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Abstract

Soluble, high-load ROMP-derived oligomeric triazole phosphates (OTP) are reported for
application as efficient triazolating reagents of nucleophilic species. Utilizing a “Click”-capture,
ROMP, release protocol, the efficient and purification free, direct triazolation of N-, O- and S-
nucleophilic species was successfully achieved. A variety of OTP derivatives were rapidly
synthesized as free-flowing solids on multi-gram scale from commercially available materials.

Rapid access to collections of diverse molecules in desirable quantities and purity for high-
throughput screening is an important challenge in drug discovery. In this regard, methods
that integrate synthesis and purification have become powerful tools in the arena of
facilitated synthesis.1,2 This has been driven in recent years by the development of an array
of polymer-bound reagents and scavengers for utilization in streamlined protocols to access
small molecule libraries.2 Despite huge advances in this area, limitations in non-linear
reaction kinetics (heterogeneous reactions), low resin-load capacities, means of distributing
reagents, and solution phase automation technology continue to warrant the development of
designer polymers for library production.3 To this effect, a variety of reagents and
scavengers possessing tunable properties have emerged from ring-opening metathesis
polymerization (ROMP) technology.4,5,6 We herein report the development of a new
ROMP-derived oligomeric triazole phosphate (OTP) for application as a soluble, efficient
triazolating reagent of nucleophilic species. Overall, these reagents are free flowing solids
that are easy to handle, non-toxic, soluble, and air stable. In addition, they are easily stored
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long-term at room temperature and are readily prepared, vide infra, from commercially
available starting materials on multi-gram scale.

The development of new methodolgies for the diversification of biologically interesting core
scaffolds with functional handles is of paramount importance. In this regard, triazoles and
their derivatives have demonstrated a wide variety of biological activity, with many reports
focusing on antifungal activity.7 Despite this activity, the utilization of solution phase or
immobilized reagents to directly triazolate nucleophilic species in a one-step protocol has
been limited to reports of a two-step, one-pot propargylation-click protocol.8

Oligomeric and polyphosphates are ideal immobilized leaving groups due to the inherint
pKa, stability and innate leaving group properties of phosphate anions.9,10,11 Recently, we
reported the generation and application of oligomeric benzyl phosphate (OBP) as an
efficient benzylating reagent.10 We now report the synthesis of ROMP-derived triazolating
reagents (OTP) for application in purification free diversifications of nucleophilic species
using the title method, termed “Click”-Capture, ROMP, Release. This method utilizes a
propargyl-tagged norbornenyl-phosphate to capture an azide in a classical “click” reaction,
followed by ROM polymerization to generate the desired soluble oligomeric triazole reagent
(OTP) 4. Subsequent release via SN2 displacement with nucleophilic species yields
triazolated products along with the spent oligomeric phosphate that is readily sequestered
via precipitation (Figure 1).

The synthesis of the oligomeric triazole phosphate bearing a 4-MeOPh group OTP 4a, starts
with the exonorbornenyl tagged (Nb-tagged) phosphonyl chloride 1 utilized in the synthesis
of previously reported ROMP-derived benzylating reagent OBP.10,12 Phosphorylation of
propargyl alcohol with Nb-tagged phosphonyl chloride 1, followed by a “Click”-capture
event of the corresponding azide, yields the desired monomer 3a in an efficient fashion.
ROM polymerization of monomer 3a was achieved with RuCl2(PCy3)2=CHPh (cat. A),
followed by basic workup utilizing the Pederson protocol.13,14 Precipitation via dropwise
addition into anhydrous Et2O afforded the corresponding oligomeric triazole phosphate
(OTP20) 4a as a free-flowing white solid possessing a theoretical load of 2.4 mmol/g
(Scheme 1).

Investigation into the utilization of OTP 4a as a direct triazolating reagent was next studied
using reaction conditions reported for the application of OBP.10 After optimization of
reaction conditions for the triazolation of 2,4-dichlorophenol utilizing OTP 4a, the
corresponding triazole ether 5a, was isolated in excellent yield (99%) and crude purity
(>90%) using simple filtration through a Celite® SPE (Scheme 2).

The application of OTP 4a as an efficient triazolating reagent was extended to a variety of
N-, O- and S-nucleophilic species (Table 1). Initially, a variety of phenols were utilized
(Table 1, entries 1–3) though reduced yields were observed for sterically hindered
napthalene-1-ol. In addition to phenols, thiophenols (Table 1, entry 5) and a variety of
amines (Table 1, entries 6 – 10) were successfully utilized to release the corresponding
triazole in >90 % crude purity. Building on the success of OTP 4a, a variety of additional
OTP derivatives 4b – 4i were synthesized as free-flowing powders on gram scale from
ROM polymerization of their corresponding monomers utilizing cat. A (Table 2).

With a variety of OTP 4 derivatives in hand, the triazolation of both naphthalene-1-ol and N-
ethylnaphthalen-1-amine with OTP derivatives 4a – g was investigated (Table 3). All
reactions proceeded with good yields with >90% crude purity after Celite® SPE to remove
the spent oligomer.

Long et al. Page 2

Org Lett. Author manuscript; available in PMC 2012 April 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In conclusion, we have developed and demonstrated the synthesis and utilization of
oligomeric triazole phosphates for direct triazolation of N-, O- and S-nucleophilic species in
a “Click”-capture, ROMP, release protocol. These oligomeric reagents are readily
synthesized on multi-gram scale from commercially available materials as soluble, high-
load, free-flowing powders. The application of OTP in the diversification of core scaffolds
for the synthesis of diverse-collections of small molecules is underway and will be reported
in due time.
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Figure 1.
Reaction of oligomeric triazole phosphate (OTP) 4
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Scheme 1.
Synthesis of oligomeric triazole phosphate (OTP) 4a
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Scheme 2.
Triazolation of 2,4-Cl-PhOH utilizing OTP 4a
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Table 1

Triazolation of N, O and S-Nucleophiles using OTP20 4a

entry nucleophile pdt yield (%)

1 2,4-Cl-PhOH 5a 98

2 4-F-PhOH 5b 92

3 4-tBu-PhOH 5c 90

4 naphthalene-1-ol 5d 69

5 4-SMe-PhSH 5e 60

6 Morpholine 5f 72

7 Thiomorpholine 5g 75

8 1-phenylpiperazine 5h 95

9 Indoline 5i 88

10 N-ethylnaphthalen-1-amine 5j 62

[a]
Purities >90% observed for all reactions using both GC and 1H NMR.

[b]
OTP 4a utilized as a 20-mer.
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Table 2

Synthesis of various OTP analogues 4

monomer R1 pdt yield (%)a

3a 4-OMe-Ph 4a 82

3b 4-Me-Ph 4b 88

3c 2-Me-Ph 4c 77

3d 4-Cl-Ph 4d 71

3e 4-F-Ph 4e 74

3f 4-CF3-Ph 4f 73

3g Cylohexyl 4g 70

3h 4-Br-Ph 4h 89

3i Furfuryl 4i 56

a
Yields corresponding to metathesis of corresponding monomers.
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Table 3

Triazolyation utilizing OTP derivatives 4a – g.

entry nucleophile OTP pdt
yield
(%)a

1 naphthalene-1-ol 4a 6a 72

2 naphthalene-1-ol 4b 6b 90

3 naphthalene-1-ol 4c 6c 55

4 naphthalene-1-ol 4d 6d 68

5 naphthalene-1-ol 4e 6e 70

6 naphthalene-1-ol 4f 6f 65

7 naphthalene-1-ol 4g 6g 49

8 N-ethylnaphthalen-1-amine 4a 6h 62

9 N-ethylnaphthalen-1-amine 4b 6i 52

10 N-ethylnaphthalen-1-amine 4c 6j 63

11 N-ethylnaphthalen-1-amine 4d 6k 51

12 N-ethylnaphthalen-1-amine 4e 6l 50

13 N-ethylnaphthalen-1-amine 4f 6m 60

14 N-ethylnaphthalen-1-amine 4g 6n 66

[a]
Purities >90% observed for all reactions using both GC and 1H NMR.

[b]
OTP 4a-g utilized as a 20-mer.
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