro Y. Tetrahedron Lett 1998;29:7533.. (d) Tseng CC, Paisley SD, Goering HL. J. Org. Chem 1986;51:2884..
- (10). (a) Ahluwalia VK, Prakash C, Gupta R. Synthesis 1980:48. (b) Mali RS, Tilve SG, Yeola SN, Manekar AR. Heterocycles 1987;26:121.
- (11). Electrophilic allylation of coumarins is generally only successful with electron-rich coumarins, and the regioselectivity favors allylation of the benzenoid ring. (a) Ramachandra MS, Subbaraju GV. Synth. Commun 2006;36:3723.. (b) Cairns N, Harwood LM, Astles DP. J. Chem. Soc., Perkin Trans. 1 1994:3101..
- (12). (a) Tsuji J, Yamakawa T, Kaito M, Mandai T. Tetrahedron Lett 1978:2075.(b) Shimizu, I. Handbook of Organopalladium Chemistry for Organic Synthesis. Negishi, E.-i., editor. Wiley; New York: 2002. p. 1981
- (13). 3-Allylpyrone was previously synthesized in comparable yield via stoichiometric copper coupling. Posner GH, Harrison W, Wettlaufer DG. J. Org. Chem 1985;50:5041..

Figure 1. Biologically active 3-alkyl coumarins.

NIH-PA Author Manuscript

Scheme 1.

Scheme 2.

Scheme 3. Decarboxylative Coupling/Heck Reaction

Table 1

Decarboxylative Coupling of Coumarins

 a Isolated yield using 10 mol % of Pd(PPh3)4, 50 °C, 12–15 h.

^bAt room temperature.

Table 2

Decarboxylative Coupling of Substituted Allylic Esters

Org Lett. Author manuscript; available in PMC 2010 May 31.

entry	substrate	time (h)
		l l
	0	
7	C C C Ph	12

^aIsolated as a 94:6 mixture of linear:branched regioisomers.