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Abstract

Antibiotic resistance in pathogens requires new targets for developing novel antibacterials. The 

bacterial type III secretion system (T3SS) is an attractive target for developing antibacterials as it 

is essential in the pathogenesis of many Gram-negative bacteria. The T3SS consists of structural 

proteins, effectors and chaperones. Over 20 different structural proteins assemble into a complex 

nanoinjector that punctures a hole on the eukaryotic cell membrane to allow the delivery of 

effectors directly into the host cell cytoplasm. Defects in the assembly and function of the T3SS 

render bacteria non-infective. Two major classes of small molecules, salicylidene acylhydrazides 

and thiazolidinones, have been shown to inhibit multiple genera of bacteria through the T3SS. 

Many additional chemically and structurally diverse classes of small molecule inhibitors of the 

T3SS have been identified as well. While specific targets within the T3SS of a few inhibitors have 

been suggested, the vast majority of specific protein targets within the T3SS remain to be 

identified or characterized. Other T3SS inhibitors include polymers, proteins and polypeptides 

mimics. In addition, T3SS activity is regulated by its interaction with biologically relevant 

molecules, such as bile salts and sterols, which could serve as scaffolds for drug design.
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Introduction

Pathogenic Gram-negative bacteria pose a significant global health impact with an estimated 

2 million infections and 23,000 deaths per year in just the United States (1). Examples of 

these organisms include Pseudomonas, Shigella, Salmonella, Chlamydia, enteropathogenic 

E. coli (EPEC), and Yersinia. The appearance and rapid evolution of multidrug resistant 

strains has become of great concern for public health (2–4). Unfortunately, the development 

of new antibiotics presents a difficult challenge. Since 2009 three antibiotics targeting Gram-

negative bacteria, though not exclusively, have been approved as the deadline approaches for 

the initiative of the Infectious Diseases Society of America’s for at least 10 new antibiotics 

by 2020 (5). The rate of entry of new antibiotics into the pipeline is extremely slow (6–9). 
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This is largely due to several factors, namely, (i) the lack of novel antibiotic targets (10), (ii) 
high throughput screens often turn up known targets or novel targets that do not make it past 

early stages of drug development due to toxicity or off target effects (11), and (iii) the 

disinterest of big pharmaceutical companies to discover new antibiotics or conduct clinical 

trials due the problem of antibiotic resistance and poor investment return has only 

exacerbated the situation (11, 12). The rapid emergence of multidrug resistant strains 

coupled with the dearth of novel antibiotics suggests a need for identifying novel targets for 

development of antibiotics.

Traditional antibiotics often fall into two classes: bactericidal compounds that cause cell 

death and/or bacteriostatic compounds that inhibit cellular growth (11). In either case, these 

drugs often induce a selection pressure on bacteria to develop drug resistance, which is 

usually obtained via horizontal gene transfer between bacteria or by de novo mutations (11). 

Targeting virulence pathways of pathogenic bacteria has been suggested as an alternative 

strategy (13, 14). One current theory is that the use of antivirulence or anti-infective drugs, 

in contrast to antibiotics, will dampen the selection pressure for the emergence of resistant 

strains because these drugs do not directly harm the organism (15, 16). Notably, there have 

been documented cases of resistance to antivirulence drugs, though it has been argued that 

the existence of such mechanisms for resistance does not suggest it will become a problem 

in a clinical setting (15). Another advantage is that because virulence mechanisms are used 

by pathogenic bacteria, antivirulence drugs are hypothesized to have less of an influence on 

the host commensal flora when compared to traditional broad spectrum antibiotics (17).

The Type III Secretion System – Multiple Targeting Opportunities

Overview of the T3SS

The type III secretion system functions as a conduit for delivery of virulence factors by 

translocating proteins from the bacterial cytoplasm into the eukaryotic host cell cytoplasm to 

facilitate infection (18). The structural component of the T3SS, the needle complex, was first 

visualized by Galan & coworkers in 1998 (19) and since then the structures and functions of 

many T3SS proteins have been elucidated [reviewed in (20–23)]. T3SS proteins are highly 

homologous in sequence, structure and function among different bacteria (20, 24, 25). 

Therefore, protein-protein interactions within the system among different bacteria and with 

host cells are thought to occur through similar mechanisms. This theory is supported by the 

similarities observed between the assembly of the Salmonella and Shigella T3SS needles 

(26) and conserved structural motifs within the basal structure (27). Importantly, disruption 

of many aspects of the T3SS often abolishes pathogenicity. For these reasons, the potential 

of using the T3SS as a pseudo-broad spectrum antivirulence target is of great interest (13). 

As the T3SS is complex, there are many different potential targeting strategies relating to 

various aspects of the system, which are outlined in Figure 1 and described below.

The T3SS needle apparatus

The T3SS needle apparatus is made up of around 25 different proteins that assemble 

together to regulate and facilitate the secretion of effector proteins into host cells (21). 

Together, the membrane-embedded export apparatus controls the secretion of proteins and 
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anchors the apparatus into the bacterial membrane (28). An ATPase provides recognition for 

chaperone/effector complexes and is thought to provide energy for insertion and unfolding 

of effector proteins into the apparatus (29). The needle provides a ~25Å diameter 

extracellular channel for the secretion of partially unfolded effector proteins (26, 28). The tip 

complex regulates secretion and is a scaffold for translocon assembly (30). Finally, the 

translocon creates a pore in host cell membrane (31). Many subsections of the apparatus, 

such as the tip, needle, inner ring and outer ring, are assembled by oligomers of a single 

protein whose affinities are governed by the sum of weak protein-protein interactions (32). 

Furthermore, the structures of many T3SS proteins are similar between different organisms 

(20). Two possible modes of targeting the needle apparatus directly could be protein-protein 

interactions within each component parts such as the needle monomer interactions or 

interactions between subsections such as the tip-translocon interaction (Figure 1).

Salmonella contains genetic loci that encode three T3SS operons with distinct functions. The 

Salmonella pathogenicity island-1 (SPI-1) encoded T3SS is the most studied and functions 

primarily in the initial invasion of non-phagocytic cells (33, 34). The SPI-2 T3SS is involved 

in the maintenance of Salmonella containing vacuoles and bacterial replication within host 

cells, though it’s structure has not been as extensively characterized (35). In addition, there 

is a flagellar T3SS (24). Other T3SS families include the Ysc and Ysa T3SS of Yersinia and 

the Sct T3SS of Chlamydia (36). Since part of the T3SS needle apparatus is exposed to the 

extracellular environment prior to and during infection, disrupting its assembly is a potential 

target for developing inhibitors.

Chaperones and effectors

T3SS effectors have a wide range of functions within the host cell, but often involve 

manipulating host cell signaling, secretory trafficking, cytoskeletal dynamics, or the 

inflammatory response (23, 37). It has been shown that effectors work in concert for 

infection (38). Regardless, deletions of many effectors attenuate virulence so they are 

considered potential drug targets (39–41). While in the bacterial cytoplasm, effectors are 

often in complex with chaperone proteins that target them to the export apparatus and 

protect from aggregation (42, 43). Disrupting chaperone/effector interactions could prevent 

secretion of effector proteins. However, some effectors, such as YopE and SopE, have been 

shown to retain partial secretion even the absence of their chaperone binding domain (43, 

44). Therefore, disruption of the chaperone/effector interactions may not necessarily result 

in a decrease in infectivity.

T3SS gene transcription

As stated above, the T3SS is organized into genetic loci whose gene expression is highly 

regulated by various transcription factors. Transcriptional regulators of both SPI-1 (45) and 

SPI-2 (46) loci have been identified in Salmonella. T3SS transcriptional regulators have also 

been characterized in other bacteria, such as Pseudomonas (47), Yersinia (48) and Shigella 
(49). Deletions of various T3SS transcription factors lead to the disappearance of the needle 

apparatuses on the bacterial surface due to essential constituents not being expressed (50). 

For this reason, transcription factors are potential drug targets as well.
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Literature of T3SS inhibitors

Salicylidene acylhydrazides

Many different classes of structurally diverse small molecule compounds have been 

identified as inhibitors of the T3SS (Figure 2 and Table 1). The most well studied class of 

T3SS inhibitors is the salicylidene acylhydrazides (SAHs). One of the first reports comes 

from Kauppi et al. (51, 52) where they performed a whole-cell assay screen against T3SS 

gene expression using a reporter of the effector protein YopE fused with luciferase in 

Yersinia. Out of 9,400 compounds tested, a few compounds were identified, including 

SAHs. A disadvantage of the assay was that it was based on coupling between Yop effector 

expression and secretion of the negative regulator LcrQ, therefore it was unclear whether the 

compounds acted directly against the T3SS (51). A follow up study showed that their SAH 

compounds directly blocked effector secretion of the T3SS in a dose-dependent manner and 

they were suggested to act at the level of the T3SS machinery (52, 53). SAHs have been 

shown to broadly inhibit the T3SS of many bacteria genera, including Chlamydia (54–57), 

Shigella (58), Salmonella (59–63) and pathogenic E. coli (64–66). Notably, most SAHs have 

been shown to have no negative affect on bacterial growth (51, 55, 61). Interestingly, some 

SAHs derivatives inhibited bacterial motility by acting on the flagella (51, 59, 60), while 

others did not affect bacterial motility (64).

The specific targets within the T3SS itself of many SAHs remain unknown or ambiguous, 

though putative targets have been suggested. First, it has been suggested that these 

compounds target the formation or assembly of the SPI-1 needle apparatus directly (58). 

Veenendaal et al. (58) showed by electron microscopy that Shigella needles were reduced in 

number by ~40% and the distribution of observed needle lengths was altered by one 

compound. Martinez-Argudo et al. (59) isolated SAH resistant Salmonella strains with a 

mutation in FlhA, a flagellar inner membrane protein, suggesting the compounds target the 

conserved basal body. Second, it has been suggested that SAHs target transcription factors or 

induce changes in cellular metabolism that affect the T3SS (65, 66). Wang et al. used affinity 

chromatography of conjugated beads of SAHS against E. coli lysate and identified three 

specific binding partners involved in bacterial cellular metabolism, WrbA, Tpx and FolX, 

and speculated targeting these proteins result in changes in T3SS gene expression by altering 

cellular metabolism (66). Importantly, binding was observed between the SAHs and 

homologs of WrbA and Tpx from other T3SS containing bacterial pathogens such as 

Salmonella and Pseudomonas (66). Since then, the crystal structure of Tpx has been solved 

and models of its binding to SAHs have been described (67). Finally, it has been suggested 

SAHs interfere with the T3SS through indirect methods, such as altering iron availability 

due to chelation (61, 63). In Salmonella and Chlamydia, the addition of exogenous iron 

attenuates the inhibitory effect of SAHs (55, 63, 68). Furthermore, a mutation in hemG, an 

enzyme involved with heme synthesized, conferred resistance to SAHs in Chlamydia (69). 

In addition, changes in gene expression of iron metabolism related genes has been reported 

in Salmonella, but not observed in E. coli, which suggests other mechanisms are at work 

(63, 65). Recently, a gallium(III)–salicylidene acylhydrazide complex has been shown to 

disrupt secretion and expression of T3SS proteins in addition to inhibiting biofilm formation 

in Pseudomonas (70). The current data on SAHs suggest they target the T3SS through 

McShan and De Guzman Page 4

Chem Biol Drug Des. Author manuscript; available in PMC 2017 January 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



multiple mechanisms or that different SAH derivatives inhibit the system by different 

mechanisms.

Thiazolidinones

Another well studied class of T3SS inhibitors is the thiazolidinones. Felise et al. (71) 

identified thiazolidinone from a whole-cell screen assay in Salmonella against protein 

secretion using a reporter construct of the effector SipA fused to the Yersinia phospholipase 

YplA. Cleavage of a supplied substrate, PED6, by the reporter construct resulted in 

measurable fluorescence, which was proportional to the amount of the secreted SipA (71). 

Out of 92,000 screened compounds, a 2-imino-5-arylidene thiazolidinone was identified as a 

promising candidate, as it did not affect bacterial growth or T3SS transcription, and 

therefore was suggested to target formation or assembly of the needle apparatus (71). The 

compound was additionally shown to inhibit the T3SS of Yersinia, as well as the type II 

secretion system in Pseudomonas and the type IV pili secretion system of Francisella, 

though it did not target the flagellar-specific T3SS (71). Because of the broad range of 

action, it was hypothesized that the thiazolidinones target the conserved outer membrane 

Secretin protein. A follow up study showed that thiazolidinone dimers inhibited the T3SS 

more potently and it was suggested that the compounds act along a large oligomeric protein-

protein interaction surface (72).

Other classes of T3SS inhibitors

Many other chemically and structurally diverse classes of chemical inhibitors that affect the 

T3SS have been identified (Figure 2). Although the specific targets within the T3SS for most 

of these inhibitors have not been elucidated, the putative targets of a few compounds have 

been hypothesized. Yop secretion was inhibited by 2,2′-thiobis-(4-methylphenol) through an 

interaction with the minor translocon protein YopD of Yersinia (73). Unfortunately, this 

compound was shown to be toxic to eukaryotic cells and requires structural modification to 

be considered a suitable drug candidate (73). Mutations in the needle protein PscF of 

Pseudomonas conferred resistance against phenoxyacetamide inhibitors, suggesting PscF as 

their molecular target (74, 75). However, no biochemical binding assays showing a direct 

interaction between the two have been reported. Benzimidazoles have been shown to target 

the T3SS through inhibition of DNA binding by transcription factors such as LcrF in 

Yersinia (76, 77) and the Pseudomonas homolog ExsA (78). Similarly, 1-butyl-4-

nitromethyl-3-quinolin-2-yl-4H-quinoline inhibited the DNA binding of the Shigella 
transcription factor VirF, which controls transcription of Shigella T3SS genes (79). A variety 

of compounds have been shown to inhibit ATPases, such as YscN in Yersinia and its 

homolog BsaS in Burkholderia (80). Further, omeprazole inhibited the ATPase of the SPI-2 

T3SS of Salmonella, possibly through regulation of nitric oxide production (81). 

Pseudolipasin A inhibited phospholipase A2 activity of the Pseudomonas effector ExoU 

(82).

There are many small molecule inhibitors without known specific targets within the T3SS as 

shown in Table 1. A screen in Yersinia by Harmon et al. (83) identified various chemically 

diverse hydrophobic compounds that inhibited translocation of effectors into eukayrotic 

cells, but not in vitro secretion or expression, suggesting they disrupted the formation of a 
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functional translocon or that they inhibited interaction with the host cell. Various compounds 

showing inhibition of T3SS-mediated hemolysis, such as aurodox and the gaudinomines, 

have also been identified (84, 85). Other compounds, such as salicylanilides, 

salicylideneanilines, sulfonylaminobenzanilides, cytosporone B, and citrus flavonoids are 

hypothesized to broadly inhibit T3SS gene transcription through unknown mechanisms (53, 

64, 86–88).

Non-small molecule inhibitors of T3SS

Non-small molecule inhibitors of T3SS have been reported. These include polymers, 

proteins and polypeptide mimics. Ohgita et al. (89) reported that the proton-motive force 

dependent rotation of the Pseudomonas T3SS was inhibited by the addition of the viscous 

polymer polyethylene glycol (PEG) 8000 and this was hypothesized to occur by the 

resistance of physical rotation due to solution viscosity. This hypothesis was further 

supported by a follow up study showing that other viscous polymers, such as alginate and 

mucin, inhibited T3SS rotation while low viscosity polymers such as PEG200 do not (90). 

PEG derivatives are commonly used excipients in drug formulations (91) and because these 

experiments showed a direct correlation between the rotation of the T3SS needle apparatus 

and secretion of effectors, the addition of viscous polymers such as PEG as excipients to 

future antivirulence drug formulations is of interest (90, 91).

Proteins and polypeptides have also been reported as inhibitors of T3SS. For example, the 

glycoprotein Lactoferrin has been shown to decrease virulence of Salmonella, Shigella and 

E. coli by targeting the T3SS (92–95). In Shigella, Lactoferrin induced the loss and 

degradation of the translocon proteins IpaB and IpaC at the bacterial surface (94). Similarly, 

Lactoferrin caused the loss and degradation of the E. coli tip and translocon proteins (EspA, 

EspB and EspD) at the bacterial surface (92, 93, 96). Lactoferrin-mediated inhibition of the 

T3SS is thought to occur through two mechanisms. First, its ability to bind 

lipopolysaccharide on the bacterial surface is thought to cause instability of virulence 

proteins at the bacterial surface by disrupting essential protein-protein interactions (97). 

Second, the degradation of T3SS proteins occurs via the intrinsic serine protease activity of 

Lactoferrins (97). Additionally, Lactoferrin inhibits infection and has a bacteriostatic effect 

due to its ability to sequester iron, which is an essential micronutrient needed by many 

bacterial pathogens (97).

Polypeptide mimics targeting T3SS components have also been described. In Chlamydia, a 

28 amino acid polypeptide mimic targeting the CdsN ATPase via its interaction with the 

putative inner membrane-tethering protein CdsL inhibited bacterial invasion of eukaryotic 

host cells (98). In Salmonella, Hayward et al. (99) showed that a polypeptide derived from 

the C-terminus of the translocon protein SipB was shown to be a potent inhibitor of the 

membrane fusion activity of both wild-type SipB and the Shigella homolog IpaB in vitro. 

This polypeptide mimic also blocked the entry of Salmonella and Shigella into cultured 

eukaryotic cells (99). Finally, coiled-coiled peptides designed against the EPEC tip protein 

EspA inhibited T3SS-mediated hemolysis, EspA polymerization and secretion of effector 

proteins (100).
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Small molecules that bind T3SS proteins

Biologically relevant small molecules interact with structural and effector proteins of the 

T3SS and could potentially be used as scaffolds for drug design. These small molecules 

include sterols and lipids. Bile salts in the intestines of hosts are thought to act as 

environmental sensors for infection by Salmonella and Shigella (101). In Shigella, bile salts 

increase invasiveness to epithelial cells (102), while in Salmonella bile salts decrease 

invasiveness (103). Because the tip protein is assembled on the needle at the bacterial 

surface prior to host cell contact, it has been suggested to function as a sensor for the host 

environment by interacting with bile salts (101). NMR titrations suggested different 

interaction sites for bile salts such as deoxycholate and chenodeoxycholate on the 

Salmonella SipD and the Shigella IpaD tip proteins (104, 105). This is further supported by 

differences in the binding of deoxycholate in co-crystal structures with SipD (106) or IpaD 

(107). Interestingly, binding of bile salts was reported to induce a conformation change in 

IpaD, but not SipD (107), which possibly explains the difference in the responses observed 

between Salmonella and Shigella in the presence of bile salts.

The translocon proteins interact with sterols, for example, the Shigella IpaB translocon 

protein interacts with cholesterol and sphingolipids on host cell lipid rafts to mediate 

infection (108, 109). Binding of IpaB to sterol was proposed to cause the disorganization of 

the Golgi and other recycling networks by altering the distribution of cholesterol on the cell 

membrane and the sorting of the eukaryotic cell surface that promoted bacterial uptake 

(110). Interaction of cholesterol with homologous translocon proteins in other bacteria such 

as the Salmonella SipB and the Pseudomonas PopB/PopD proteins is required for infection 

(111, 112). Data also suggests interaction of translocon proteins with cholesterol is essential 

after initial infection. For example, the T3SS effectors IcsB from Shigella and BopA from 

Burkholderia bound to cholesterol leading to evasion of autophagy in host cells (113). In 

Salmonella, the SPI-2 effector SseJ caused esterification of cholesterol to maintain the 

Salmonella containing vacuole (114). Currently, a detailed mechanism of the molecular 

interactions of T3SS proteins with cholesterol or sphingolipids and their role in pathogenesis 

remain to be worked out.

Future Directions

Identification of T3SS targets

Drug discovery and development of small molecule inhibitors is lengthy and costly, with a 

potential drug candidate taking an average of over 10 years and costing millions of dollars to 

reach the market as an approved drug. The process often begins with a high throughput 

screen to identify potential hits. This is followed by target identification and validation, often 

in parallel with structure activity relationships to identify the most potent lead compound. 

Next, in vivo animal models are tested. If successful, pharmacokinetics and dynamics are 

analyzed and product is formulated as needed. Finally, clinical trials are performed.

The most pressing concern in the field is the identification and characterization of specific 

targets within the many protein components of the T3SS. Even with the most well studied 

classes of inhibitors, SAHs and thiazolidinones, the specific T3SS targets remain unknown 
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or ambiguous. This is likely due to the fact that most high throughout screens utilized assays 

that broadly monitored the secretion of effectors or gene transcription rather than using a 

targeted approach, such as a specific protein-protein interaction involved in the assembly of 

the T3SS needle apparatus. In addition, derivatives within a class of T3SS inhibitors have 

unique chemical structure that could potentially interact with non-T3SS targets in other 

organisms leading to differences in potency or mechanisms of action. This could explain the 

complex nature of the results observed in the literature of SAHs. A targeted and more 

specific approach for future high throughout screens could help solve this problem. Many 

binding assays have been developed to monitor protein-protein interactions of the structural 

proteins of the T3SS needle apparatus that could be adapted for drug screening. For 

example, fluorescence polarization and FRET assays show binding of the tip and translocon 

protein in Shigella (115) and NMR spectroscopy showed binding of the tip and needle 

protein in Salmonella (116).

SAR design

Structure-activity relationships (SAR) provide a direct link between the chemical structure 

of a molecule and its observed activity to create a potent lead compound. The identification 

of a target facilitates SAR studies especially when the mechanism of interaction is known, 

although they can be performed in the absence of a target (117). SAR studies have been 

initiated for a few T3SS inhibitor classes and extensively with SAHs. The data from SAR 

analysis of SAHs is complex and difficult to interpret. The salicylic phenol group is 

necessary for inhibiting activity, but substitutions in other positions are generally tolerable 

(52, 118). SAR based optimization of future SAHs compounds could be complicated if they 

target T3SS through multiple mechanisms as suggested in the literature (52, 118). SAR data 

on other classes of small molecule inhibitors of T3SS are available as well. Thiazolidinone 

analogs show sensitivity against substitutions at the imino N-2, amido N-3, and 5-arylidene 

groups and SAR analysis led to the identification of a more soluble derivative (71). 

Hydrophobicity and lipophilicity were shown to be important factors for inhibition of the 

T3SS by sulfonylaminobenzanilides (53). Cytosporone derivatives with extensive carbon 

chains containing a phenyl acetic acetate ester group were most potent (86). Derivatives of 

8-hydroxyquinoline required a fused pyridine ring and an aromatic hydroxyl group for 

inhibition of T3SS function (119). Benzimidazoles are sensitive to substitutions in the linker 

ringer and the middle phenyl ring (76). Finally, phenoxyacetamides were sensitive to 

changes on the A ring (where 2,4-dichlorophenyl is preferred) and their stereocenter was 

critical for T3SS inhibition and SAR analysis led to the identification of an 8-fold more 

potent compound than found in initial screens (74, 75).

Animal models, pharmacokinetics and formulation

Preliminary studies using animal models have shown the effectiveness of different T3SS 

inhibitors against infection in vivo and validated the approach of targeting T3SS (61, 77, 84, 

120). However, evaluation of pharmacokinetic parameters and formulation of potential drug 

molecule for delivery into host organisms is an essential step of drug discovery. Challenges 

with small molecule drug development include efflux, metabolism and membrane 

permeability. Notably, most of the literature describes relatively small and hydrophobic 

compounds that were identified through whole-cell screening, and therefore these 
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compounds are likely to be able to pass through cellular membranes. A study examined the 

pharmacokinetics of SAHs in a mouse model (120). Many compounds were shown to have a 

short half-life, suggesting rapid metabolism or clearance, as well as problems with 

compound stability and solubility (120). Attempts at formulation with the non-ionic 

surfactant Poloxamer 407 and the polysaccharide (2-hydroxypropyl)-β-cyclodextrin (120, 

121) were unsuccessful in improving efficacy. The ability of academia and the 

pharmaceutical industry to work together will speed the entry of new drugs into the pipeline 

by allowing for more extensive SAR optimization, pharmacokinetic analysis, formulation 

and in vivo testing of small molecule compounds (122).

Conclusions

The clinical application of small molecule inhibitors of bacterial virulence as anti-infectives 

remains to be exploited. Small molecule T3SS inhibitors that have been identified could be 

used to treat bacterial infection on their own because most of them are non-toxic to 

eukaryotic cells while still preventing secretion of effector proteins. Anti-infectives will not 

inhibit bacterial proliferation, thus bacteria must be cleared by other means such as the host 

immune system. These drugs may lead to increased immune cell memory. It is also possible 

that antivirulence drugs will need to be used in combination with other antibiotics for 

clearance. The discovery and validity of many classes of small molecule inhibitors targeting 

different aspects of the type III secretion systems of Gram-negative bacteria suggest that it is 

a promising approach that will applicable to clinical settings in the future.
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Figure 1. 
Potential Targeting Strategies for T3SS Inhibitors. Cartoon showing potential targeting 

strategies of the T3SS, including the T3SS apparatus, effector proteins and transcription 

factors.
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Figure 2. 
Structure of T3SS Inhibitors. Structure of the classes of T3SS inhibitors outlined in Table 1. 

Structures were made using ChemBioDraw 13.0.
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Table 1

Chemical inhibitors of the T3SS and their putative targets.

Compound Structure 
# (Figure 
2)

Organism T3SS Target Reference

(−)-Hopeaphenol 4 Yersinia, Pseudomonas, Chlamydia ? (123)

1-butyl-4-nitromethyl-3-quinolin-2-yl-4H-quinoline [SE-1] 10 Shigella VirF / 
transcription 
factor

(79)

2-imino-5-arylidene thiazolidinone 13 Yersinia, Salmonella also inhibits 
T2S of Pseudomonas and T4-Pilli 
Secretion of Francisella

Secretin? (71, 72, 124)

2,2′-thiobis-(4-methylphenol) 14 Yersinia
Pseudomonas

YopD / translocon (73)

8-hydroxyquinolines [INP1750] 1 Yersinia, Chlamydia ? (119)

Aurodox 5 EPEC, Citrobacter ? (84)

Benzimidazole Yersinia LcrF / 
transcription 
factor

(76)

Pseudomonas ExsA / 
transcription 
factor

(77, 78)

Caminoside A-D 7 EPEC ? (125, 126)

Citrus Flavonoids 11 Vibrio ? (87)

Cytosporone B 8 Salmonella ? (86)

Gaudinomine A-D 12 EPEC ? (85)

Omeprazole 15 Salmonella ATPase inhibitor, 
effects through 
nitric oxide 
production

(62, 81)

Phenoxyacetamide 16 Pseudomonas PscF / needle 
protein

(74, 75)

Piericidin A1 3 Yersinia ? (127)

Pseudoceramine 18 Yersinia ? (128)

Pseudolipasin A 9 Pseudomonas ExoU / effector (10)

Salicylanilide 20 Yersinia ? (51, 88, 129)

Salicylidene
Acylhydrazide

2 Chlamydia HemG / heme 
metabolism

(54–57, 120, 130)

Yersinia ? (51, 52)

Shigella needle assembly? (58)
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Compound Structure 
# (Figure 
2)

Organism T3SS Target Reference

Salmonella FlhA / flagellar 
inner membrane 
protein

(59–63)

EPEC ?, possibly due to 
non-T3SS cell 
metabolism 
enzymes, such as 
WrbA/Tpx/FolX

(64–66)

Salicylideneaniline 19 Yersinia, EPEC ? (64)

Sulfonylaminobenzanilide 17 Yersinia ? (51, 53)

Thiohydrazones of Thiohydrazide 6 Chlamydia ? (131)

Various Compounds not shown Yersinia, EPEC ? (132, 133)

Various Compounds not shown Yersinia ? (83)

Various Compounds not shown Yersinia
Burkholderia

YscN / ATPase
BsaS / ATPase

(80)

Viscous Polymers [PEG8000 / Alginate / Mucin] not shown Pseudomonas inhibits T3SS 
apparatus rotation

(90)

Lactoferrin not shown Shigella, EPEC, Salmonella degradation of tip 
and translocon 
proteins

(97)

Polypeptide Mimics not shown Salmonella/Shigella SipB, IpaB / 
Translocon

(134)

EPEC CdsN ATPase (98)

EspA / tip (100)
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