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Abstract

Objectives—The objectives of this study were to synthesize two new siloxane-methacrylate

(SM) monomers for application in dentin adhesives and to investigate the influence of different

functionality of the siloxane-containing monomers on the adhesive photopolymerization, water

sorption, and mechanical properties.

Materials and method—Two siloxane-methacrylate monomers (SM1 and SM2) with four and

eight methacrylate groups were synthesized. Dentin adhesives containing BisGMA, HEMA and

the siloxane-methacrylate monomers were photo-polymerized. The experimental adhesives were

compared with the control adhesive (HEMA/BisGMA 45/55 w/w) and characterized with regard

to degree of conversion (DC), water miscibility of the liquid resin, water sorption and dynamic

mechanical analysis (DMA).

Results—The experimental adhesives exhibited improved water miscibility as compared to the

control. When cured in the presence of 12 wt % water to simulate the wet environment of the

mouth, the SM-containing adhesives showed DC comparable to the control. The experimental

adhesives showed higher rubbery modulus than the control under dry conditions. Under wet

conditions, the mechanical properties of the formulations containing SM monomer with increased

functionality were comparable with the control, even with more water sorption.

Significance—The concentration and functionality of the newly synthesized siloxane-

methacrylate monomers affected the water miscibility, water sorption and mechanical properties

of the adhesives. The experimental adhesives show improved water compatibility compared with

the control. The mechanical properties were enhanced with an increase of the functionality of the

siloxane-containing monomers. The results provide critical structure/property relationships and

important information for future development of durable, versatile siloxane-containing dentin

adhesives.
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Introduction

During the last 20 years, the primary motivation for changing the resin chemistry of

restorative composites was to reduce the polymerization shrinkage[1] . The polymerization

shrinkage occurs during the curing of the composite in the tooth cavity and may lead to the

formation of marginal gaps. The silorane-based composite, introduced by 3M in 2007,

exhibits the lowest polymerization shrinkage (1.4 vol %) of the current composite restorative

materials [1, 2] .

The hybrid monomer systems introduced by 3M contain both siloxane and oxirane structural

units. The main benefits of these resins are the very low polymerization shrinkage, the good

biocompatibility, the very low water solubility of the monomers, and low water sorption of

the formed polymer networks[3–6] . This siloxane-based composite does not, however,

exhibit the lowest polymerization stress[1, 2] . Other limitations, including increased

exothermic effect (twice as high as dimethacrylate-based composites with similar filler

load), the delay in establishing mechanical properties comparable to dimethacrylates, and

the lower refractive index, have inhibited broad market acceptance of the silorane-based

composite[1, 7, 8] . The lower bond strength of the silorane composite with commercial

dentin adhesives[9] has raised concerns about the compatibility of these materials.

Siloxane-containing materials have been widely used as biomaterials in medical and

pharmaceutical applications, due to their biocompatibility and low toxicity[10–13] . For

example, polysiloxane has a high refractive index and can be used as the accommodating

intraocular lens by the polymerization of siloxane-methacrylate monomers[14] . Siloxane-

containing cross-linking agents are often used in drug delivery systems[15] . Moreover, in

the presence of siloxane groups, the stability of restorative materials can be improved[16] .

In this context, if siloxane groups could be incorporated into the dentin adhesive, it is

expected that the durability of the dentin adhesives and compatibility with the silorane

composite would be improved. However, polymers with siloxane groups are usually soft,

and their mechanical strength may be low because of the flexibility of the siloxane

groups[17–19] . Therefore, modification of siloxane with methacrylate to take advantage of

both the stability of siloxane groups and good mechanical properties of methacrylates could

be a solution.

The twofold objectives of this work were: 1) to synthesize and characterize two new

siloxane-methacrylate monomers with four and eight methacrylate groups and 2) to

investigate the influence of chemical structure of siloxane-containing monomers used in

dentin adhesives on the following properties: degree of conversion, water miscibility, water

sorption and dynamic mechanical properties. To our knowledge, this investigation marks the

first study of siloxane-methacrylate monomers used in dentin adhesives. The results provide

critical structure/property relationships for siloxane-methacrylate monomers and important
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information for future development of durable, versatile siloxane-containing dentin

adhesives.

Materials and methods

Materials

2,2-Bis[4-(2-hydroxy-3-methacryloxypropoxy) phenyl]-propane (BisGMA, Polysciences,

Warrington, PA) and 2-hydroxyethylmethacrylate (HEMA, Acros Organics, NJ) were used

as received without further purification, as monomers in dentin adhesives. Two siloxane

methacrylate monomers (SM1 and SM2) were synthesized in our lab. The control adhesive

resin consisted of HEMA and BisGMA with a mass ratio of 45/55. This control was used to

compare with the experimental adhesive resins with HEMA / BisGMA / SM = 45/55-x/x

(w/w) ratio. The control and experimental adhesives were also formulated with 12 wt %

water to simulate bonding in the mouth. The concentration of water was based on the total

final weight of the adhesive resin. Camphorquinone (CQ, 0.5 wt %), ethyl-4-

(dimethylamino) benzoate (EDMAB, 0.5 wt %) and diphenyliodonium hexafluorophosphate

(DPIHP,1.0 wt %) were obtained from Aldrich (Milwaukee, WI, USA) and used as a three-

component-photoinitiator system without further purification. 2,4,6,8-Tetramethyl-2,4,6,8-

tetrakis (propyl glycidyl ether) cyclotetrasiloxane (TPGTS), Glycerol dimethacrylate

(GDMA, assay 85%, mixture of isomers), ethyl acetate, boron trifluoride diethyl etherate

(BF3O(C2H5)2), anhydrous magnesium sulfate (MgSO4), and all other chemicals were

purchased from Sigma-Aldrich at reagent grade and used without further purification.

Synthesis of Siloxane-Methacrylate (SM) monomers

2,4,6,8-Tetramethyl-2,4,6,8-tetrakis (propyl glycidyl ether) cyclotetrasiloxane (TPGTS, 10

g, 0.0143 mol), 2-hydroxyethylmethacrylate (HEMA, 10 g, 0.076 mol) or glycerol

dimethacrylate (GDMA, mixture of isomers, 13.75 g, 0.06 mol) and ethyl acetate (EA, 100

mL) were mixed together. Boron trifluoride diethyl etherate (0.2 mL) was added into this

solution. The reaction was allowed to continue at room temperature for about 12 h, and it

was monitored by thin layer chromatography (mobile phase: dichloromethane / hexane,

50/50 wt %). The product-containing solution was washed with distilled water and dried

over anhydrous MgSO4. The solvent was removed with a rotary evaporator at 35–40 °C.

The process for the synthesis of the two siloxane methacrylate monomers (SM1 and SM2) is

shown in Scheme 1. The yields of SM1 and SM2, which were colorless and viscous, were

92.4 and 95.0 %, respectively. The structure of the synthesized compounds (SM1, SM2) was

confirmed using FTIR (Spectrum 400, Perkin-Elmer, Waltham, MA), 1H NMR and 13C

NMR (FT-400 MHz Bruker Spectromer, DMSO as solvent) spectroscopies.

Preparation of adhesive formulations

The preparation of the control adhesive formulations has been reported [20, 21] . As shown

in Table 1, the control adhesive formulation (C0) consisted of HEMA and BisGMA with a

mass ratio of 45/55[21–23] which is similar to widely used commercial dentin adhesives. In

the experimental adhesive formulations (E-SM), siloxane-methacrylates were used as

comonomers to partially replace the BisGMA (Table 1). The siloxane-methacrylates were

included at 5, 15, and 25 wt %. The abbreviations E1, E2, and E3 represent 5, 15, and 25 wt
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% of either SM1 or SM2. Water at 12 wt % was added into C0, E3-SM1 and E3-SM2 to

simulate the moist environment of the mouth. The composition of the three component

initiator system was CQ (0.5 wt %), EDMAB (0.5 wt %) and DPIHP (1.0 wt %) with respect

to the total amount of monomer[22, 24–27] . The resin mixtures were prepared in a brown

glass vial. The solutions containing the monomers/photoinitiators were mixed for 48h at

room temperature to promote complete dissolution and formation of a homogeneous

solution.

Real-time conversion and maximal polymerization rate

Real-time in situ monitoring of the photopolymerization of the adhesive formulations was

performed using an infrared spectrometer (Spectrum 400 Fourier transform infrared

spectrophotometer, Perkin-Elmer, Waltham, MA) at a resolution of 4 cm−1[22, 25] . One

drop of adhesive solution was placed on the diamond crystal top-plate of an attenuated total

reflectance (ATR) accessory (Pike, GladiATR, Pike Technology, Madison, WI) and covered

with a mylar film. A 40-s-exposure to the commercial visible-light-polymerization unit

(Spectrum®, Dentsply, Milford, DE), at an intensity of 550 mW cm−2, was initiated after 50

spectra had been recorded. Real-time IR spectra were recorded continuously for 600 s after

light curing began. A time-based spectrum collector (Spectrum TimeBase, Perkin-Elmer)

was used for continuous and automatic collection of spectra during polymerization. Three

replicates were obtained for each adhesive formulation. To determine degree of conversion,

heavy water (deuterium oxide, 99.9%, D2O) (Cambridge Isotope Laboratories, Inc.,

Andover, MA, USA) was used in this study to reduce interference from the overlapping

water peak at 1640cm−1. The change of the band ratio profile (1637 cm−1(C=C)/1608

cm−1(phenyl)) was monitored. DC was calculated using the following equation, which is

based on the decrease in the absorption intensity band ratios before and after light curing.

The average of the last 50 values of time-based data points is reported as the DC value at 10

minutes.

The maximal polymerization rate was determined using the maximum slope of the linear

region of the DC-time plots[24, 28] .

Viscosity measurement

Brookfield DV-II +Pro viscometer with a cone/plate set up was used to measure the

viscosity of the formulations at varying shear rate 45 s−1 to 75 s−1. For each formulation

viscosity of three samples was measured at 25.0 ± 0.2 °C. The sample volume was kept

constant to 0.5ml.

Preparation of adhesive polymer specimens for property analyses

The preparation of polymer specimens for property analyses has been reported [28–32] . In

brief, round beams with a diameter of 1 mm and a length of at least 15 mm were prepared by
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injecting the adhesive formulations into glass molds (Fiber Optic Center, Inc., part no.:

ST8100, New Bedford, MA). Fifteen specimens were prepared for each formulation. The

samples were light polymerized with an LED light curing unit for 40s (LED Curebox, 200

mW/cm2 irradiance, Prototech, and Portland, OR). The polymerized samples were stored in

the dark at room temperature for two days to provide adequate time for post-cure

polymerization. The samples were subsequently extracted from the glass molds. The

resultant beam specimens were used for water sorption, dynamic mechanical analysis and

microscale morphologic characterization.

Water miscibility

Water miscibility is the property of the liquid monomer resin to mix with water, forming a

homogeneous solution. In principle, the main focus is usually on the solubility of water in

different formulations of the monomer resin. About 0.5 g of each neat resin was weighed

into a brown vial, and water was added in increments of approximately 0.005 g until the

mixture was visually observed to be turbid. The percentage of water in the mixture was

noted (w1). The mixture was then back-titrated using the neat resin until the turbidity

disappeared, and the percentage of water in the mixture was again noted (w2). Three

samples were tested for each formulation and water miscibility of the liquid formulation was

calculated as the average of w1 and w2.

Water sorption

The water sorption protocol has been reported [32] . In brief, water sorption was measured

using cylindrical beam specimens (1 mm×15 mm). Five specimens were prepared for each

adhesive formulation.

Prewash—Each beam specimen was weighed in air (m1dry) using an analytical balance

with a resolution of 0.01 mg (Mettler Toledo, XS205 dualRange, Greifensee, Switzerland).

The specimens were immersed in deionized water and stored at room temperature. The

water was changed daily. After five days of prewash, the polymer specimens were allowed

to dry in the vacuum chamber at 37 °C until a constant weight (m3dry) was obtained. The

solubility during the prewash experiment was calculated as:

Water sorption experiment—After prewash, the dry beams were used in the following

procedure. Each beam specimen was weighed in air (m’1dry, the same value as m3dry after

prewash) using an analytical balance with a resolution of 0.01 mg (Mettler Toledo, XS205

dualRange, Greifensee, Switzerland). The specimens were then immersed in deionized water

and stored at room temperature. At fixed time intervals (3, 7, 24, 48, 72, 120, 168 and 240

h), the polymer specimens were retrieved, blotted dry to remove excess liquid, weighed

(m’2wet), and re-immersed in the water. After the data collection, the specimens were

allowed to dry in the vacuum chamber at 37 °C until a constant weight (m’3dry) was

obtained. The value (%) for mass change, solubility, and water sorption (since water uptake
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and solubility occur simultaneously, the values of mass change and solubility were added

together to provide the total water sorption) were calculated

Dynamic mechanical analysis (DMA)

As described [25, 28, 30–32] , the viscoelastic properties of the dentin adhesives were

characterized using DMA Q800 (TA Instruments, New Castle, USA) with a 3-point bending

clamp. The cylinder beam specimens (1mm×15mm) were divided into two groups. The first

group consisted of dry samples, which had been stored in the dark at room temperature for

two days. These specimens were tested by a standard 3-point bending clamp. The test

temperature was varied from 0 to 250 °C with a ramping rate of 3 °C/min, a frequency of 1

Hz, an amplitude of 15 µm, and a pre-load of 0.01 N. The second group consisted of wet

samples, which were stored in the dark for two days to allow complete post-cure

polymerization and then stored in distilled water at 37 °C for prewash. These samples were

tested by 3-point bending, using a water submersion clamp[29]. The test temperature was

varied from 5 to 80 °C with a ramping rate of 1.5 °C/min at a frequency of 1 Hz. The

properties measured under this oscillating loading were storage modulus (E’) and tan δ. The

E’ value represents the stiffness of a viscoelastic material and is proportional to the energy

stored during a loading cycle. The ratio of loss modulus (E”) to storage modulus E’ is

referred to as the mechanical damping, or tan δ (i.e., tan δ = E”/E’). The tan δ value reaches

a maximum as the polymer undergoes the transition from the glassy state to the rubbery

state. The glass transition temperature (Tg) was determined as the position of the maximum

on the tan δ vs. temperature plot. Five specimens of each adhesive formulation were

measured under dry and wet conditions. The results from the five specimens per each

formulation were averaged.

Micro-X-ray tomography

The microscale morphologies of cylinder beams cured in the presence of 12 wt % water

were observed using three-dimensional (3D) micro x-ray computer tomography

(MicroXCT-400, Xradia Inc. Pleasanton, CA). Computer tomography (CT) facilitates

viewing of an object in 3D and allows selection of virtual slices spaced by 1 µm, thus
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illustrating the bulk structure of heterogeneous materials. The transmission x-ray imaging of

the samples was performed using an x-ray tube with a tungsten anode setting of 50 KV at 8

W and an optical magnification of 20×[28] . The 3D images were constructed with the help

of the software “XM Reconstructor 8.0” (Xradia Inc. Pleasanton, CA), using 1600 images

taken at 12 s exposure time per image.

Statistical analysis

The results were analyzed statistically using analysis of variance (ANOVA), together with

Tukey’s test at α= 0.05 (Microcal Origin Version 8.0, Microcal Software Inc., Northampton,

MA).

Results

Characterization of the synthesized siloxane-methacrylates

The structures of the newly synthesized siloxane-methacrylate monomers (SM1 and SM2)

were identified using FTIR and 1H NMR/ 13C NMR spectroscopies. The FTIR spectrum is

shown in Fig. 1A. The characteristic FTIR peaks for siloxane-methacrylates are: 1718cm−1

(C=O stretching on OCO), 1638cm−1 (C=C bending on methacrylate groups) and

1259cm−1(Si-CH3 bending on cyclotetrasiloxane groups). The appearance of the –OH

stretching band at 3465cm−1 confirmed the formation of the new siloxane-containing

monomer after the ring-opening reaction of epoxy groups. The 1H NMR/ 13C NMR spectra

of siloxane-methacrylates (Fig. 1B and 1C for SM1; Fig. 1D and 1E for SM2) show the

chemical shifts, which confirm the desired structures. The methacrylate groups are

supported by the presence of two singlets (δ = 6.0 and 5.5 ppm) on the 1H-NMR spectrum

and by the peaks at 135.9 and 126.1 ppm in the 13C-NMR, assignable to the double bond of

a methacrylate group.

Degree of conversion, maximum polymerization rate, and viscosity of liquid adhesive
resins

The degree of conversion was measured as a function of time for the control and the

experimental adhesives using FTIR spectroscopy. As seen from Fig. 2 and Table 1, with the

increase of weight content of SM, the degree of conversion decreased, especially for SM2

which contains eight methacrylate groups. The DC for SM1-containing adhesives was in the

range of 63–65 %. For SM2-containing adhesives, the DC was in the range of 59–65 %.

Samples polymerized in the presence of 12 wt % water (Control + 12 wt % water, E3-SM1

+12wt % water and E3-SM2 +12 wt % water) showed a higher degree of conversion (88.0

%, 91.4 % and 83.5 %, respectively) than those polymerized without water (C0: 65.2 %, E3-

SM1: 63.6 % and E3-SM2: 59.0 %) (Table 1). In addition, the maximum polymerization

rate decreased with the increase of SM content (Fig 2D), which should be attributed to the

decreased viscosity of liquid resins (Fig 2E).

Water miscibility

Fig. 3A and Table 1 show the results of the water miscibility experiment. For the control

formulation, the water miscibility was 10.29 wt %. With an increase of the SM, the water

miscibility increased. When there was 25% SM in the formulation, the water miscibility was
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12.44 % (E3-SM1) and 11.60 % (E3-SM2), respectively. At the same weight content of SM,

the water miscibility with SM1 was higher than SM2.

Water sorption

Results showing the water sorption of dentin adhesive polymers containing SM are shown in

Fig. 3B and Table 1. The water sorption values varied from 9.66 % to 12.53 % with the

increase of SM1. For SM2, the water sorption values varied from 9.66 % to 11.45%.

Dynamic mechanical analysis (DMA)

The results of DMA for the control and experimental polymers cured in the absence of water

and tested under dry condition are show in Fig. 4 and summarized in Table 2. As shown in

Fig. 4A and 4B, the storage modulus (E’) decreases with increase of temperature for all of

the samples. The formulations exhibited similar storage modulus values at 37 °C. The

experimental polymer networks showed higher storage modulus in the rubbery state than the

control (Fig. 4D). At 180 °C, the storage moduli for SM1 and SM2 at 15 and 25 wt% SM

content are statistically significantly greater (p < 0.05) than the control. At the same weight

content of SM, the storage modulus at 180 °C with SM2 was higher than SM1.

Representative tan δ curves of the control and the experimental adhesive polymers as a

function of temperature are shown in Figures 4E and 4F. The height of the tan δ peaks and

the corresponding full-width-at-half-maximum (FWHM) values are given in Table 2. The

Tg value for the control is 153.8°C. The Tg values decreased from 149.9 °C (E1-SM1) to

133.8 °C (E3-SM1) with an increase in the content of SM1. In contrast, the Tg values of the

SM2-containing adhesives increased from 152.6 °C (E1-SM2) to 161.1 °C (E3-SM2) with

increased SM2 content. The tan δ peak heights of SM1 containing adhesives were similar

with the control. In contrast, the tan δ peak height was significantly lower (p<0.05) for SM2-

containing adhesives (E2-SM2 and E3-SM2) as compared to the control. The SM1-

containing adhesives showed similar FWHM values (Table 2) as the SM content increased

and there was no significant difference between experimental and control adhesives.

However, SM2-containing adhesives showed increased FWHM values as the SM content

increased (Table 2), and the FWHM values were significantly greater (p<0.05) than the

control.

The results of DMA for the control and experimental polymers under wet condition are

shown in Fig. 5 and summarized in Table 3. The storage modulus for all the samples

decreased with increasing temperature, as shown in Fig. 5A and 5B. At 37 °C, with the

exception of E1-SM2 (2067 MPa), the storage modulus values for the experimental

formulations are significantly lower (996–1938 MPa) than the control (2106 MPa). At 70

°C, as shown in Fig. 5D, there is no statistically significant difference between the storage

modulus values of the control and 5% SM1, 5% and 15% SM2. For the formulations with

15% SM1 (E2-SM1, 182 MPa), 25% SM1 (E3-SM1, 69 MPa), and 25% SM2 (E3-SM2, 327

MPa), the storage modulus values were significantly lower than the control (435 MPa). As

shown in Table 3, the values of Tg in wet condition decreased with an increase in SM1

content and the Tg values for 15 and 25% SM1 are significantly lower than control. In

contrast, for SM2-containing polymers, the Tg values were similar to the control for all the

samples.
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Fig. 6A and 6B and Table 4 show the results of DMA under dry conditions for the control

and experimental adhesives cured in the presence of 12 wt % water. After two days of

storage in darkness, the polymer specimens were removed from the glass molds and put into

a vacuum oven at 37 °C for two weeks. At 37 °C the storage modulus value of E3-SM1+12

wt % water was significantly lower (3061 MPa) than the control containing water (3777

MPa) while there was no statistically significant difference between the storage modulus of

E3-SM2 +12 wt % water and control. At 180 °C, the storage modulus of E3-SM2+12 wt %

water was significantly greater (95MPa) than the control containing water (45 MPa). In

contrast, at 180 °C there was no significant difference between E3-SM1 +12 wt % water

(48MPa) and the control containing water (45 MPa). As shown in Fig. 6B, the Tg value of

(E3-SM1+12 wt % water) was significantly lower (132 °C) than the control containing

water (162 °C), and the Tg value of (E3-SM2 +12 wt % water) was similar (164 °C) to the

control containing water (162 °C). The intensities of the tan δ peaks for the experimental

formulations were significantly lower than the control. In addition, the FWHM values were

significantly greater than the control.

Micro-X-ray tomography

The internal morphology of the control and experimental adhesive polymers is shown in Fig.

6C, 6D and 6E. Voids are apparent in the micro-CT images (Fig. 6C) of the control

formulation cured in the presence of 12 wt % water (pore size is from about 5.0 to 45.0 µm).

In comparison, no voids were observed in the adhesive with 25 wt % SM1 (E3-SM1+ 12 wt

% water) (Fig. 6D), and only a few voids (size is about 5.0 µm) appeared in the adhesive

with 25 wt % SM2 (E3-SM2 + 12 wt % water) (Fig. 6E). In addition, both of the SM-

containing adhesives were transparent after being cured in the presence of 12 wt % water.

Discussion

Polymers with siloxane groups are usually soft because of the flexibility of Si-O bonds[17,

18] . The enhancement of mechanical properties is crucial for the development of siloxane-

containing dentin adhesives. In the current study, two new siloxane-methacrylate monomers,

SM1 and SM2, with four and eight methacrylate groups have been synthesized and

characterized in order to understand the relationship between the mechanical properties and

functionality of the siloxane comonomers.

In the absence of water, the additional functionalities of the new siloxane-methacrylates[33]

appear to have contributed to the decreased degree of conversion with increased comonomer

content in the experimental samples. However, the degree of conversion was significantly

higher for samples cured in the presence of 12 wt % water as compared to samples cured in

the absence of water. This difference reflects the enhanced mobility of reactive species in

the lower viscosity water-containing solution[26, 28, 31] . The improvement in degree of

conversion afforded by the lower viscosity water-containing solution was greater with

adhesives containing SM1 and SM2 as compared to the control (Table 1); these results

suggest increased tolerance of the wet environment of the mouth[28] . The maximum

polymerization rate decreased with increasing SM content (Fig 2D). The decreased

polymerization rate is likely associated with the lower viscosity of SM monomers (Fig 2E).
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The results of the water miscibility experiments (Fig. 3A and Table 1) indicate that both of

the SM monomers were more hydrophilic than BisGMA. These differences are reflected in

the water sorption results with both SM-containing adhesives showing higher water sorption

(Fig. 3B). At the same weight content of SM, the water miscibility with SM1 was higher

than SM2. These results indicate that SM2 with eight methacrylate groups is more

hydrophobic than SM1 with four methacrylate groups.

Dynamic mechanical analysis provides information about the relaxation of molecular

motions, which are sensitive to structure and variation in the stiffness of materials. Thus, this

technique can be used to provide information on the properties of polymer networks, such as

storage modulus and glass transition temperature [31, 32] . The values of the storage

modulus at 180 °C are higher for the experimental as compared to the control adhesives,

especially for the SM2-containing adhesives. The difference in storage modulus values at

180 °C between SM1 and SM2 reflects the higher entanglement of polymer networks with

SM2 containing eight methacrylate groups. This indicates that more functionalities are

beneficial for the storage modulus of these materials in the rubbery region[30–32] .

The intensity of the maximum tan δ peak reflects the extent of mobility of the polymer chain

segments as a function of temperature. When SM2, which contains eight methacrylate

groups, was used as the comonomer, all the experimental adhesives showed lower tan δ peak

heights than the control. At the same time, Tg increased with increased SM2 content,

indicating more elastic behavior (i.e., more energy is stored in the material) and greater

entanglement of polymer chains, which is consistent with the results of storage modulus.

The widths of tan δ peaks for the SM2-containing adhesives are greater than those of the

control. The widths of the tan δ peaks indicate that the glass transition occurs over a wide

temperature range. This broad glass transition can be attributed to heterogeneous networks,

i.e. regions with different crosslink structure (highly crosslinked and less densely

crosslinked regions), which results in broad distribution of mobilities or relaxation times.

Generally, the wider tan δ peaks (higher heterogeneous networks) usually appears with

increasing the crosslink density of the polymer networks[28–31, 33] . These results could be

correlated with the storage modulus values in the rubbery region.

When SM1 containing four methacrylate groups was used as the comonomer the intensity of

the maximum tan δ peak was similar to the control, indicating similar mobility of the

polymer segments. The similar mobility of polymer segments for SM1-containing adhesives

is associated with higher entanglement of polymer chains compared to control adhesives,

since siloxane-containing polymers are usually softer and with higher mobility than poly-

methacylates. Meanwhile, Tg decreased with increasing SM1 content due to the

incorporated flexible siloxane groups[18] .

The 3-point bending water-submersion clamp method was used in this study, which is

expected to be representative of the wet environment of the mouth[31] . The lower storage

modulus values at 37 °C for the experimental as compared to the control adhesives reflect

the enhanced flexibility of the siloxane-containing polymer in the presence of water. At 70

°C, the polymers in wet conditions are in the rubbery state (Tg are shown in Table 3). The
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storage modulus at 70 °C for SM1-containing adhesives is lower than SM2-containing

adhesives (Fig. 5D), indicating the greater entanglement of polymer networks in the

presence of SM2. With 5 % and 15 % SM2 as the comonomer, the storage moduli at 70 °C

(479 and 438 MPa) are similar with the control (435 MPa) under wet conditions. It should

be noted that the water sorption under wet conditions was increased in the presence of SM

comonomer. With SM2 as the comonomer, the intensity of tan δ curves (Table 3) at 70 °C is

much lower than control, indicating less mobility of polymer chains under wet conditions,

which corresponds with the higher entanglement of the polymer network. In contrast, when

SM1 was used as the comonomer, Tg decreased and intensity of tan δ curves at 70 °C

increased. The results of DMA under wet condition indicate that the mechanical properties

could be enhanced by increasing the functionality of siloxane-methacrylate monomers, even

with more water sorption.

Comparing the DMA results under wet conditions to the results under dry conditions, the

values of the storage modulus (Table 3) measured by the water-submersion clamp method

were significantly less than those of dried samples measured by the standard clamp (Table

2). This difference is due to plasticization of the polymer in the wet environment[34, 35] .

Water is responsible for plasticizing polymers in that it is attracted to polar groups in the

polymer matrix and forms hydrogen bonds, resulting in reduced polymer chain

interactions[31, 36] . It should be noted that water molecules enhance the mobility of the

polymer chain segments by increasing free volume, thus increasing the flexibility of the

materials. This increased-flexibility effect might be more severe for siloxane-containing

materials because of the higher mobility (flexibility) of Si-O bonds.

The mechanical properties under wet condition could be maintained when SM2 was used as

the comonomer. These results indicate that incorporation of SM monomer with more

functionality is an efficient way to enhance the mechanical properties for siloxane-

containing materials, even under wet conditions. Moreover, the enhanced performance in the

presence of water could be beneficial in terms of the formation of a more uniform hybrid

layer which should result in improved stress transfer and fatigue life of the dentin-adhesive

interface[37, 38] . Therefore, these results provide important information for future

development of siloxane-containing dentin adhesives.

Under in vivo conditions, water or saliva will be present during dentin bonding thus

adhesives must undergo polymerization in situ in the presence of water or saliva. The results

in Table 1 show that the degree of conversion for both of the SM-containing formulations

can be significantly improved in the presence of 12 wt % water. This result is also in

agreement with previous investigations reporting that the degree of conversion can be

improved in the presence of water[24, 25, 27] . All of the experimental adhesives cured in

presence of water showed higher rubbery moduli and lower tan δ peak heights than those of

the control (Table 4, Fig. 6A and 6B). These results indicate greater entanglement of

polymer networks with the experimental adhesives cured in the presence of water.

Water miscibility is another important issue for dentin adhesives. Less water miscibility will

cause phase separation when monomer resins are cured in the wet, oral environment [28]

leading to polymerized adhesive with a range of compositions and mechanical
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characteristics [41]. This phase separation can inhibit the formation of a structurally

integrated bond at the composite/adhesive/tooth interface[39, 40] . The control adhesives

cured in the presence of 12 wt % water were not transparent, and voids were noted in the

micro CT images (Fig. 6C). The voids indicate microphase separation when the control

adhesive was cured in the presence of 12 wt % water. Voids at this water concentration are

expected since the water miscibility of the control adhesive was 10.29 % (Table 1). In

comparison, the experimental adhesives containing SM1 and SM2 with 12 wt % water are

transparent after curing. No voids were noted in the micro CT images of the SM1-containing

adhesives (Fig. 6D), although a small amount of voids appeared in the images of SM2-

containing adhesives (Fig. 6E). This is related to the water miscibility value being 11.60 %

when there is 25 % SM2 in the adhesives. However, the micro CT images offer a clear

comparison of water miscibility. These results indicate both of the SM monomers could

improve the water miscibility and decrease microphase separation in the presence of water.

The results in this paper indicate that siloxane-methacrylate monomers used in dentin

adhesives could affect the water miscibility, water sorption and mechanical properties of the

polymers. The mechanical properties of siloxane-containing polymers can be enhanced by

increasing the functionality of monomers. The results elucidate critical structure/property

relationships for siloxane-methacrylate monomers and provide vital information for future

development of durable, versatile siloxane-containing dentin adhesives. Investigations

regarding the durability and compatibility of these adhesives with silorane composite are

ongoing.

Conclusion

Two new siloxane-methacrylate monomers, SM1 and SM2, containing four and eight

methacrylate groups, were synthesized and characterized. The degree of conversion, water

miscibility, water sorption and dynamic mechanical properties of siloxane-containing dentin

adhesives were examined. With more functionality, the degree of conversion decreased with

an increase of the content of siloxane-methacrylate monomers. In addition, adhesives with

newly synthesized SM monomers showed improved water miscibility. When formulated

with 12 wt % water to simulate the behavior of these materials in the wet, oral environment,

the degree of conversion and mechanical properties were improved as compared to the

control adhesives. All experimental adhesives tested showed higher rubbery modulus than

the control under dry conditions. Moreover, the mechanical properties under wet conditions

for siloxane-containing materials were comparable with the control by incorporating SM

monomer with more functionality, even with more water sorption. It is conceivable that the

enhanced performance in the presence of water would be beneficial to the formation of more

uniform hybrid layer which should result in improved stress transfer and fatigue life of the

dentin-adhesive interface. Siloxane-methacrylate monomers show promise as a component

of durable, water-compatible dentin adhesives.
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Fig. 1.
1A-FTIR spectra of TPGTS (starting material) and siloxane-methacrylates (SM1 and SM2).

1B and 1C- 1H-NMR (B) and 13C-NMR (C) spectra of SM1.

1D and 1E- 1H-NMR (D) and 13C-NMR (E) spectra of SM2.
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Fig. 2.
Real-time conversion of adhesive resins with different weight contents of SM (A, B). The

adhesives were light-cured for 40 sec at room temperature using a commercial visible-light-

curing unit (Spectrum® 800, Dentsply, Milford, DE. Intensity was 550 mW/cm−2). Real-

time IR spectra were continuously recorded for 600 s after light activation began. The

comparison of DC for SM1 and SM2-containing system is show in C. The comparison of

maximum polymerization rate is shown in bar figure D. N= 3 ± SD. *Significantly (p <0.05)

different from the control (C0). Symbols: E1-SM, E2-SM and E3-SM represent 5, 15 and 25
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wt % of SM content, respectively. Figure E shows the viscosity of liquid adhesive resins

formulated with different weight content of SM.
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Fig. 3.
(A) Water miscibility and (B) water sorption of monomer resins with different weight

contents of SM.
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Fig. 4.
DMA under dry condition: Comparison of the storage modulus versus temperature curves

for experimental adhesives (A: SM1-containing; B: SM2-containing) with those of the

control adhesive (C0). The comparison of storage modulus at 37 and 180 °C is shown in bar

figure C and D, respectively. a Significantly (p<0.05) different from the C0; b Significantly

(p<0.05) different from the E-SM1 with the same SM content. Representative tan δ versus

temperature curves for SM1 (E) and SM2 (F) containing polymers with different weight
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content. Symbols: E1-SM, E2-SM and E3-SM represent 5, 15 and 25 wt % of SM content,

respectively.
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Fig. 5.
DMA under wet condition: Comparison of the storage modulus versus temperature curves

for experimental adhesives (A: SM1-containing; B: SM2-containing) with those of control

adhesive (C0). The comparison of storage modulus at 37 and 70 °C were shown in bar figure

C and D, respectively. Symbols: Symbols: E1-SM, E2-SM and E3-SM represent 5, 15 and

25 wt % of SM content, respectively. *Significantly (p<0.05) different from the C0.
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Fig. 6.
(A) and (B) show the results of DMA under dry condition for the resins in the presence of

water: (A) Storage modulus versus temperature curves for experimental adhesives with the

control adhesive (C0); (B) Representative tan δ versus temperature curves for SM-

containing polymers. (C), (D) and (E) show the 3D images of the control (C), 25 wt % SM1

containing (D) and 25 wt % SM2 containing (E) adhesives cured in the presence of 12 wt %

water. The morphologies were observed using three-dimensional (3D) Micro XCT (Xradia

Inc. Concord, CA). Symbols: C0+ 12 wt % water, E3-SM1+12 wt % water and E3-SM2+12

wt % water represent the C0, E3-SM1 and E3-SM2 formulations had 12 wt % water added.

Ge et al. Page 23

Dent Mater. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Scheme 1.
Synthesis scheme for new siloxane-methacrylate monomers.
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