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Abstract

Background—Combination cytotoxic agents in breast cancer carry dose-limiting toxicities. We 

hypothesize that nanocarrier-conjugated doxorubicin and cisplatin will have improved tumor 

efficacy with decreased systemic toxicity over standard drugs, even at lower doses.

Methods—Female Nu/Nu mice were injected in the breast with human MDA-MB-468LN cells 

and treated with either standard or nanocarrier-conjugated combination therapy (doxorubicin

+cisplatin) at 50% or 75% MTD, and monitored for efficacy and toxicity over 12-weeks.

Results—Efficacy results for mice treated with HA-conjugated doxorubicin/cisplatin at 50% 

MTD include:[complete responses(CR)=5, partial responses(PR)=2, and stable disease(SD)=1]and 

for HA-conjugated dox/cis at 75% MTD:[CR=7,PR=1; all CR’s confirmed histologically]. In 

comparison, mice given standard dox/cis(50% MTD)demonstrated:[progressive disease(PD)=6, 

SD=1, and PR=1] and for standard dox/cis(75% MTD):[PD=5,SD=3; p<0.0001 on multivariate 

ANOVA]. At 75% MTD, standard drug-treated mice had significant weight loss compared to 

nanocarrier drug-treated mice(p<0.001).

Conclusion—Subcutaneous nanocarrier-delivery of doxorubicin and cisplatin demonstrated 

significantly improved efficacy with decreased toxicity compared to standard agent combination 

therapy at all doses tested achieving complete pathologic tumor response.
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Background

Breast cancer accounted for over 209,000 new cases in 2010 with over 42,000 deaths in the 

United States alone, making it the leading cause of cancer in women (excluding skin 

cancers) and the second leading cause of cancer death in women after lung cancer (1). 

Although current treatments often carry an excellent short-term prognosis, up to 13% of 

women will develop a locoregional recurrence within 9 years of initial treatment and up to 

25% of these women will have distant metastatic disease at the time of recurrence (2–4). 

Also, over 60% of women with localized breast cancer will eventually develop distant, late 

stage disease (5).

For women with locally advanced breast cancer, standard of care treatment includes 

neoadjuvant chemotherapy followed by surgical resection, radiation, and further adjuvant 

chemotherapy. One goal of the neoadjuvant chemotherapy is to decrease locoregional tumor 

burden and tumor size to decrease surgical morbidity allowing in many cases breast 

conservation. Additionally, neoadjuvant treatment can inhibit further advancement of disease 

including development of further metastatic spread. However, the utility of combination 

cytotoxic chemotherapy is often limited by systemic toxicities, which can be severe or dose-

limiting in many cases. One recent study demonstrated that 61% of women diagnosed with 

breast cancer who received chemotherapy were hospitalized for complications compared to 

only 42% of patients not receiving chemotherapy (6).

Several classes of chemotherapeutic agents are used in both neoadjuvant and adjuvant 

treatment regimens for breast cancer. A common first line agent is doxorubicin, which is 

from a class of drugs called anthracyclines. Doxorubicin decreases cancer growth by 

inhibiting DNA intercalation and macromolecular biosynthesis within cancer cells. 

Significant toxicities associated with doxorubicin include neutropenia, alopecia and cardiac 

toxicities such as congestive heart failure and dilated cardiomyopathy. Cardiomyopathy from 

doxorubicin is a toxicity related to the cumulative dose of the drug and occurs in up to 4% of 

patients, often as a late finding even up to a year after completion of treatment (7). Another 

class of chemotherapeutic agents commonly used in combination therapy for breast cancer is 

platinum agents, such as cisplatin or carboplatin. Cisplatin inhibits cancer growth by 

promoting DNA binding and cross-linking, thereby triggering apoptosis. This drug also 

carries systemic toxicities, the most notable being neurotoxicity, ototoxicity, and 

nephrotoxicity, which have been demonstrated to be related to high peak plasma 

concentration levels (8). In fact, over 75% of patients receiving cisplatin develop some level 

of ototoxicity, which is cumulative and can be irreversible (9).

Although these agents can be reasonably effective in the adjuvant setting, their moderate 

toxicity profiles create a critical need to improve the safety and tolerability of combination 

regimens as well as enhance their efficacy even further. The use of nanoconjugation with 
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current chemotherapeutic agents provides a novel method for drug delivery through the 

locoregional lymphatics creating improved delivery of drug and cancer-targeting with lower 

systemic toxicity while maintaining therapeutic systemic levels(10). We have demonstrated 

that the nanoscopic sized molecular weight of hyaluronan can be combined with a 

chemotherapeutic, allowing the drug to be preferentially taken up initially by locoregional 

tissues and lymphatic channels without systemic bolus release due to the size and 

hydrophilicity of the conjugate (10). Also, the nature of this construct would allow for 

sustained-release kinetics, allowing for improved efficacy at decreased doses (11). We have 

reported in vitro and in vivo models of nanoconjugated hyaluronan-doxorubicin (HA-dox) 

and hyaluronan-cisplatin (HA-cis) in breast cancer models. These studies have shown 

improved delivery of the chemotherapeutic agent to the lymphatic system with a decreased 

toxicity profile compared to the standard agent at all doses tested including lower drug doses 

(12, 13).

We hypothesize that combination therapy with doxorubicin and cisplatin when conjugated to 

nanoscopic hyaluronan (HA) as a drug-delivery carrier to the locoregional tissues and 

lymphatics will have improved efficacy at significantly lower dose with better lymphatic 

penetration and a markedly reduced toxic profile then standard combination therapy with 

these drugs. The aim of this study is to examine and compare with standard drugs, the 

efficacy and toxicity of this combination HA-doxorubicin and HA-cisplatin therapy in vivo 

using an orthotopic murine model of a locally advanced breast cancer.

Materials and Methods

Cell Culture

The lymphatically active metastatic breast cancer cell line MDA-MB-468LN [obtained as a 

gift from Dr. Chambers and coworkers (14)] was maintained in modified Eagle’s medium 

alpha (Sigma-Aldrich, St. Louis, MO), supplemented with 10% fetal bovine serum (FBS), 

1% L-glutamine and 0.4 mg/mL G418 (Sigma Aldrich). Adherent monolayer cultures were 

maintained inT-75 culture flasks and incubated at 37 °C with 5% CO2 until they achieved 

85% confluency. The cells were trypsinized using 0.25% trypsin (Sigma Aldrich) and 

passaged into T-75 flasks at a density of 1×106 cells. On experiment days, cells were 

trypsinized and counted via hemocytometer to determine the number of viable cells.

In Vivo Tumor Model and Treatment

All animal studies were done in accordance with the University of Kansas Institutional 

Animal Care and Use Committee guidelines. Lymphatic breast tumor metastasis was 

induced in nude mice according to the procedure of Chambers and coworkers (14), who 

were kind enough to provide the lymphatically metastatic breast tumor cell line MDA-

MB-468LN. MDA-MB-468LN breast cancer cells were prepared in a 1× PBS solution at a 

concentration of 1×106 cells/100 µL. Cells (100 µL) were injected under isoflurane 

anesthesia into the right first breast mound (abdominal mammary fat pad) of 4–6 week old 

female Nu/Nu mice using a 25G needle (20–25g, Charles River Laboratories, Wilmington, 

MA). Tumor size was measured 3 times weekly using a digital caliper and confirmed by two 

separate observers. Tumor volume was calculated using the following equation: tumor 
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volume (mm3) = (π/6)×(width)2 × length. When tumors reached a minimum volume of 30 

mm3, mice were randomized into control (PBS or HA) or one of four combination treatment 

groups [50% Maximum Tolerated Dose (MTD) Doxorubicin + 50% MTD Cisplatin (Dox-

Cis 50), 75% MTD Doxorubicin + 75% MTD Cisplatin (Dox-Cis 75), 50% MTD HA-

Doxorubicin + 50% MTD HA-Cisplatin (HA-Dox-Cis 50), and 75% MTD HA-Doxorubicin 

+ 75% MTD HA-Cisplatin (HA-Dox-Cis 75)]. Pharmaceutical grade doxorubicin and 

cisplatin were used for the standard treatment groups as well as to create the nanocarrier 

formulation as previously described (13). The HA control and HA treatment groups were 

administered subcutaneously (s.q.) 1–3 mm away from the site of tumor implantation and 

the PBS control and standard treatment groups were administered intraperitoneally (i.p.). 

The MTD level reported in mice for doxorubicin is 8–10 mg/kg/weekly i.p. dose and for 

cisplatin is approximately 10 mg/kg/weekly i.p. dose (15, 16). All treatments were given 1×/

week for a total of 3 weeks and mice were monitored for an additional 9 weeks upon 

completion of treatment (total study period of 12 weeks). Mice were euthanized prior to 

completion of the experiment if the tumor reached > 20 mm in diameter, if weight loss was 

significant or if body score markedly deteriorated.

Pathology Studies

Two Nu/Nu mice from each of the treatment groups were euthanized 1 week after 

completion of treatment (week 4) and an additional 2 mice from each group were euthanized 

at the completion of the study for histologic analysis of tumor, organ, and injection sites. 

The tumor site with surrounding skin, heart, lungs, brain, bilateral kidneys, spleen, liver, 

bone marrow from spine and femur, and ipsilateral (right) as well as contralateral (left) 

axillary lymph nodes were harvested intact from the mice and stored in 10% formalin 

solution for fixation overnight prior to slide mounting. Mounting using hematoxylin and 

eosin staining was conducted by the University of Kansas Medical Center Department of 

Pathology (Kansas City, KS) and histologic examination was performed by a blinded board-

certified pathologist. Slide images were obtained using Aperio version 10.0 software (Aperio 

Technologies, Inc., Vista, CA).

Statistical Analysis

Comparisons of differences between two or more means were determined by Student’s 

unpaired t-test (2 means) and Fisher’s exact test. Multivariate analysis was performed by 2-

way ANOVA followed by Duncan’s multiple range test (2+ means) and Bonferroni post-hoc 

testing using a statistical analysis software package (SPSS version 17.0; SPSS Inc, Chicago, 

IL). Significance was defined for p<0.05.

Results

In Vivo Efficacy Analysis

To examine the efficacy of HA-doxorubicin and HA-cisplatin in vivo, tumor volumes were 

monitored in the mice and confirmed by histologic analysis. The control animals (PBS and 

HA-only) demonstrated a standard tumor growth curve with tumor volumes exceeding 1200 

mm3 by six weeks post inoculation (Figure 1). There was no difference noted in tumor 

growth curves between PBS controls and HA (carrier only) control animals, confirming that 
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HA by itself has no direct anti-tumor activity. These groups were combined as a composite 

control curve (Figure 1). Of the experimental groups, HA-Dox-Cis 75 was noted to have the 

best overall efficacy, with 100% of the mice showing response to treatment and 7 of 8 mice 

(87.5%) having a complete response (CR) and the remaining mouse having a partial 

response (PR) with 87% reduction in tumor volume (Figure 1). The second best group for 

efficacy was the HA-Dox-Cis 50 group, where 7 of 8 mice (87.5%) had a significant 

response to treatment (5 CRs and 2 PRs), with the remaining mouse having stable disease 

[(SD), Figure 1]. Alternatively, in the standard treatment groups at comparison MTD levels, 

the Dox-Cis 75 group had only 2 of 8 (25%) animals with a partial response to treatment 

with the remaining 6 animals having either stable disease (N=3) or progressive disease 

(N=3). Finally, in the Dox-Cis 50 group, there was only 1 PR (12.5% response rate), one 

animal with stable disease, with the remaining 6 animals (75%) having progressive disease 

(PD, Figure 1). Of note, there were no complete responders noted in either of the standard 

treatment groups and in the HA-Dox-Cis 75 mice, all CRs were true pathologic complete 

responses. An overall comparison of all 4 treatment groups using a multivariate analysis was 

noted to be statistically significant at p<0.0001 and when breaking this down to compare 

individual groups, the response rate among the HA-Dox-Cis 50 group compared to the 

standard 50 group and the standard 75 group was noted to be statistically significant 

(p=0.0004 and p=0.005, respectively). Conversely, comparing the HA-Dox-Cis 75 group to 

the standard 50 and 75 groups was also noted to be statistically significant (p<0.0001 and 

p=0.0003, respectively). Of note, comparison between the 2 doses levels of the standard 

treatment was not noted to be statistically significant (p=0.27).

Pathologic Analysis

In the complete responders of both the HA-Dox-Cis 50 and the HA-Dox-Cis 75 treatment 

groups, no visible tumor could be seen grossly (Figure 2A) compared to the visible tumors 

in the standard Dox-Cis 50 and Dox-Cis 75 groups (Figure 2B). To confirm the significance 

of these findings, the tumor sites, as well as bilateral axillary lymph nodes, heart muscle, and 

kidneys were examined histologically for all treatment groups. The tumor site and lymph 

nodes were examined for evidence of residual microscopic cancer disease and the heart and 

kidneys were examined for evidence of systemic toxicity. Upon histological examination, 

both HA treatment dosing groups showed fibrosis and neutrophil infiltration but no 

histologic evidence of residual tumor at the tumor site (Figure 2C) compared to the standard 

treatment at both doses, which had residual tumor with associated central necrosis (Figure 

2D). Additionally, there was no evidence of lymph node metastases present in any of the 

treated animals while over 80% of controls developed metastatic disease to lymph nodes and 

lungs. Finally, evaluating organ and bone-marrow toxicity, there was no evidence with the 

short term-dosing used in this study of any histologic toxicity at the injection site, bone 

marrow, heart or kidney in any of the treated groups. Sytemic disease was however noted 

histologically as spinal metastases in one of the mice at the 50% MTD systemic Dox-Cis 

combination whereas none of the mice in the HA-groups demonstrated any systemic disease.

In Vivo Toxicity Analysis

In addition to histologic toxicity, all mice were evaluated for signs of weight loss or 

deterioration in body conditioning score as a clinical sign of toxicity. All of the animals in 
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both HA groups had no sustained weight loss or deterioration in body score throughout the 

study. Also, there was no significant difference noted between either HA dosing group with 

respect to weight loss (p = 0.4917). In comparing the weight loss profiles of the HA groups 

to dose-matched standard drug combinations, it was noted that there was no weight loss 

noted in the standard 50% group as well, however, there was an average weight loss of 23% 

from baseline in the animals from the Dox-Cis 75group, which was noted to be statistically 

significant (p < 0.001). (Figure 3A). It should be noted, though, that the HA-Dox-Cis-75 

group did demonstrate some weight loss (average of 10%) while receiving the 3 weeks of 

treatment, however this effect was transient with all mice returning to their baseline weights 

within 10 days after completion of treatment. This effect was permanent in the standard 

groups with deterioration in body score requiring early euthanasia due to this toxicity, 

particularly in the Dox-Cis-75 group, where 5 animals were sacrificed for clinical toxicity 

prior to completion of the study (Figure 3B).

Discussion

Locally advanced breast cancer remains a challenge to treat successfully. Available 

chemotherapeutic agents, although moderately effective, can result in significant local and 

systemic toxicities. Surgical intervention in the form of complete breast resection and 

axillary lymphadenectomy carries its own morbidity, including risks of nerve injury, skin 

and wound infections, and painful lymphedema, which has been reported to occur in over 

30% of patients who also receive radiation and in 10–20% of patients receiving 

lymphadenectomy alone (17, 18). Another important therapeutic challenge is that when 

cytotoxic chemotherapies are given systemically, they have poor penetration into the breast 

tissue and lymphatic system due in part to the unidirectionallity of lymphatic flow and the 

separation of the lymphatics from the systemic vasculature (19). As a result, only a small 

dose of the drug finally reaches the tumor tissue or lymph nodes draining the tumor site.

Lymphatically delivered chemotherapy is a novel drug delivery approach that has been 

shown to be effective in breast cancer using single agents such as cisplatin or doxorubicin in 

conjugation with a nanoscopic molecular weight of hyaluronan. We have reported that in 

vivo usage of this carrier with cisplatin or doxorubicin demonstrated improved locoregional 

delivery of the drug to the site of greatest tumor burden in the breast and axillary tissues with 

improved efficacy and decreased toxicity compared to the standard drug formulations (12, 

13). In practice, however, chemotherapy for LABC is multidrug often involving a platinum 

agent, a taxane and/or an anthracycline in combination. One of the pitfalls of combination 

systemic therapy is the added toxicity of 2 or 3 drugs over a single agent so we chose in this 

study to evaluate not only the response of the combination of drugs when conjugated to the 

nanocarrier but also the toxicity profiles of the combination when given subcutaneously. Our 

data demonstrated that the HA-combination generated less locoregional and systemic 

toxicity than standard systemic agents at similar dose levels and that a reduced dose of each 

drug could be administered to achieve similar efficacy. This would have significant 

advantage clinically if lower doses can be administered in an effort to avoid dose-limiting 

toxicities of these agents. We observed that lower doses of each drug in combination given 

via the nanoconjugate peritumoral route achieved the same efficacy as higher doses required 

Cohen et al. Page 6

Am J Surg. Author manuscript; available in PMC 2016 December 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



when given systemically, suggesting a possible synergistic effect in combination when 

combined to the nanocarrier.

With respect to timing and delivery, each drug is injected individually in the subcutaneous 

peritumoral area one immediately following the other. If there is extensive regional lymph 

node involvement which could obstruct the lymphatics, it would be possible to inject the 

drug just proximal as well as distal to the tumor mass to ensure adequate uptake in the entire 

lymphatic basin. In terms of the mechanism of this systemic effect, once the HA is cleaved 

in the lymphatics or peritumorally by the enzyme hyaluronidase which is present in lymph, 

the free drug can either interact locally at the tumor cell by diffusion or active transport into 

the cell or will be transported due to its smaller size into the systemic circulation where it 

will achieve therapeutic systemic levels. The difference between this delivery and 

intravenous infusion therapy is that the cleavage rate of free drug off the carrier provides a 

slow, sustained-release of drug with a lower Cmax but achieves equivalent plasma AUC 

levels over time allowing the drug to be effectively therapeutic to systemic metastases as 

well. Systemic absorption was measured in the nanoconjugates individually in previous 

studies of these compounds and compared to standard agents. Those studies demonstrated 

comparable levels of systemic penetration via equivalent plasma AUC levels (12,13). 

Intratumoral as well as lymphatic levels of HA-cisplatin compared to systemic cisplatin 

were also measured demonstrating significantly increased levels of cisplatin in the tumor 

and lymphatic tissues in the HA-Cis group compared to systemically delivered cisplatin 

(13).

While previous studies have demonstrated improved efficacy and pharmokinetic profiles of 

nanoconjugated chemotherapeutics as single agents in vivo, the use of combination therapy 

more closely approximates treatment of breast cancer clinically. Systemic chemotherapeutic 

agents are often administered in combination due to synergistic effects. Therefore, 

combination of two nanoconjugated agents in vivo would be expected to further enhance this 

synergy. Although individual uptake of each drug was not measured intra-tumorally in the 

combination therapy, based on the dramatically improved efficacy of the combination 

nanoconjugated agents compared to systemic agents in combination as well as the 

previously published single agent data, it stands to reason that uptake of these agents is 

improved. Also, due to the reduced toxicity profile of this delivery system, both 

nanoconjugated agents can be delivered simultaneously, allowing for increased tumor 

targeting. In the study, half of the animals in both the 50% and 70% HA-Dox-Cis treatment 

arms were given both injections at the same site peritumorally while the other half of the 

animals received each injection on opposite sides of the tumor. No difference in tumor 

response was noted between the difference in injection sites.

The results in this study demonstrated that in combination, HA-Dox-Cis was able to 

generate a complete pathological response in a majority of animals treated even at only 50% 

of the MTD levels of the standard doxorubicin and cisplatin combination. When this dose 

was increased to 75% MTD, the HA-Dox-Cis group developed a complete pathologic 

response in 87.5% of animals treated with the remaining animal having a partial response 

with 87% tumor reduction. Comparatively, neither of the standard dosing groups had any 
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complete responders, indicating a significantly improved efficacy for the nanocarrier 

delivered drug combination even at half of the standard dose of current therapy.

With regards to toxicity, the standard treatment at 75% MTD of doxorubicin and cisplatin 

resulted in significant morbidity and mortality, with 67% of the mice requiring euthanasia 

prior to study-completion due to significant clinical toxicity as evidenced by decreased body 

score and long-term weight loss. Alternatively, this was not seen in either HA group, 

although a transient 10% weight loss was noted in the 75% MTD HA group during the 

treatments which resolved spontaneously. From a histologic standpoint, no evidence of 

cardiac or renal toxicity was noted in any of the groups, although cardiac toxicity is due to a 

cumulative dose of doxorubicin and this cumulative effect was not likely achieved with only 

3 doses of drug given. Furthermore, differences in renal toxicity may not have been observed 

in this small group either when only three doses of drug are given, all at 75% or less of their 

maximum clinical dose. Further investigation with longer follow-up and longer dosing 

regimens will provide more insight regarding chronic toxicity of the HA-combinational 

treatment.

Overall, we conclude that based on this study, nanoconjugated combination therapy with 

doxorubicin and cisplatin exhibited potent anticancer activity against a locally advanced 

breast cancer orthotopic murine model in vivo. These data indicate that this combination 

therapy has improved efficacy (especially locoregionally) with decreased clinical toxicity 

compared to standard dosing of doxorubicin and cisplatin combinational therapy. The 

limitations of this study include a small sample size for each group as well as a short (3-

week) duration of therapy. Despite these limitations, there was enough of an improvement in 

efficacy and toxicity with the HA-Dox-Cis at all dosing levels over standard therapy to 

demonstrate statistical significance.

As this system uniquely targets and boosts drug delivery to the primary tumor, lymphatics, 

and locoregional tumor bearing tissues, it is uniquely suited for patients who have extensive 

regional nodal disease. Clinically this novel delivery platform would need to be evaluated 

one drug at a time as per FDA regulations for safety and efficacy in patients prior to any 

combinational therapy. To this regard we would plan to first test each nanoconjugate given 

peritumorally subcutaneously as an additive to standard-of-care neoadjuvant systemic 

therapy in a LABC patient population. While the nanoconjugated drug should provide a 

locoregional boost to therapy which could improve regional control and treatment, 

doxorubicin systemic levels as we have shown in rodents will achieve an area under the 

curve (AUC) in the plasma equivalent to that generated by systemic agents and therefore 

should also be therapeutic systemically. One benefit of using the nanoconjugate is that its 

sustained release kinetics provide for a lower (less toxic) Cmax level in the plasma. We 

would expect that the HA-doxorubicin, therefore, would have excellent efficacy on systemic 

metastatic disease, which these patients undoubtedly harbor. Clinical use of this 

nanodelivery for doxorubicin would provide the opportunity to evaluate the added benefit of 

the locoregional boost on the primary tumor and lymph nodes at the time of surgery and 

axillary lymphadenectomy as well as the effect on any known systemic metastatic disease 

and be able to compare this effect to standard systemic therapy alone. Treatment with the 

nanoconjugate should reduce the tumor burden and lymphatic disease prior to surgical 
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resection in hopes to prevent future recurrence or in patients who have locoregional 

recurrence and have failed traditional systemic agents or are limited in the administration of 

these agents to due cumulative dose toxicity. In patients with known concommitant systemic 

disease, as these agents have systemic penetration, they could be effective at targeting the 

systemic disease or could provide a useful adjunct to traditional systemic therapy, allowing 

for a reduced dose of the systemic agent. These data provide a solid foundation for further 

translation of this delivery system toward a wide range of clinical applications where there 

may be need for novel treatment strategies that carry less toxicity and morbidity to patients.
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Figure 1. 
Comparison of Breast Tumor Volumes with Treatment. Graph shows a composite curve of 

the animals in control and 4 treatment groups (HA-Dox-Cis 50, HA-Dox-Cis 75, Dox-Cis 

50, and Dox-Cis 75), N=8 for each group. The control curve is a composite curve of HA-

carrier s.q. injection and 1x PBS systemic injection (N=4 for each). Note, there is delay in 

tumor growth with standard Dox-Cis treatment, however, progressive disease does still occur 

whereas there were significantly more complete responders in the HA treatment groups, 

which was durable.
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Figure 2. 
Evaluation of Efficacy by Histologic Confirmation. A) Whole body image of mouse treated 

with HA-Dox-Cis 50 at week 12. Arrow denotes no clinical evidence of residual tumor and 

normal appearing skin at the injection site. B) Whole body image of mouse treated with 

Dox-Cis 50 at week 12. Here, the arrow notes progressive tumor growth with ulceration 

following treatment. C) Hematoxylin and eosin stained histologic image at 7.8× 

magnification of mouse from image A. Arrows denote skin, normal breast tissue 

surrounding injection site with polymorphonuclear leukocyte infiltration and associated 

fibrosis. Of note, there is no histologic evidence of tumor present, indicating a complete 

pathological response. D) Hemotoxylin and eosin stained histologic image at 5.4× 

magnification of mouse treated with Dox-Cis 50 demonstrating a partial response clinically. 

Arrows denote skin, histological presence of tumor with associated central necrosis.
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Figure 3. 
A) Clinical Evaluation of Animal Toxicity by Weight Changes. Of note, there was a 23 % 

weight loss observed in the Dox-Cis 75 group compared no durable weight loss in the HA-

Dox-Cis groups, which was statistically significant (p<0.001). B) Kaplan-Meier Survival 

Curves by Group. Note, both HA-Dox-Cis groups had 100% survival throughout the study, 

which was superior to the Dox-Cis groups. N=6 for each group as 2 animals were 

euthanized immediately following treatment for histology. Note, controls were all 

euthanized by week 7 due to advanced tumor volumes and deteriorating body condition from 

progressive disease per established animal protocol endpoints, and therefore were not 

included in figures 3A and 3B.
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