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Abstract

Artificial Neural Networks (ANNs) are trained using High Throughput Screening (HTS) data to

recover active compounds from a large data set. Improved classification performance was

obtained on combining predictions made by multiple ANNs. The HTS data, acquired from a

Methionine Aminopeptidases Inhibition study, consisted of a library of 43,347 compounds, and

the ratio of active to non-active compounds, RA/N, was 0.0321. Back-propagation ANNs were

trained and validated using Principal Components derived from the physico-chemical features of

the compounds. On selecting the training parameters carefully, an ANN recovers one-third of all

active compounds from the validation set with a three-fold gain in RA/N value. Further gains in

RA/N values were obtained upon combining the predictions made by a number of ANNs. The

generalization property of the back-propagation ANNs was utilized to train those ANNs with the

same training samples, after being initialized with different sets of random weights. As a result,

only 10% of all available compounds were needed for training and validation, and the rest of the

data set was screened with more than a ten-fold gain of the original RA/N value. Thus, ANNs

trained with limited HTS data might become useful in recovering active compounds from large

data sets.
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1. INTRODUCTION

Over the last few decades, the experimental High Throughput Screening (HTS) process has

become the first major step toward drug discovery.1 It is essentially an expensive laboratory

process that measures chemical and biological activities of a large number of molecules

toward one or several target molecules. The compounds that are found active toward a target

molecule are further investigated for discovering new drugs. The test set for HTS often

consists of a few thousand to several hundred thousand compounds on high-density

microplates, and automated robotic instruments are used to run the HTS assays.2 Due to ever

increasing costs of laboratory experimentation with such a large number of samples that are

mostly found to be non-active toward a target molecule, alternative low-cost computer-

assisted approaches are considered desirable. A Support Vector Machine (SVM)-based

approach has been used to analyze HTS data of a Methionine Aminopeptidases (MetAPs)

Inhibition study.3 This approach described an increased ratio of active to non-active

compounds (RA/N) by seven-fold in the classified set. This enhancement in the RA/N value

was obtained when more than 10,000 examples, out of approximately 40,000 available

samples, were used to train the classifier.

Among other computer-assisted approaches, the Artificial Neural Network (ANN)-based

schemes have gained significant momentum.2,4 A back-propagation ANN is well-known for

its inherent ability in learning to generalize from a small number of examples per class, and

it often provides robust performances when the input data are corrupted with incomplete

and/or noisy information.5, 6 It has been noted that the methodologies that can tolerate noisy

data might become useful in HTS data mining.3 This valuable information and previous

successes of ANNs in classifying targets from their noisy responses have been the primary

impetuses for using ANN in classifying active compounds.6,7 This paper investigates the

feasibility of training and validating ANNs using relatively small experimental HTS data set,

and then recovering active compounds from a large test set.

The HTS data from a Methionine Aminopeptidases (MetAPs) Inhibition study was made

available by the HTS Laboratory at the University of Kansas.8 A chemical library of 43,347

chemical compounds was examined by the experimental HTS process, and a normalized

sorted data set was obtained in the order of decreasing activities toward Cobalt. Then, 1,347

molecules with inhibition activity greater than or equal to 40% toward Cobalt were selected

as active, and the remaining 42,000 compounds were considered as non-active. Thus, for the

original data set, the ratio of active to non-active compounds (RA/N) was 0.0321. Each

compound of the given data set was characterized by a feature vector of 16 elements

corresponding to the 16 physical and chemical properties of that compound. The overall

measured inhibition activities toward Cobalt for the compounds were normalized between 0

and 1.

The original data set is first divided into a development set and a test set, and then the

development set is further divided into training and validation sets. ANNs are trained using

the samples selected randomly from the training set, and then validated using all the

members of the validation set. It is important to note that RA/N values, obtained from

classifying the validation set, actually provide a measure of the ratio of true positives to false

Chakrabarti et al. Page 2

J Biomol Screen. Author manuscript; available in PMC 2014 July 03.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



positives. In addition, the RA/N value is found to increase when the predictions made by a

large number of trained ANNs are combined. However, this increase is recurrently

accompanied by a decrease in the actual number of recovered active compounds. In order to

train those large numbers of ANNs without using numerous training samples, the

generalization property of a back-propagation ANN is exploited.5

The ANNs that provided superior performances during validation procedure are then applied

to analyze the test set. On combining the predictions made by these ANNs, nearly a ten-fold

gain is obtained in RA/N values while recovering about one-sixth (or nearly 16%) of all the

active compounds from the test set. We also demonstrate that during the training process, an

ANN basically learns to provide a gain “G” in the RA/N values from the initial values

available in the validation or even the test set. Thus, in order to get an estimate of the G

value from the validation process, it is not necessary to collect a large number of samples for

the validation set, but the value of RA/N for the validation set needs to be approximately

equal to that of the test set. When a total of only 10% of all the available samples are used

for training and validation purposes, the rest of the data is classified with over a ten-fold

gain in RA/N value while nearly one-fifth (or 20%) of available active compounds are

recovered. As a result, the ANNs trained with a limited amount of HTS data are beneficial in

providing a parallel and a low-cost solution for predicting active compounds from large

industrial data libraries.

2. METHODS

2.1 Understanding the characteristics of the available data

Sixteen different features used to characterize each compound are: Molecular Weight,

ClogP, Molar Reactivity, Total Surface Area, Polar Surface, Volume, Polar Volume, Atom

Count, Bond Count, Rotatable Counts, Ring Count, Diversity Fingerprint, Atom Pair Paths,

H-bond Acceptors, H-Bond Donors and Hydrophobic Centers. For each compound, 16

values are used to define the fingerprint, and one additional number is used to define the

inhibition activity. Thus, on combining the active and non-active compounds, 43,347 feature

vectors are made available for this investigation. As previously mentioned, the 1,347 feature

vectors correspond to the set of active compounds, while the remaining 42,000 feature

vectors are considered to be non-active compounds. A 2-D scatter diagram is plotted in

Figure 1 using two randomly selected components of the feature vectors from both classes.

It shows that the features from both classes vastly overlap in that 2-D space. The scatter

plots using different pairs of features also demonstrate similar behavior. Because of the high

degree of overlap, if a classifier is not properly trained, the number of false positives may

progressively increase as we try to recover more and more active compounds. Thus, the

primary objective of this investigation is to train ANNs to successfully learn about the non-

linear decision boundaries between the two classes in the multidimensional feature space.

2.2 Data partitioning

The computer-assisted HTS process is considered as a two-class pattern classification

problem where one class consists of active compounds and the other class contains the non-

active compounds. The available data are divided into two parts: the development set and
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the test set. Since the original set had 1,347 active and 42,000 non-active compounds, the

development set yields 674 active and 21,000 non-active compounds, and the test set

acquires 673 active and 21,000 non-active compounds. The development set is then divided

equally into the training and validation sets, where each set consists of 337 active and

10,500 non-active compounds. The number of samples that will be used for training diverse

networks would be different but the trained networks will be validated by all the feature

vectors of the validation set.

2.3 ANN Configuration and Feature Selection for Validation

Prior to training any ANN, it is essential to establish the requirements that an ANN needs to

satisfy during the validation process. From the drug discovery point of view, identification

of active compounds is the principal goal. The higher the ratio of active to non-active

compounds in the classified set, the better it is. However, following Figure 1, it is realized

that the more active compounds we would want to identify, the more non-active compounds

will be misclassified as active compounds. Thus, our initial objective is to identify an

optimal combination of network architectures and training features that would classify the

validation set with RA/N values higher than 0.0321.

The training and validation of ANNs are conducted interactively and iteratively, while

varying the design parameters of the classifier, such as, network architectures, number of

samples used for training, convergence criteria, etc. The basic architecture of an ANN used

in this investigation is shown in Figure 2. There are 16 fixed neurons or nodes at the input

layer and 2 nodes at the output layer. The number of hidden layers is varied between one

and three, and the number of nodes in each hidden layer is selected interactively. All the

neurons of the network possess a sigmoid input-output activation function. For a feature

vector representing an active compound, the desired outputs from the first and second nodes

of the output layer are set to (1, 0), and the outputs are set to (0, 1) for non-active

compounds. The overall mean squared error (MSE) criterion for convergence is set to be

less than or equal to 10−4. These networks operate in the feed-forward mode and are trained

with a back-propagation learning algorithm.5

During the validation process, a feature vector from the validation set is applied to the input

layer of a trained ANN, and the outputs from the two neurons of the output layer are

computed in the feed-forward manner. If the output from the first node is greater than the

output from the second node, the input pattern will be classified as active. Otherwise, the

input pattern will be classified as non-active. Basically, a winner take all scheme is used for

classification.

Due to the presence of a disproportionate majority of non-active compounds and a high

overlap of the features from both classes in the feature space, selecting an appropriate

number of training samples has been challenging. When numerous examples from both

classes are used to train an ANN, the network encountered difficulty in learning to

generalize, and often the network does not converge. On the other hand, training an ANN

with just a few examples from both classes may cause the loss of the ability of an ANN to

successfully learn about the complex non-linear boundaries between two classes. Therefore,

those ANNs cannot provide sufficient improvement in RA/N values during validation.
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After selecting the number of training samples to be used from both classes, actual feature

vectors are collected randomly from the training set. These training vectors from both

classes are treated as one set of vectors with 16 columns for each vector, and each column of

that set is normalized independently between 0 and 1. Then, the normalized active and non-

active feature vectors are separated into two groups for training an ANN. The maximum and

minimum values for each feature that are used to normalize each column of the training

vectors are also used to scale the corresponding feature of all the feature vectors of the

validation set.

In addition to the use of original normalized features, the Principal Component Analysis

(PCA)-based features,9 Discrete Cosine Transform (DCT)-based features,10 and Wavelet

Transform-based features11 are extracted from the original data set for training and

validating the ANNs. After training the ANNs with these new sets of features, the

performances of these networks in classifying the validation set are studied, and the results

are compared with those obtained from using the original normalized features. The goal here

is to find an optimal combination of a set of features and networks configurations so that

higher RA/N values are obtained from classifying the validation set. The compounds of the

test set are then screened by that optimal combination.

3. RESULTS

A protracted interactive approach is used to find a set of network architectures and the

number of training samples so that a practical classifier can be constructed. A fixed set of 30

nodes for the first hidden layer is utilized and then varying the number of nodes in the

second hidden layer from 5 to 20, RA/N values of the order of 0.06 are obtained in several

cases. The number of training samples varied from 50 to 200 for the active compounds and

from 300 to 600 for the non-active compounds. Some of the results obtained from this part

of the investigation are plotted as scattered circles in Figure 3. The maximum value of RA/N

is found to be equal to 0.09 while the ANN identifies only 89 active compounds. This

implies that about one-forth (26%) of all the active compounds available in the validation set

are recovered with less than a three-fold gain in the RA/N value. In a 2-D plot, this result

corresponds to a point (89, 0.09) as shown in Figure 3. A straight line is drawn from the

location (89, 0.09) to the location (337, 0.0321) which represents characteristics of the

validation set. The end points of this line are indicated by ‘*’ marks. Any result on or below

this line can be produced by tweaking the training parameters of an ANN. However, results

above the line may not be obtained by the chosen combination of the network architecture

and training features. It has been shown that an ANN trained with 88 active and 1,912 non-

active feature vectors provides a classified set with RA/N=0.1210, and the number of active

compounds found in this set was 129.12 Since the test set contained 1,347−88=1,259 active

compounds, the network has recovered only one-tenth of all the active compounds while

providing a four-fold gain in RA/N. Thus, the use of a large number of training samples

might not be optimal in recovering a high portion of the active compounds.

3.1 Classifier validation using different types of features

PCA, DCT, and Wavelet-based features are extracted from the original set to improve

classification performance. For both PCA and DCT-based transforms of the original feature
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vector, a new feature vector of 16 elements is computed for all the 43,347 compounds. For

wavelet-based transforms also 43,347 feature vectors are obtained, but with only 9 wavelet

coefficients per vector after the Discrete Wavelet Transform.13 So, the input layer of the

ANN consisted of 9 nodes instead of 16 when the wavelet-based features were used for

training and validation. While maintaining the architectural framework of the ANNs, the

aforementioned training and validation processes are repeated with each of the three new

sets of feature vectors.

We have shown that an ANN can recover about one-half of the available active compounds

with nearly a two-fold gain in RA/N values. However, it recovers less than one-forth (89) of

the available active compounds while the gain in RA/N value is slightly greater than three

folds. So, we determine that a useful network should provide at least a three-fold gain in the

value of RA/N while recovering at least one-third of all the available active compounds from

the validation set. Thus, classifications results around ((337/3), 3 × 0.0321) or (112, 0.0963)

are considered desirable. For each type of feature used to train and validate the ANNs, a line

is drawn from the location (337, 0.0321) to the location that comes closest to the

aforementioned desirable results. The end points of each line are depicted by ‘*’ marks. The

networks trained with PCA-based features have provided superior performance over the

others by extracting 177 active compounds with RA/N=0.0971, as shown in Figure 3. The

best results provided by the Wavelet and DCT-based features are (102, 0.0631) and (107,

0.0814). Due to its superior performance, the PCA-based features are used for the rest of the

investigation. In addition, all the 16 principal components are used for training, validation,

and testing since the performance of the classifier deteriorates gradually as fewer and fewer

principal components are used.

3.2 Classifier training and validation using PCA-based features

A large number of networks are trained and validated using PCA-based features. The

training parameters are slowly varied from the configuration that previously provided the

result (117, 0.0971). Different configurations of the trained networks and the corresponding

classification results are summarized in Table I, and the tabulated data shows that the

maximum value of RA/N found during validation is 0.0996 while 125 active compounds are

recovered. When the number of active compounds recovered reaches around 200, the RA/N

value decreases close to 0.06. The root cause for this problem is the considerable overlap of

the features from both classes in the feature space. On the other hand, since the number of

active compounds available is relatively small, there might be more common active

compounds classified by the two different ANNs than the non-active compounds. Therefore,

in the next section, predictions made by multiple ANNs are combined and the performance

of this combination process is studied.

3.3 Validation by combining outputs from multiple networks

Thus far, one ANN at a time has been used to classify the validation set, with limited

success. We anticipate that during the training process, a single ANN learns some aspects of

the shape of the boundary between two classes at a certain location of the feature space. As a

result, it only succeeds to extract some active compounds, while misclassifying a large

number of non-active compounds. Next, we train several ANNs with different sets of initial
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conditions so that these ANNs could learn about the boundaries between the two classes at

different locations of the feature space. During validation, we expect that there will be more

active compounds in common between the predictions made by two different ANNs, since

there are fewer active compounds available than the non-active compounds. Combining the

predictions made by different ANNs the changes in the classification performance are

investigated.

Table I shows that an ANN consisting of 24 nodes in the first hidden layer and 10 nodes in

the second hidden layer, trained with 60 and 393 examples from active and non-active

compounds respectively, provided comparatively superior performance during validation.

Subsequently, several networks with identical architectural design are constructed. In order

to minimize the number of samples needed to train these ANNs, we have utilized the

generalization property of the back-propagation ANNs5. Consequently, different ANNs with

the identical design, trained with the same examples after being initialized with different sets

of randomized weights, would behave differently during the validation process. This

property arises mainly because the converged weights are located at dissimilar positions of

the multidimensional weight space for different networks, even with equivalent training

examples. As a result, those different ANNs would provide similar output for the training

vectors, but different outputs for other feature vectors not used during training process.

After several ANNs of identical architecture are trained with the same 60 of active and 393

of non-active compounds, all these ANNs are used to classify the validation set. From this

set of large number of ANNs, the first ten networks that individually satisfy the criterion of a

useful classifier are then selected to improve the overall performance of the classification

process. The number of times a compound is predicted as active by these ten networks is

computed, and then a threshold number nth is used for classifying that compound. For

example, if the compound number Nc has been identified as active compound by P different

networks, then the compound number Nc will be classified as active if P≥nth; otherwise, the

compound number Nc will be considered as non-active. Using this approach, the

classification results are computed for different values of nth. The outcome is presented in

the left half of Table II. This result shows that the procedure succeeds in classifying 139

active compounds for nth=3 and RA/N=0.1531. Thus, nearly a five-fold gain in RA/N value is

obtained, while recovering more than one-third of all active compounds in the validation set.

The gains in RA/N values are plotted in Figure 4 as a function of the number of recovered

active compounds. It can be seen that the value of RA/N becomes fourteen-fold higher as

compared to its original value when 63 active compounds are correctly classified. Higher

RA/N values can be obtained as higher threshold values are used for combining outputs from

these networks. In addition, the trend of recovering fewer active compounds with higher

gains is also illustrated.

3.4 Screening of the test set

Ten networks that provided comparatively superior performance during the validation

process are used to screen the 673 active and 21,000 non-active compounds of the test set.

The results obtained from combining the outputs of these networks are also presented Table

II as a function of the threshold. This outcome shows that the procedure succeeds in
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classifying 252 active compounds for nth=3, while providing RA/N=0.13. This RA/N value is

about four-fold higher than the value in the test set. The gain in RA/N values are plotted in

Figure 4 as a function of the number of active compounds recovered from the test set. It can

be seen from Figure 4 that the gain in RA/N values becomes ten-fold when 104 active

compounds are correctly classified, and nearly seventeen-fold gain is obtained when 17

active compounds are correctly classified.

This approach combined the results from several useful classifiers to enhance or boost the

performance of the overall classification process. However, this procedure differs from the

popular “boosting” algorithm/procedure14 used in data mining publications. In that boosting

algorithm, the training set of the ith classifier is selected following the performances of the

previous (i−1) classifiers. The goal is to enable each new classifier predict those examples

better that are poorly classified by the previous classifiers. In our approach, the individual

classifiers are trained independent of each other where each classifier satisfies the basic

criterion of a useful classifier.

4. DISCUSSIONS

Thus far, we have used about half of all the available samples (21,674 out of 43,347

samples) to train and validate the ANNs. The remaining half that consists of 21,673

compounds have been screened by ten selected high-performance networks. That set of ten

ANNs can now be employed to classify a very large industrial library of chemicals. It is also

worthwhile to investigate the possibility of training and validating ANNs with fewer

samples than what we have used, and the rationale is described below.

4.1 Possible reduction in the size of the training and validation sets

We demonstrate that an individual ANN can be designed and trained with only 60 examples

of active and 393 non-active compounds to improve the ratio of RA/N in the classified set by

three folds from the original data set. Furthermore, it takes several hours to train ANNs with

more than a total of 1,000 examples. Even if a network converges with large number of

training samples, its classification performance is not that useful. In addition, when the ratio

of the non-active to active compounds increases beyond ten during training procedure -- the

value of RA/N becomes less than 0.06 during validation. Thus, we conclude that a maximum

of randomly selected 100 active and 1,000 non-active samples should be adequate for the

training set. We could subsequently select 60 active and 393 non-active compounds from

this training set. So, we construct a new training set using a total of only 1,100 samples. In

order to determine an acceptable size for the validation set, the following procedure has been

used.

After training many different configurations of back-propagations ANNs, we have observed

that each ANN learns something very basic through the training process. It actually learns to

classify an untrained data set by making an “F-fold” improvement in the RA/N value, and

almost inverse relationship exists on the number of active compounds recovered by that

ANN. For example, if an ANN improves the value of RA/N value by three folds from

classifying an untrained set of data, almost one-third of all active compounds will then be

recovered from that set. This observation is illustrated in Table II. So, in order to estimate
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the gain in RA/N that a trained ANN would provide during testing, it is not necessary to

analyze and classify a large validation set, but the ratio of the active to non-active

compounds in the validation set should be kept very similar to that of the test set. Thus, a

validation set is constructed with 100 active and 3,000 non-active compounds.

An ANN possessing 24 nodes in the first hidden layer and 10 nodes in the second hidden

layer, as before, is trained with 60 active and 393 non-active compounds collected from the

new training set of 1100 compounds. After training, the ANN is used to analyze the

validation set that consists of 100 active and 3000 non-active compounds, and the ANN

recovers 31 active compounds with an RA/N value equal to 0.0940. This results a three-fold

gain in RA/N value, while about one-third of the active compounds are recovered from the

validation set. Ten identically designed ANNs are then trained using same training samples,

and the predictions made by these ANNs in analyzing the validation set are combined using

a threshold value as discussed before. The results are presented in the left half of Table III

where we utilized a total of 200 active and 4000 non-active compounds by combining

together training and validation sets. The remaining data set of 1,137 active and 38,000 non-

active compounds are then tested with those ten ANNs. The results obtained on combining

the outcomes from the ten ANNs are presented in the right half of Table III. Furthermore,

the results obtained from analyzing this large test set of 1,137+38,000=39,137 compounds,

and that obtained from the previously classified test set with 673+21,000=21,673 samples

are plotted in Figure 5. It is shown that a smaller training and validation sets allow larger

pool of test data to be analyzed, and more active samples are recovered at gains lower than

six in RA/N values. However, similar numbers of active compounds are recovered from both

the test sets at any gain greater than six. Thus, the use of only 4,200 samples for the

combined training and validation sets should be adequate to construct ANNs that would

meaningfully improve the values of RA/N from classifying the test set.

4.2 Comparison with statistical k-NN–based classification scheme

A straight forward non-parametric k-Nearest Neighbor (k-NN) based classification

algorithm is also used to classify the large aforementioned test set.10,11 The same 60

examples from the active class and 393 examples from the non-active class that were used to

train the ANNs are selected to form the training set for the k-NN-based classification

scheme. Thus, a total of 60+393=453 training samples are used to screen the large test set

that consists of 39137 compounds. For a given test vector, the k-NN algorithm computes the

Euclidean distances of the test vector with all the training vectors from both classes and

generates a list of distances in the ascending order. The algorithm then takes the lowest “k”

distances from the set, and finds the class for each of those “k” training vectors. The input

test vector is assigned to that class “i” that appears more frequently in the list of k minimum

distances. We used i=1 and 2 to represent active and non-active classes, respectively. In this

investigation, the value “k” is varied from 11 to 51 in steps of 4, and the gain in RA/N values

are also plotted in Figure 5 as a function of number of active compounds recovered. In this

case, higher gains in RA/N values are obtained for higher values of k. It can be seen form

Figure 5 that the ANN-based classification scheme has clearly provided better performance

over the k-NN-based algorithm. Improved performance is expected from the k-NN-based

approach if more training samples are used in the training set. However, the focus of this
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investigation has been the comparison of the performances of these two methods using

identical training samples.

5. CONCLUDING REMARKS

The HTS data was subjugated by the non-active compounds. The initial ratio of the active to

non-active compounds (RA/N) was 0.0321, and the actual numbers of active and non-active

compounds were 1,347 and 42,000, respectively. In addition, the feature vectors of the

compounds from both classes exceedingly overlapped in the 16-dimensional feature space.

The challenge was to develop an ANN-based design that would provide the RA/N value

considerably higher than 0.0321, while correctly identifying a large number of active

compounds.

Initially, the given data set was divided into training, validation, and test sets. Both the

training and validation sets contained 337 active and 10,500 non-active compounds, while

the test set contained 673 active and 21,000 non-active compounds. Among the original,

PCA, DCT, and Wavelet-based features, the PCA-based features provided the best

classification performance. When a single ANN was trained with the PCA-based features, it

provided a three-fold gain in the RA/N value, while recovering about one-third of all the

active compounds available for the validation set. The overall classification performance for

the validation set was substantially improved on combining the predictions made by ten

different networks where each ANN provided about three-fold gain in RA/N values. The

generalization property of the ANNs was exploited when all those ten ANNs were trained

with same training examples after being initialized with diverse sets of random weights. As

a result, we used a total of only 60+393=453 samples for training all the ANNs which is

about 1% of the available samples. These ten networks were also used to classify the test set.

As expected, combining the outputs from these networks resulted in approximately a ten-

fold gain in RA/N value while recovering 104 or about one-sixth of all active compounds

available for testing. The number of active compounds extracted from the test set decreased

as higher RA/N values were obtained. This fact could become particularly useful if our

intention is to collect a limited number of active compounds with high precision. For

example, Table II showed that we could extract 47 active compounds with the value RA/N

equal to 0.4393, which is about a fourteen-fold improvement.

The back-propagation ANNs ability to learn and classify features from multiple classes,

using a limited number of training examples, has enabled us to develop a training set with

only 1100 examples. We also empirically established the fact that once an ANN was trained,

it basically learned to classify an untrained set by F-fold improvement in the RA/N value,

while recovering a fraction 1/F of the available active compounds. As a result, we could use

a smaller validation set maintaining the original ratio of RA/N. We selected 100 examples of

active and 3,000 of non-active compounds to create the validation set. Total of

1,100+3,100=4,200 samples for training and validating the ANNs were utilized, while the

remaining 1,137 examples of active and 38,000 of non-active compounds formed a new test

set of 39,137 samples. Two important facts were revealed from the comparative analysis of

this large test set and previous test sets. First, considerable improvement was obtained in

recovering the number of active compounds from the larger test set at small gains in RA/N
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values. Then, at higher gains in RA/N values, the number of active compounds recovered

became almost equal for both test sets. Thus, using only 4,200 samples (or 10%) for the

combined training and validation sets similar classification performances were obtained

when 21,674 samples (or 50%) of the data were used for the combined training and

validation sets.

In addition, since fewer active compounds were successfully identified with higher RA/N

values, this procedure could be used to collect a small number of active compounds with

high precision from a large library of compounds. Therefore, the ANN-based procedure has

a vital potential in providing an efficient and low-cost solution to identify active compounds

from large data sets.
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Figure 1.
Scatter plot of two randomly selected components, out of total 16 components, of the

normalized feature vectors for the entire data set
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Figure 2.
Graphical representation of a feed-forward Artificial Neural Network with two hidden layers
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Figure 3.
Classification performances obtained from using four different types of features
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Figure 4.
Gain in the ratio of active to non-active compounds achieved on combining predictions from

multiple ANNs
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Figure 5.
Gain in the ratio of active to non-active compounds achieved from analyzing small and large

test sets
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