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Abstract

Nanoscience has matured significantly during the last decade as it has transitioned from bench top 

science to applied technology. Presently, nanomaterials are used in a wide variety of commercial 

products such as electronic components, sports equipment, sun creams and biomedical 

applications. There are few studies of the long-term consequences of nanoparticles on human 

health, but governmental agencies, including the United States National Institute for Occupational 

Safety and Health and Japan’s Ministry of Health, have recently raised the question of whether 

seemingly innocuous materials such as carbon-based nanotubes should be treated with the same 

caution afforded known carcinogens such as asbestos. Since nanomaterials are increasing a part of 

everyday consumer products, manufacturing processes, and medical products, it is imperative that 

both workers and end-users be protected from inhalation of potentially toxic NPs. It also suggests 

that NPs may need to be sequestered into products so that the NPs are not released into the 

atmosphere during the product’s life or during recycling. Further, non-inhalation routes of NP 

absorption, including dermal and medical injectables, must be studied in order to understand 

possible toxic effects. Fewer studies to date have addressed whether the body can eventually 

eliminate nanomaterials to prevent particle build-up in tissues or organs. This critical review 

discusses the biophysicochemical properties of various nanomaterials with emphasis on currently 

available toxicology data and methodologies for evaluating nanoparticle toxicity.

1. Introduction

The substantial differences in physicochemical properties of nanomaterials compared to the 

bulk phase has been recognized in numerous scientific and technological areas.1 

Nanomedicine is a new field of science based on the significantly enhanced properties of 
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nanoparticles (NPs) (e.g. semiconducting-, metallic-, magnetic-, and polymeric-

nanosystems) that make possible the early diagnosis and new treatments for catastrophic 

diseases, such as multiple sclerosis, atherosclerosis, and cancer.2–5 For instance, one of the 

most promising NP systems is superparamagnetic iron oxide NPs (SPIONs), which are in 

clinical development as imaging agents6 and preclinical studies for theranosis applications 

(i.e. simultaneous diagnosis and treatment).7–10 In addition, SPIONs have been used for 

magnetic labeling, cell isolation, hyperthermia and controlled drug release.11–21 Several 

commercial nano-agents are already available for biomedical applications and many 

nanomedicine-products are near obtaining final approval for clinical use.22

Besides biomedical applications, NPs are used commercially in products such as electronic 

components, scratch-free paint, sports equipment, cosmetics, food color additives, and 

surface coatings.23 Hence, our exposure to nanomaterials is significant and increasing, yet 

there is little understanding of the unique toxicological properties of NPs and their long-term 

impact on human health.24,25 Because of their very small size, NPs are capable of entering 

the human body by inhalation, ingestion, skin penetration or injections, and NPs have the 

potential to interact with intracellular structures and macromolecules for long periods of 

time.

The number of nanomaterials-based publications has increased significantly over the years; 

however, the majority of publications are focused on the synthesis and development of novel 

nanomaterials and less than one percent have focused on NPs’ biological impact. While the 

toxicity of many bulk materials is well understood, it is not known at what concentration or 

size they can begin to exhibit new toxicological properties due to nanoscopic dimensions. 

There is a considerable gap between the available data on the nanomaterials production and 

toxicity evaluations. The lack of toxicity data can prohibit the safe design of NPs.

This review presents a broad overview of the available in vivo toxicity assessments of NPs. 

In addition, the biophysicochemical properties of NPs in vivo are discussed in detail.

2. Mechanism of toxicity

Several different mechanisms can cause NP toxicity in body, but most intracellular and in 

vivo toxicities from NPs arise from the production of excess reactive oxygen species 

(ROS).26–28 One mechanism of NP-induced oxidative stress occurs during the dissolution of 

iron-based NPs, which catalyzes ROS generation and formation of OOH• and OH• radicals 

from H2O2 via the Fenton reaction. Furthermore, some inert nanomaterials do not give rise 

to spontaneous ROS production, yet are capable of inducing ROS production under 

biological conditions, based on the ability of the NPs to target mitochondria.29 ROS are both 

physiologically necessary and potentially destructive. Moderate levels of ROS play specific 

roles in the modulation of several cellular events, including signal transduction, proliferative 

response, gene expression and protein redox regulation.30,31 High ROS levels are indicative 

of oxidative stress and can damage cells by peroxidizing lipids, altering proteins, disrupting 

DNA, interfering with signaling functions, and modulating gene transcription32 and finally 

ending up in cancer, renal disease, neurodegeneration, cardiovascular or pulmonary disease. 

ROS can steal electrons from lipids in cell membrane resulting in decline in physiological 
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function and cell death.33 Oxidative stress associated with TiO2 NPs, for example, results in 

early inflammatory responses, such as an increase in polymorph nuclear cells, impaired 

macrophage phagocytosis, and/or fibro proliferative changes in rodents.34 TiO2 NPs also 

can cause proinflammatory effects in human endothelial cells. Carbon NPs have been shown 

to induce oxidative stress in fish brain cells and pulmonary inflammation in rats.35,36 

Exposure of human keratinocytes to insoluble carbon NPs was associated with oxidative 

stress and apoptosis.

Toxicity from ROS can be more pronounced in the central nervous system (CNS) due to the 

high content of unsaturated fatty acids, which are susceptible to peroxidation.37 ROS also 

play a role in the development of vasculopathies, including those that define atherosclerosis, 

hypertension, and restenosis after angioplasty.38 Accumulation of NPs in the organs of the 

reticuloendothelial system (RES) along with the prevalence of numerous phagocytic cells, 

imbalances ROS homeostasis and antioxidant defenses, which makes the liver and spleen 

main targets of oxidative stress.

Nanoparticle-induced oxidative stress affects cell signaling in three stages as described by 

Nel et al.39 A low level of oxidative stress enhances transcription of defense genes through 

transcription factor nrf2. A higher level of oxidative stress activates inflammation signaling 

through NFκB, and very high levels are connected with activation of apoptotic pathways 

and necrosis. Changing these signaling pathways in cells is associated with the carcinogenic 

effects of NPs.40 Peterson and Nelson reviewed the ROS toxicity of NPs towards the cell 

nucleus and DNA material. The accumulation of single strand breaks and oxidative induced 

base lesions can lead to double strand breaks, which are considered the most lethal type of 

oxidative damage to DNA.41 Excess amounts of ROS can damage the mitochondrial DNA 

(mtDNA) as well.42 Damage to mtDNA is reported to associate with several clinical 

syndromes such as neurogenic muscle weakness, ataxia and retinitis pigmentosa, 

mitochondrial encephalomyopathy lactic acidosis, stroke like episodes, retinitis pigmentosa, 

cardiac conduction defect and elevated cerebrospinal fluid protein.43 To mitigate ROS 

effects, some new steps have been taken in NP design. Recently, cerium oxide nanoparticles 

have been developed that incorporate oxygen defects which scavenge free radicals. It was 

found that the cerium oxide NPs prevented oxidative stress similarly as well as N-acetyl 

cystine in mice with tetrachloride-induced liver toxicity. Apart from ROS effects, certain 

physicochemical properties of NP can also induce toxicity. For instance, recently Minchin et 

al. showed that some NPs cause unfolding of fibrinogen, hence promoting its interaction 

with the integrin receptor, Mac-1. Activation of this receptor upregulates the NFκB 

signaling pathway, resulting in the release of inflammatory cytokines.44

3. Analysis of nanomaterials toxicity

3.1. In vitro assay vs. in vivo assay

The in vitro methods are ideal in nanotoxicology research because they can produce 

reproducible results rapidly and inexpensively without the use of animals.45 Simple in vitro 

methods that produce specific and quantitative measurements of toxicity are extremely 

valuable for initially evaluating the expected biocompatibility of new NPs. Widely cited 

examples include the LDH assay of cell membrane integrity, the MTT assay of 
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mitochondrial function, and immunochemistry markers for apoptosis and necrosis. 

However, these methods provide little information on the mechanism or cause of cellular 

toxicity and death. For example, cell viability is measured as a function of metabolic activity 

in many tetrazolium-based toxicity assays, but the mechanism underlying mitochondrial 

inactivity and cell death cannot be elucidated from this assay. In fact, any lethal 

consequences from NP exposure including membrane lysis, cell cycle arrest and apoptosis 

may stop mitochondrial activity. Other colorimetric assays such as Live/Dead, Trypan Blue 

and Neutral also provide little information regarding the mechanisms of cell death, as they 

just discriminate live cells from dead cells.

The accuracy and precision of colorimetric assays for in vitro toxicity of NPs are also 

affected by the interactions of the nanoparticles with the colour-generating dyes. For 

example, it has been found that CNTs interact with MTT formazan crystals or other dyes 

such as Neutral Red or Alamar Blue by physisorption and produce conflicting results.46–49 

Similarly absorption of key proteins such as albumin or LDH can lead to confounding 

endpoint measurements.50–52 In addition to these problems, inherent issues including dose 

effect, time course effect, cell–cell and cell–matrix interaction and physico-chemical 

characteristics of NPs in cell culture conditions also contribute in false results. Since higher 

doses are usually used in in vitro experiments, toxicity is usually higher in vitro compared 

with in vivo where lower doses are used. Short term in vitro test results cannot be used as a 

good prognostic of long-term physiological effects. Recently Lee et al. demonstrated that 

common 2D cell cultures may not accurately reflect the actual toxicity of NPs as they do not 

adequately represent the functions of 3D tissues that have extensive cell–cell and cell–

matrix interactions with obvious different diffusion/transport conditions.53 Using CdTe 

nanoparticles, they observed significantly reduced toxicity compared to 2D culture system.

Recent studies have shown little correlation between the in vitro and in vivo toxicity of some 

nanomaterials. Sayes et al.54 assessed the reliability of in vitro screening studies to predict in 

vivo pulmonary toxicity of several NPs in rats, including carbonyl iron, crystalline and 

amorphous silica, and zinc oxide. The comparisons of in vivo and in vitro measurements 

demonstrated little correlation between groups. Thus the in vitro systems are mainly useful 

to identify specific characteristics of nanomaterials that can be used as indicators of toxicity 

and in order to establish a ranking of NP toxicity for mechanistic studies (Fig. 1). Animal 

models would be particularly useful to study aspects that cannot be obtained with in vitro 

systems, such as toxico-kinetics in the body, i.e. absorption, distribution, metabolism, and 

elimination. In vivo tests are time-consuming, expensive, and invoke ethical issues. 

Nevertheless, these studies can provide information on the carcinogenicity, pulmonary, 

dermal and gastrointestinal toxicities related to the initial deposition of nanomaterials by 

various exposure routes. In addition, these studies can evaluate the immunological, 

neurological, reproductive, cardiovascular and developmental toxicity to determine the 

chronic systemic toxicity of nanomaterials.55

3.2. In silico assays for nanotoxicity

In silico methods to predict the toxicity of nanomaterials can supplement or replace some 

expensive and time-consuming assays, especially early in the design process of new 
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materials. Quantitative structure–activity relationships, collectively referred to as (Q)SARs, 

are theoretical models that can be used to predict the physicochemical and biological 

properties of molecules.56 According to the QSAR paradigm, if the molecular parameters 

have been calculated for a group of compounds, but experimental data on the activity of 

those compounds are available for only part of the group, it is possible to interpolate the 

unknown activity of the other compounds from the molecular descriptors using a suitable 

mathematical model.57 In silico predictive toxicology techniques are a fast and cost efficient 

alternative (or supplement) to bioassays for the identification of toxic effects of 

nanomaterials.58 Sayes et al. used the QSAR method to develop mathematical models to 

predict cellular membrane damage resulting from several nanoparticle physicochemical 

features. They found that the size, concentration and zeta potential of particles in ultra-pure 

aqueous medium are among the most influential factors on cytoplasm leaking.59 Puzyn et al. 

applied nano-QSAR to predict the toxicity of 17 different metal oxides nanoparticles. Their 

theoretical model along with experimental data was able to describe the relationship 

between NP structure and cytotoxicity to E. coli cells.57 In silico methods can be applied to 

both in vivo and in vitro data, hence the quality of the in vivo or in vitro data is of 

fundamental importance. However, the uncertainty of the in vivo data limits the accuracy of 

the model. In fact, the results from in silico methods cannot be expected to exceed the 

accuracy of the data used to construct the model.60

4. In vivo toxicity

The increasing production and use of NPs, has given rise to many concerns and debates 

among public, scientific and regulatory authorities regarding their safety and final fate in 

biological systems. In vitro and in silico methods for acute chemical toxicity are able to 

provide adequate data for many bulk materials; however, the in vivo interaction of NPs and 

biological system is quite complicated and dynamic. In addition, in the absence of sufficient 

in vivo data to correlate with the in vitro and in silico assays, these methods are of limited 

use.

Nanoparticles can be administrated by six principal routes: intravenous, transdermal, 

subcutaneous, inhalation, intraperitoneal and oral.61 Although inhalation, ingestion, skin 

contact and intravenous injection are the predominant routes of exposure for human, existing 

in vivo data were largely collected from inhalation and intra-tracheal instillation in rodents, 

including the bulk of toxicity data for Au, C, CdO, Fe, Mn2O3, Ni, TiO2 and carbon 

nanotubes.62 A limited number of studies concern the intravenous and oral routes of 

administration, which are more relevant for most NPs of interest in nanomedicine.63

When the nanostructures enter into the body, absorption can occur through interactions with 

biological components such as proteins and cells; afterwards, they can distribute into various 

organs where they may remain in the same structure or become modified or metabolized.64 

NPs may enter cells of the organ and reside in the cells for an unknown amount of time 

before leaving to other organs or to be excreted. Most of the recent studies in this area have 

focused on the absorption of nanostructures via inhalation or dermal exposure. Some studies 

of NP toxicity have focused on NPs with known toxic characteristics, such as asbestos and 

carbon black.65–67 However, these studies are inadequate to predict the biological 
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interactions of substantially more complex nanoparticles. For example, the absorption of 

quantum dots (QDs) through porcine skin is highly variable with surface coating chemistry, 

with periodic variation in cellular uptake.68 Orally administered nanostructures do not seem 

to be significantly absorbed and are recovered in feces.69,70 These studies suggest the 

importance of exposure route and physical properties of the nanostructures on absorption 

behavior. The importance of in vivo studies in nanomaterial toxicology and the challenges 

encountered in such studies have been discussed in detail by Fischer et al.71

A complete analysis of the pharmacokinetics (PK) of NPs is necessary to understand their 

activity and their potential toxicity. PK includes absorption, distribution, metabolism, and 

excretion of nanostructures and gives quantitative information about their behavior in 

biological systems. The data can lead (i) to improvements in design of NPs for diagnostic 

and therapeutic applications, (ii) a better understanding of nanostructures non-specificity 

toward tissues and cell types, and (iii) assessments of basic distribution and clearance that 

serve as the basis in determining their toxicity and their future investigative directions.

4.1. Blood contact properties

Blood compatibility is an essential property for the in vivo functions of most NPs. Lack of 

blood compatibility may trigger coagulation and clot formation through adsorption of 

plasma proteins, platelet adhesion and activation of complement cascades. The coagulation 

of NPs is thermodynamically driven to minimize the contact surfaces areas of hydrophobic 

domains with the aqueous milieu. Therefore, the blood contact properties of NPs should 

always be evaluated prior to clinical use to gauge their safety.72 NPs in contact with blood 

can induce hemolysis, palate aggregation or blood coagulation, so the hemolysis assay using 

mammalian erythrocytes is a primary screening of NP toxicity.73,74 Erythrocytes are the 

predominant cell type in the blood and play a crucial role in transporting oxygen. These cells 

are vulnerable to toxicity with deformation, agglutination and membrane damage.75 NPs 

exert hemolytic effects through multiple mechanisms, including enzymatic modifications, 

changes to the rheological properties, oxidative damage of cell membranes, changes in 

osmotic stability and endotoxin and/or microbial contamination.

There is some evidence that some carbon nanoparticles and microparticles have the ability to 

activate platelets and enhance vascular thrombosis and initiate thrombosis.76,77 Radomski et 

al. showed that both urban dusts and engineered carbon particles, such as CNT and carbon 

black, except C60CS, stimulated platelet aggregation and accelerated the rate of vascular 

thrombosis in rat carotid arteries with a similar rank order of efficacy. All particles resulted 

in up-regulation of GPIIb/IIIa in human platelets. In contrast, particles differentially affected 

the release of platelet granules, as well as the activity of thromboxane-, ADP-, matrix 

metalloproteinase- and protein kinase C-dependent pathways of aggregation.77 Consistent 

with the in vitro results, exposure to nano Ag (0.05–0.1 mg kg−1 intravenously or 5–10 mg 

kg−1 intratracheal instillation) in vivo enhanced platelet aggregation and promoted venous 

thrombus formation in rats.78 Similarly, Seaton et al. have shown that exposure to ambient 

airborne particulate matter with aerodynamic diameter of 10 nm or less results in increased 

plasma fibrinogen levels.79 In addition, tracheal inhalation of diesel exhaust particles caused 

peripheral thrombosis in experimental animals.80
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The coagulation properties of NPs can be evaluated with several routine and widely 

available clinical assays,63 including prothrombin time (PT), activated clotting time (ACT), 

activated partial thromboplastin time (APTT) and thrombin time (TT). In addition, Neun et 

al. developed detailed procedures for measuring the thrombogenicity of NPs.81 Since NPs 

may affect the intrinsic coagulation pathway, NP treatment should be subject to the APTT 

testing prior to use in nanomedical application.82,83 Table 1 provides a summary of 

procedures for testing blood coagulation. Such clotting assays are useful as screening tests to 

evaluate the intrinsic and extrinsic effects of NPs on the blood coagulation cascades.

4.2. Pharmacokinetics study of NPs

4.2.1. Absorption—The surfaces of NPs are rapidly covered by selective sets of blood 

plasma proteins after injection, forming the so-called “protein corona”. For other routes of 

exposure, NPs must pass through additional physiological barriers before entering the blood 

(e.g., the skin, gastrointestinal tract, or the lungs), picking up additional biomolecules as 

they are transported.86 The absorption of biomolecules to such surfaces confers a new 

“biological identity” in the biological milieu, which determines the subsequent cellular and 

tissue responses.87 The protein corona is a complex mixture of absorbed proteins in 

equilibrium on the surface of NPs88,89 which play an important role in determining what 

surface is actually presented to cells that take the nanostructure up and activate signaling 

pathways.90,91 The protein corona is composed of an inner layer of selected proteins with a 

lifetime of several hours in slow exchange with the environment (hard corona) and an outer 

layer of weakly bound proteins which are characterized by a faster exchange rate with the 

free proteins (the soft corona).86 The biological impact of protein-coated NPs is mainly 

related to the hard corona and their specificity and suitable orientation for a particular 

receptor. Although low-affinity high-abundance proteins may initially adsorb to the surface 

of NPs, lower abundance but higher affinity proteins quickly replace them.

Nanoparticle size, shape, surface charge, and solubility are among the contributing factors, 

which determine the interaction of the NPs with proteins.92 Protein absorption strongly 

influences NPs fate and biodistribution in body. For instance, adsorption of fibrinogen, IgG, 

or complement factor, is believed to promote phagocytosis with removal of the NPs from the 

bloodstream.93 On the other hand, binding of human serum albumin or apolipoproteins 

promotes prolonged circulation time in blood.94

A combination of analytical techniques is needed to understand the binding kinetics between 

nanostructures and the proteins on cells.90,95 Conformational changes of proteins adsorbed 

onto nanostructure surfaces could alter the function of the protein88,96 and could affect the 

fate of the nanostructures.94,102 Many of the subset of serum proteins that interact with 

nanosystems are immunoactive, such as complement factors97 and immunoglobulins. A 

correlation of nanostructure–protein interaction with in vivo PK data permits the assembly of 

a structure–activity relationship; this represents an important next step for evaluating 

nanotoxicity.71

4.2.2. Distribution—After absorption, NPs can be distributed to various organs, tissues, 

and cells. Only a few recent studies have focused on the biodistribution of engineered 
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nanostructures. In these studies, the key is to quantitatively map the location of the 

nanostructures at different time points and at different doses, as size, shape, aggregation 

state and surface chemistry may affect nanostructure biodistribution. Thus it is difficult to 

predict the in vivo behavior of NPs. When injected intravenously, NPs are cleared rapidly 

from the circulation, predominantly by the Kupffer cells of the liver and the spleen 

macrophages.98

In the distribution phase, the density and permeability of blood vessels are key factors that 

determine the speed at which equilibrium and organ-specific concentrations are reached, 

where highly vascularized areas reach equilibrium more rapidly than poorly vascularized 

areas. In studies with (QDs) and single-walled carbon nanotubes (SWCNT), it was 

discovered that a high dose percentage can be sequestered in the liver, dependent upon the 

surface modification.70,99,100 Other organs such as the spleen, lymph node, or bone marrow 

can take up nanostructures. All of these organs contain large concentrations of macrophages, 

which are part of the reticuloendothelial system (RES). The RES system, also called the 

mononuclear phagocyte system (MPS), is a part of the immune system that consists of 

monocytes and macrophages involved in the uptake and metabolism of foreign molecules 

and particulates.101 Nanostructures coated with polyethylene glycol—can avoid RES 

uptake.102 In another example, MWCNT were shown to evade the RES when their surface is 

coated with ammonium and chelator functional groups103 but were taken up when coated 

with taurine.69 Aside from the surface chemistry, the core nanostructure can also impact the 

bio-distribution behavior. Polymer-based nanostructures and superparamagnetic iron oxide 

nanosystems for MRI contrast agents are known to degrade in vivo, but there is no clear 

indication whether fullerenes or silica NPs degrade in vivo.70,103–105 Fischer et al.99 and 

Ballou et al.105 showed that core ZnS-capped CdSe QDs remain intact and fluorescent in 

vivo after one month; however, neither study analyzed the metabolism of the organic coating 

on the nanostructure surface. The breakdown of the nanostructures could elicit molecular 

responses that are not predictable, and thus, an understanding and cataloging of what, when, 

and how much nanostructures degrade is extremely important.

4.2.3. Metabolism—There are very few reports regarding the metabolism of NPs. 

Polymer-based nanostructures and superparamagnetic iron oxide nanostructures have been 

shown to degrade in tissues; while QDs, fullerenes and silica NPs did not degrade in 

vivo.70,103–105 Although it is usually considered implausible that enzymes could effectively 

metabolize inert nanomaterials such as gold and silver NPs, recent study showed that 

generally considered bio-persistent CNT is degraded by neutrophil myeloperoxidase.106 

Likewise, coatings, capping materials, and surface functional groups could be metabolized. 

For example, the protein cap of a functionalized QD could be cleaved by proteases.107

Nanoparticles could be metabolized in liver through phase I and II metabolic pathways. 

Phase I reactions involve formation of a new or altered functional group by oxidation, 

reduction, or hydrolysis reactions to increase reactivity or polarity. Phase II reactions 

involve conjugation of an endogenous compound, such as glucuronic acid orglycine, to 

ensure higher water solubility and lowered chemical reactivity. Frequently, phase II 

reactions occur after the NPs have been rendered more reactive by phase I metabolism. The 

metabolites of these processes have a higher polarity and are excreted at a higher rate than 
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the original molecule through the kidneys via the urine or the liver via the bile. For example 

the metallic core of QDs and other metal oxides could be sequestered by metallothionen and 

excreted. These enzymes, present in liver and kidney, can bind metals and restore the 

cellular metal homeostasis.108

The most important enzymatic system of phase I metabolism is the microsomal family of 

isoenzymes, cytochrome P450, which can transfer electrons supplied by flavoproteins to 

catalyze oxidation. However, there is evidence that NPs can inhibit activity of this 

enzyme.109 Since NPs breakdown may elicit unique unpredictable molecular responses, 

understanding the exact mechanisms of degradation or alternation of NPs is extremely 

important.

4.2.4. Elimination—Elimination can occur via multiple routes, including perspiration, 

seminal fluids, mammary glands, saliva, and exhaled breath, although the urine via the 

kidneys103 and the feces via the biliary duct110,111 are the expected primary routes of NP 

elimination. Hydroxyl functionalized SWCNT dosed intra-peritoneally accumulate in the 

liver and kidneys and are excreted in the urine within 18 days;112 whereas, ammonium 

functionalized SWCNT dosed intravenously showed no liver uptake and much faster renal 

excretion.103

For nanostructures such as QD, two initial studies showed they are not excreted and remain 

intact in vivo.70,99 Reddy et al.113 showed that QDs smaller than 5.5 nm and coated with 

cysteine are excreted in the urine of mice. If not excreted in this manner, how long they 

reside and their long-term behavior in vivo remains unclear. For example, since the liver is 

involved in nanostructure uptake, biochemical indicators of liver stress were examined in 

response to multi-walled CNTs. No negative effect was observed after 28 days despite 

accumulation in that organ.69 Inflammation in response to nanostructures has been observed, 

though, with gene expression analysis of rat lungs showing upregulation of transcription 

factors associated with cellular responses to oxidative stress.114 QD have activated 

astrocytes in the brain upon direct injection, depending on surface functionalization,115 and 

nanostructure size has been shown to influence the ability to produce CD8 and CD4 type 1 T 

cell responses, with those between 40 and 50 nm causing a maximum effect.116,117 These 

specific studies can identify the organs that could be stressed by exposure to nanostructures 

and can provide a molecular basis of the stress. If these responses can be associated with 

specific organ cells and NP characteristics (e.g. surface chemistry, size, shape, aggregation 

and composition), then it would be possible to correlate the toxic effects of NP to specific 

nanostructure properties. Demonstrated PK studies of various NP systems are shown in 

Table 2.

5. Effect of physicochemical properties of NPs on toxicity

Characteristic parameters of NPs, including dissolution, chemical composition, size, shape, 

agglomeration state, crystal structure, specific surface area, surface energy, surface charge, 

surface morphology and surface coating, influence the biological interaction of NPs, and 

hence it is important to evaluate these properties in determining toxic potential of 
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nanomaterials. In the following section we review the effect of abovementioned parameters 

on in vivo toxicity of nanomaterials.

5.1. Effect of size

Particle size and surface area are crucial material characteristics from a toxicological point 

of view, as interactions between nanomaterials and biological organisms typically take place 

at the surface of the NP. As the particles’ size decreases, the surface area exponentially 

increases and a greater proportion of the particles’ atoms or molecules will be displayed on 

the surface rather than within the bulk of the material. Thus, the nanomaterial surface 

becomes more reactive toward itself or surrounding biological components with decreasing 

size, and the potential catalytic surface for chemical reactions increases. Since it is known 

that endocytic mode, cellular uptake and efficiency of particle processing in the endocytic 

pathway are dependent on size of material,26,123–125 size plays a key role in physiological 

response, distribution, and elimination of materials.126,127 In vitro cytotoxicity studies of 

NPs of different size using various cell types, culture conditions and time course of exposure 

are being reported increasingly.2,127–136 Although some aspects of size dependent NP 

toxicity can be reasonably predicted by in vitro techniques, the wide range of NP 

concentrations and exposure times makes it difficult to determine when the observed 

cytotoxicity is clinically relevant. In addition, the uniqueness of each nanomaterial type 

being investigated for medical applications makes generalization of nanomaterial toxicity 

rather complicated. While in vitro NP applications requires less strict toxicological 

characterization, in vivo use of NPs requires a comprehensive understanding of the kinetics 

and toxicology of the particles.136 To our knowledge, few data are available in the literature 

regarding the in vivo size dependent evaluation of nanomaterials. Thus a better 

understanding of the relationship between the physicochemical properties of the nano 

systems and their in vivo behavior would provide a basis for assessing toxic response and 

more importantly could lead to predictive models for assessing toxicity.71 In the following 

section, existing research regarding the effect of nanomaterial size on the in vivo toxicity is 

discussed.

Since inhalation is the most important route of human exposure to NPs, the early 

characterizations of in vivo toxicity of NPs have been conducted in respiratory systems. In 

general it is observed that as the particle size decreases, there is a tendency for pulmonary 

toxicity to increase, even if the same material is relatively inert in a bulkier form. For 

example, Oberdorster et al.137 showed that TiO2 particles with a size of 25 nm when 

instilled or inhaled into the human lungs produced a much greater inflammatory response 

compared to larger particles of 250 nm.

The nature of the interface between nanomaterials and biological systems affects the in vivo 

biocompatibility and toxicity of NPs. A series of studies in rodents using a variety of 

different NPs showed that surface area is a critical factor in provoking lung and other 

epithelial-induced inflammatory responses.138 When equal-mass doses of fine or ultrafine 

particles of the same composition were inhaled by rats, the latter caused greater pulmonary 

inflammation. However, there was not any difference between them when the particle dose 

was normalized to the equivalent total particle surface area.
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The lung is an effective barrier against the uptake and distribution of NPs. Within the human 

respiratory tract, inhaled particles of different sizes exhibit different fractional depositions, 

as ultrafine particles with diameters smaller than 100 nm deposit in all regions, whereas 

particles smaller than 10 nm deposit in the tracheobronchial region, and particles between 10 

and 20 nm deposit in the alveolar region. Particles smaller than 20 nm also deposit 

efficiently in the nasopharyngeal-laryngeal region.139,140

In order to show toxic effects, NPs first need to traverse the epithelial barrier. NPs usually 

enter cells through energy-dependent endocytosis, non-phagocytic mechanisms or through 

receptor mediated endocytosis. There is evidence that translocation or distribution of NPs is 

size dependent in rats. Kreyling et al.141 showed that instillation of Ir192-particles with a 

diameter of 80 nm resulted in 0.1% being translocated to the liver, but with particles of 15 

nm, this increased to 0.3–0.5%. Translocation of NPs across the alveolar-capillary barrier is 

still a matter of debate in other animals and in humans.142 Although it seems that size can be 

useful for assessing the toxic potential of some NPs, there is a consensus among experts that 

NP surface area or size is not the only physicochemical property that determines toxicity. 

Usually there is no precision in size determination as particle aggregation and agglomeration 

and the physicochemical properties of dispersion medium can also influence the ultimate 

particle size and related toxicity. For example, the hydrodynamic diameters of TiO2 and 

ZnO particles are significantly greater in phosphate buffer than in water, thus their sizes are 

often significantly larger than the primary particle size.143 Aggregation is more common in 

CNT, which have a tendency to form bundle-like agglomerates because of their geometry 

and hydrophobic surface. In vivo aggregation has been observed for both SWCNT and 

MWCNT with the difference that SWCNT agglomerates remained at same size with 

translocation, but MWCNT agglomerates grew larger without any translocation from their 

administration site.144

Studies have implicated size, length, and impurities of aggregated CNTs as primary 

determinants for toxicity, as the CNT cellular uptake mechanism may differ depending on 

the functionalization and size of the CNTs, including endocytosis and passive 

diffusion.145–147

Several studies conducted on the in vivo distribution of intravenously administered CNT 

showed that CNT are mainly accumulated in liver, spleen and lungs without acute toxicity; 

however, cytotoxic effects induced by aggregates and accumulation have been observed in 

long-term studies.148 Wick et al.149 reported that agglomerated CNTs have more adverse 

effects than well-dispersed CNTs, and they changed the morphology and performance of a 

mesothelioma cell line similar to asbestos. Mercer et al.150 also showed that a well-

dispersed preparation of CNT with a mean diameter of 0.69 μm had a better interstitial 

distribution with rare macrophage phagocytosis after pharyngeal aspiration to mice. 

However, as improved dispersion of the CNTs caused both increased aspiration of smaller 

structures as well as their easy entrance into the alveolar walls, the dispersed CNT enhanced 

pulmonary interstitial fibrosis. Taking it all together, it is likely that the most appropriate 

means of expressing size related toxicity for NPs must be determined on an individual 

basis.151
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Generally speaking, the harmfulness of NPs may arise from their size-related ability to 

readily enter biological systems152 and modify the structure of proteins through formation of 

new NP–protein complexes or enhanced protein degradation.153,154 Clinical and 

experimental studies indicated that small size, and consequently a large surface area, 

enhance the generation of ROS. The electron donor or acceptor sites on the NPs react with 

molecular oxygen, resulting in formation of superoxide anions or hydrogen peroxide, which 

subsequently oxidizes other molecules. This phenomenon plays a role in the ability of NPs 

to induce another tissue injury. Recently Jiang et al.155 showed that binding and activation 

of membrane receptors and subsequent protein expression strongly depend on NP size. 

Using gold NPs between 2 and 100 nm, they found that the NPs actively engage and mediate 

the molecular processes that are essential for regulating cell functions. Redistribution of NPs 

from their site of deposition156,157 or deposition into renal tissues158 and escape from 

normal phagocytic defenses159,160 also may lead to toxicity.

Apart from size dependent toxicity of NPs toward respiratory organs, oral toxicity of NPs 

has been shown to have significant correlation with size in spite of the fact that the 

gastrointestinal tract offers physical, chemical, and cell-based barriers against the uptake and 

spread of NPs. Chen et al.161 showed that the oral toxicity of copper particles of 17 μm to 

23.5 nm increased with decreasing size; larger particles were non-toxic at high doses (>5000 

mg kg−1) whereas the smallest particles were moderately toxic (LD50 of 413 mg kg−1). The 

toxicity of copper NPs was attributed to the accumulation of copper ions culminating in 

metabolic alkalosis and copper ion overload. The much larger copper microparticles were 

chemically inert, due to their lower specific surface area. Quantitative studies of oral 

administration of gold NPs of 4, 10, 28, and 58 nm diameter in mice also showed that uptake 

is dependent on particle size, as smaller particles cross the gastrointestinal tract more 

readily.162

Nanoparticle size has an important effect on the rate and route of clearance from the body, 

especially in parenteral dosage forms. For example, although the inert nature of bulk gold 

suggests it is a safe substrate for nanomaterials, NPs smaller than 50 nm administrated by 

intravenous injection are potentially toxic and disperse quickly to nearly all tissues, 

accumulating in blood, heart, lungs, liver, spleen, kidney, thymus, brain and reproductive 

organs. Larger particles (100–200 nm) were found in the RES tissues but not as widely 

dispersed into other tissues as were the smaller particles.163,164 Chen et al. reported that Au 

NPs of 3, 5, 50, and 100 nm are nontoxic when injected weekly into mice, whereas Au NPs 

between 8 and 37 nm caused severe toxicity and death within 3 weeks.165 However, these 

toxicities were reduced after incorporating immunogenic peptides on the NP surface that 

induced an enhanced antibody response. The in vivo toxicity of gold and silver NPs has been 

investigated with zebra fish,166 which are a useful in vivo model for toxicity evaluation 

because of the high degree of homology to the human genome and the rapid development of 

a transparent embryo. Using colloidal silver and gold NPs of different sizes (3, 10, 50, and 

100 nm), it was found that Ag NPs produce size-dependent mortality after 120 h post 

fertilization, while the behavior of Au NPs was independent of size and caused less than 3% 

mortality at the same time point. This implies that although NP surface area is important in 

toxicity, other factors such as chemistry play a role.167
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At present, QDs are considered intrinsically harmful because divalent cations and heavy 

metals in their structures can cause nephro-toxicity or acute and chronic toxicities in 

vertebrates.168 Surface coatings that limit the leakage of heavy metal ions can reduce the 

toxic potential of QDs, but size may also play a role in toxicity and distribution of these 

particles. For example, Shiohara et al.169 reported that the cytotoxicity of CdSe/ZnS QD 

with carboxyl groups on the surface is correlated with a decrease in QD size. The size of 

QDs is a determining factor in sub-cellular distribution as it was observed that 5.2 nm 

cationic CdTe QDs localized throughout the cytoplasm of N9 cells, whereas smaller 2.2 nm 

QDs accumulated in the nuclear compartment.152

Polyacrylate NPs were among the first NPs studied for controlled delivery of biological 

agents, with their introduction in the 1970s. Recently, Song et al.170 investigated the human 

toxicity of polyacrylate NPs prepared from polymerization of unsaturated monomers, such 

as methyl methacrylate, methacrylic amide or cyanoacrylates.171 These NPs were between 

40 and 250 nm in size, which is relatively large compared to SPIONS, QDs, carbon blacks 

or metal oxides.172,173 The toxicity of the larger cyanoacrylate NPs was correlated with 

chemical properties and molecule chain length and was independent of particle size.174 

However, smaller polyacrylate NPs produced toxic effects independently of chemistry; 

pathological examination indicated nonspecific pulmonary inflammation, pulmonary 

fibrosis and foreign-body granulomas of pleura after exposure.170 Thus, the safety of 

polyacrylate NP is still of debate and further study is warranted in biomedical 

applications.175

Generally NPs formed from biodegradable materials are expected to demonstrate fewer 

toxic events than non-biodegradable materials. Semete et al. investigated the in vivo toxicity 

and biodistribution of PLGA (poly(D,L-lactic-co-glycolic acid)) NPs with a size of 200–300 

nm. Seven days after oral administration in mice, nearly 40% percent of PLGA particles 

were localized in the liver, and the rest were localized in brain and kidney without apparent 

toxicity.176 However, because of large size, it is unlikely that these NPs show any size-

dependent toxicity. The chemical composition of biodegradable NPs and the subsequent 

degradation products will influence the biological effects. Polyesters such as PLGA or 

polycaprolactone (PCL) undergo hydrolysis and enzymatic degradation after implantation 

into the body, forming lactic acid, glycolic or capronic acid, which are biologically 

compatible moieties. Apart from size dependent toxicity due to ROS-generating capability, 

particle size can affect the degradation of the polymer matrix. As the particle size is reduced, 

the surface area to volume ratio increases, resulting in a large surface area available for 

penetration of physiological liquids into the particles and also faster release of the polymer 

degradation products.177 The size effects of various NPs are shown in Table 3.

5.2. Effect of particle shape

Particle shapes and aspect ratios are two additional key factors that determine the toxicity of 

NPs. Nanomaterials can have very different shapes including fibers, spheres, tubes, rings, 

and planes. Most of the knowledge about shape dependent toxicity is based on in vitro 

experiments. In vivo, shape dependent toxicity of nanomaterials is usually imparted through 

its adverse effect on endocytosis or clearance by macrophages, as shape can influence the 
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membrane warping process during endocytosis or phagocytosis.187 For example, it had been 

suggested that endocytosis of spherical NPs is easier and faster compared to rod-shaped or 

fiber-like NPs.188 Rod-shaped or needle-like NPs can have a larger contact area with the cell 

membrane receptors than spherical NPs when the longitudinal axis of the rods interacts with 

the receptors. Hence, the ends with high curvature at the half-cup stage of endocytosis are 

very likely to cause a higher membrane surface energy, resulting in a large distorting force 

that exceeds the maximum force provided by the actin polymerization. This effect stalls the 

growing ends of the phagocytic cup and results in impaired phagocytosis and the 

macrophage spreading onto the material rather than internalizing it.189,190 Because of this, 

disc-like, cylindrical and hemispherical particles substantially outperform spherical particles 

in terms of evading uptake by phagocytic cells; consequently these non-spherical particles 

are more disposed to flow through capillaries and adhere to blood vessel walls, thus causing 

other biological consequences.191 For example, Radomski et al.192 showed that in contrast 

to fullerenes, SWCNT and MWCNT with tubular structure stimulate plate aggregation and 

vascular thrombosis in rat carotid arteries. Park et al.193 showed that SWCNT with rod 

structure can block potassium ion channels two to three times more efficiently than spherical 

carbon fullerenes. The length of CNTs has been shown to result in inefficient phagocytosis 

and damage to macrophages. Since full phagocytosis is hampered and a full phagosome is 

not formed, the macrophage’s harmful oxygen radicals and hydrolytic enzymes are released 

extra-cellularly. Poland et al. reported that after intra-abdominal instillation of long 

MWCNTs, the MWCNTs could cause inflammation of the abdominal wall, with formation 

of so-called foreign body giant cells. No inflammatory response was observed with short 

MWCNT, as they were effectively taken up by macrophages with efficient phagocytosis.67 

If the particles are bio-persistent, the resulting chronic inflammation could lead to additional 

mutagenic events and ultimately the formation of mesothelioma. After intra-tracheal 

administration, SWCNTs induced lung granulomas, and the presence of multifocal 

granulomatous lesions without accompanying inflammation, cell proliferation or 

cytotoxicity, indicated a potential new mechanism of pulmonary toxicity and injury.194–196 

Donaldson et al. have studied the relationship between fiber physicochemistry and 

pathogenicity and three fundamental attributes, namely, dimension, durability and dose, 

referred to as the 3D’s, have emerged as paramount to the pathogenicity of a fiber.197 Very 

recently, Donaldson et al. showed that instilled particles are rapidly drawn cranially in the 

lymph flow through the diaphragm via stomata, which are pore-like structures less than 10 

mm in diameter, to the parathymic lymph nodes. Long fibers such as long carbon nanofibers 

block stomata pores and meanwhile damage mesothelial and endothelial cell. Accumulation 

of pleural macrophages attempting to phagocytose these retained fibers results in frustrated 

phagocytosis. The macrophages release cytokines and oxidants that cause further 

inflammation, fibrosis and genotoxicity to the bystander mesothelial cells in these areas of 

congestion around the stomatal entrances.197,198

A shape dependent toxicity has been observed with silica and TiO2 allotropes as well. For 

example, amorphous silica is an FDA-approved food additive, whereas crystalline silica is a 

suspected human carcinogen and is involved in the pathogenesis of silicosis.41
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Different toxicity behavior has also been observed for TiO2 NPs with different crystal 

structures. For instance, Gurr et al. reported that Rutile TiO2 NPs can induce oxidative DNA 

damage, lipid peroxidation, and micronuclei formation in the absence of light, where anatase 

NPs of the same size and chemical composition are inert.199 Contrast to these results, 

Petkovic et al. found that TiO2-anatase was significantly stronger ROS inducer than TiO2-

rutile.200 Despite the contradictory results, both studies show that the intrinsic ability of 

anatase and rutile TiO2 to induce ROS is related to their structure, which influence toxicity.

Shape dependent toxicity of nickel NPs has been reported. Ispas et al.201 observed that 

nickel dendritic clusters consisting of aggregated 60 nm particles resulted in higher toxicity 

in zebra fish compared to spherical ones, suggesting that differences in shape and 

aggregation is responsible for increased toxicity. They hypothesized that Ni NPs in the 

cluster form adhere more readily and are retained for longer periods in the intestinal lumen, 

which increases cellular stress.

Shape dependent toxicity also has been observed in gold and titanium nanomaterials.136 

Chithrani et al.202 reported that uptake of Au nanorods of 74 × 14 nm is slower than 

spherical nanospheres of radius 14 or 74 nm. The uptake of Au nanorods reaches a 

maximum when the size nears 50 nm and the aspect ratio approaches unity.165 Studies with 

TiO2 also demonstrated that fibrous structures with higher aspect ratios are more cytotoxic 

than more spherical structures. Hamilton et al.203 showed that TiO2 fibers with a length of 

15 mm are highly toxic compared to fibers with a length of 5 mm, and the longer ones 

initiate an inflammatory response by alveolar macrophages in mice. As conclusion of this 

part, the role of the shape in nanotoxicity is summarized in Table 4.

5.3. Effect of surface charge

Surface charge also plays a role in toxicity, as it influences the adsorption of ions and 

biomolecules that may change organism or cellular responses toward particles. In addition, 

surface charge is a major determinant of colloidal behavior, which influences the organism 

response by changing the shape and size of NPs through aggregate or agglomerate 

formation.219

In general, it is believed that cationic surfaces are more toxic than anionic surfaces, and 

cationic surfaces are more likely to induce hemolysis and platelet aggregation, whereas 

neutral surfaces are the most biocompatible.220 This may be due to the affinity of cationic 

particles to the negative phospholipid head groups or protein domains on cell membranes. In 

addition surface charge influences plasma protein binding, which in turn affects the in vivo 

organ distribution and clearance of NPs from the circulation. For example Saxena et al. 

showed that acid-functionalized SWCNTs caused markedly significant in vivo toxicity 

compared to pristine SWCNTs. This higher toxicity could result either from a possible 

greater bioavailability of well dispersed AF-SWCNT preparations, or from the high negative 

charge on AF-SWCNTs, or both.221 Pietroiusti et al. found that AF-SWCNTs had a marked 

embryotoxic effect compared to pristine SWCNTs in pregnant mice models. Similarly, 

increased toxicity was attributed to a higher percentage of monodispersed SWCNTs in acid 

functionalized SWCNTs and higher negative charge and hydrophilicity.222
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Nanoparticle surface charge has been observed to alter blood–brain barrier integrity and 

permeability.223 It is suggested that high concentrations of anionic NPs and cationic NPs are 

able to disrupt the integrity of the blood brain barrier.

Particle surface charge can also impact transdermal permeation of charged NPs. It was 

found that after dermal administration, negatively charged NPs of about 50 and 500 nm 

permeated the skin, while positively charged and neutral particles of all sizes did not.223 NPs 

of 50 nm permeate the skin due to the small size and large specific surface area, whereas 

500 nm particles permeate the skin because the high number and density of charged groups 

leads to a high charge concentration that overcomes the skin barrier.224 The lipophilicity of 

the outer skin layers also limits the permeation of smaller charged NPs due to the presence 

of ionized groups, similarly to small molecule drugs. Geys et al.203 investigated the in vivo 

toxicity of positively charged (amine-QDs) and negatively charged (carboxyl-QDs) quantum 

dots after intravenous injection in mice. They found that the carboxyl-QDs caused more 

pulmonary vascular thrombosis than amine-QDs at high doses. The presence of fibrin fibers 

in the thrombi suggests that negatively charged QDs activate the coagulation cascade via 

contact activation. Hoshino et al.219 studied a series of QDs with different surface coatings 

(carboxyl, hydroxyl, amine or their combinations). They found that the highly negatively 

charged QDs with carboxyl groups induced DNA damage after 2 h, while the other types did 

not induce significant cellular damage. In a similar study, positively charged Si NPs (Si–

NP–NH2) proved to be more cytotoxic than neutral Si (NP–N3) in terms of reduced 

mitochondrial metabolic activity and phagocytosis, while negatively charged Si (Si–NP–

COOH) had very little or no cytotoxicity.225 Heiden et al.226,227 reported that surface charge 

also impacts the toxicity of dendrimers. Positively charged PAMAM dendrimers (G4) 

showed time-dependent toxicity toward zebrafish embryos; however, anionic PAMAM 

dendrimers had no toxicity. Similar results have been reported when anionic PAMAM 

dendrimers were administrated to mice.226,227 As a summary, the role of the surface charge 

in NP toxicity is shown in Fig. 2.

5.4. The effect of composition

Although it has been suggested that size or surface area may be more important than 

chemical composition in conferring NPs toxicity, particle chemistry is more relevant in 

relation to cell molecular chemistry and oxidative stress. Harper et al.228 evaluated the effect 

of NP composition on toxicity using eleven commercially available dispersions of NPs with 

similar particle size in an embryonic zebrafish model, including positively charged-

aluminium oxide, titanium oxide, zirconium oxide, gadolinium oxide, dysprosium oxide, 

holmium oxide, samarium oxide and erbium oxide, negatively charged yttrium oxide, silicon 

dioxide, and alumina doped and cerium oxide. Significant mortality was observed after a 5-

day continuous waterborne exposure at 50 ppm for erbium oxide and samarium oxide, and at 

250 ppm for holmium oxide and dysprosium oxide. Waterborne exposure to yttrium oxide, 

samarium oxide and dysprosium oxide at concentrations of 10, 50 and 250 ppm caused 

significant morphological malformations in embryonic zebrafish. In contrast, no significant 

morbidity or mortality was observed for the other metal oxide NPs when embryos were 

injected with approximately 0.5 ng of NPs. Griffitt et al.229 used zebrafish, daphnids, and 

algal species as models of various trophic levels and feeding strategies to evaluate the 
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toxicity of similarly sized silver, copper, aluminium, nickel, cobalt and titanium dioxide NPs 

and their corresponding soluble salts. The authors found that nanosilver, nanocopper, and 

their soluble forms caused toxicity in all organisms tested; however, titanium dioxide did not 

show any toxicity.229 They also observed that filter-feeding invertebrates are more 

susceptible to NP exposure compared to zebrafish. Although the NPs were of similar size 

but different surface charges, the chemical composition of NPs appeared to be the most 

important factor in toxicity. Contrary to these results, Chen et al.230 reported acute toxicity 

of titanium dioxide NPs in mice after intraperitoneal injection. They found that the TiO2 

NPs were mainly retained in spleen, lung, kidney and liver tissues, leading to serious 

lesions. According to these reports, it appears that the toxicity of NPs is not a generic 

response to nanoscopic dimensions; rather, it seems that multiple particular characteristics 

affect toxicity, including but not limited to chemical composition, surface charge, size, and 

shape.

5.5. Effects of coatings

The adverse effects of NPs maybe mitigated or eliminated by incorporation of surface 

coatings. Proper surface coatings can stabilize particles and avoid agglomeration. Coating is 

also an effective means of preventing the dissolution and release of toxic ions.231 

Furthermore the steric hindrance of coatings can retard the cellular uptake and accumulation 

of NPs, or coatings can facilitate NP endocytosis.232–235 Surface coatings can modify the 

surface charge or surface composition, which can impact intracellular distribution and the 

production of ROSs that cause further toxicity. Many coatings are environmentally labile or 

degradable and may shed or degrade after exposure to biological media, thus rendering an 

initially nontoxic material a hazardous one.

Several studies in animals have shown that after a large dose of iron-based NPs (2.5 mmol), 

no life-threatening side effects appeared after a 7-day treatment, according to histology and 

serological blood tests. However, severe inflammatory and immunological responses can 

occur dependent on the density and type of surface coating.236–238 Normally, magnetic NPs 

are surrounded by coatings to prevent the presence of free iron oxide, but the coating may be 

metabolized after some time.239

In some NPs such as QDs, a coating is unavoidable as the metallic core is hydrophobic, and 

the core itself is toxic as it is composed of heavy metals such as cadmium. Thus, a secondary 

coating is needed to increase the QD core’s durability, prevent ion leaching, and increase 

water dispersibility.240–243 The type of secondary surface coating may affect the toxicity of 

the QD complex. For example, Chen et al. coated QDs with silica and the lack of 

genotoxicity was related to the silica coating, which successfully prevented the interaction of 

Cd, Se, Zn, and sulfur with proteins and DNA in the nucleus.244 Coatings may not be stable 

under oxidative or photolytic conditions thus exposing the metalloid core, which may be 

toxic or pave the way for unforeseen reactions of the QD inside the body.107,245 The charge 

of surface coatings may affect the toxicity of QD NPs. At high doses in mice, carboxyl-

coated CdSe/ZnS QDs activated the coagulation cascade via contact activation and caused 

pulmonary vascular thrombosis.246 Fisher et al.247 investigated QDs coated with the 
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negatively charged serum protein albumin. They observed a higher liver uptake (99%) and 

faster blood clearance relative to the QDs without albumin (40%).247–251

Polyethylene glycol is a FDA approved biocompatible polymer that generally does not 

induce any toxicity, so PEG has been used extensively for coating QDs. Ballou et al. applied 

PEG coatings of different molecular weights (methoxy-terminated 750 Da PEG, carboxy-

terminated 3400 Da PEG, and ethoxy-terminated 5000 Da PEG), and the NPs were observed 

for differential tissue and organ deposition in mice in a time- and size-(MW) dependent 

manner. The particles coated with lower molecular weight PEG were eliminated from 

circulation 1 h after injection, but QDs coated with PEG 5000 remained in the blood 

circulation for 3 h.105,252–256

Biocompatible polymers are widely used as coating materials for SPIONs to accomplish 

multiple objectives, including colloidal stabilization, delivering biologically active agents 

with a controlled release profile, and targeting specific tissues via conjugation with specific 

ligands.1,3,4,8–10,12–18,22,257–261 In fact, uncoated iron oxide NPs have very low solubility, 

which can lead to precipitation during storage and a high rate of agglomeration under 

physiological conditions that can impede blood vessels. Similar to QD coatings, the stability 

and toxicity of the SPION coating is important. It has been shown that dextran-magnetite 

(Fe3O4) NPs cause cell death and reduced proliferation similar to uncoated iron oxide 

particles, which was attributed to the breakdown of the dextran shell exposing the cellular 

components to chains or aggregates of iron oxide NPs.262 Xie et al.263 also showed that 

coating PEG on monodisperse Fe3O4 NPs produced negligible aggregation in cell culture 

conditions and reduced nonspecific uptake by macrophage cells. Although PEGylation may 

reduce the potential of harmful biological interactions, Cho et al. found that 13-nm sized Au 

NPs coated with PEG 5000 induce acute inflammation and apoptosis in the mouse liver.264 

These NPs were found to accumulate in the liver and spleen for up to 7 days after injection 

and to have a long blood circulation time of about 30 h. A relatively high concentration of 

PEG on the NPs surface alone does not lead to a lower NP uptake, but rather the spatial 

configurational freedom of PEG chains on the particle surface plays a determinant role.265

Coatings and functionalization can also reduce the in vivo toxicity of carbon nanotubes. 

Lacerda et al.266 intravenously injected MWCN functionalized with diethylene triamine 

penta-acetic di-anhydride, which resulted in stable dispersions with high excretion rates. 

Altogether, most studies have indicated that surface coatings can alter the pharmacokinetics, 

distribution, accumulation, and toxicity of NPs.

5.6. Effect of surface roughness

Physical surface properties of nanomaterials play a critical role in determining the outcome 

of their interactions with cells. Contrary to specific receptor–ligand interactions (e.g. 

endocytic uptake), surface roughness along with hydrophobicity and cationic charge are the 

main factors involved in nonspecific binding forces that promote cellular uptake.257,267 

Small-radii surface coarseness dictates the strength of NP–cell interactions at the nanoscale, 

as it greatly minimizes electrostatic or hydrophobic–hydrophilic repulsive interactions 

therefore promoting cell adhesion. Particles may pass through cell membranes by disrupting 

the phospholipid bilayer of the plasma membrane and generating transient holes usually 

Sharifi et al. Page 18

Chem Soc Rev. Author manuscript; available in PMC 2016 January 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



associated with cytotoxicity.268 Shen et al.269 investigated the hemolytic activity of 

nonporous and porous-silica NPs of varied sizes. They observed that the size-dependent 

hemolysis effect of mesoporous silica NPs is only present when the NPs have long-range 

ordered porous structure, revealing that pore structure is critical in cell–NP interactions. The 

extent of hemolysis by mesoporous silica NPs increases with particle age as phosphate-

buffered solutions compromise the pore structure. Although the reduced cytotoxicity can be 

correlated to less penetrating force of the particles through the membrane, the authors 

suggest the effect is mainly due to fewer silanol groups on the cell-contactable surface of the 

porous silica NPs.269 Angelis et al.270 showed that nanoporous silicon NPs with a pore size 

of about 2 nm did not have any toxicity in mouse-models, as serum levels of both 

inflammatory cytokine IL1-b and hepato-toxicity markers LDH and GSH were normal, and 

there was no histological evidence of tissue pathology in the liver, kidney, spleen, lungs and 

heart. Similarly, Park et al.271 reported no in vivo toxicity using biodegradable luminescent 

porous silicon NPs.

The significant factors that impact new biological applications of NPs are summarized in 

Table 5. The enhancements of certain physicochemical properties of NPs can create new 

applications for these materials, but these new properties may also cause significant 

toxicities.

5.7. Effect of the medium that contains NPs

Proper and stable dispersion of nanoparticles in the delivery medium is very important for 

their biological distribution and subsequent activity. Due to agglomeration, NPs may not 

form a stable suspension in the physiological solutions suitable for in vivo exposure. 

Medium condition such as ionic strength and pH can affect particles dispersion. For instance 

particles of TiO2, ZnO or carbon black have been shown to have significantly greater size in 

PBS than in water.143 Similarly TiO2 NPs also have been shown to have different diameters 

in biological systems.285 Colvin pointed out that the behavior of NPs systems depends on 

the medium that they are suspended in286 Fig. 3 shows the diversity of fullerene (C60) NP 

preparations: dried, dissolved in a nonpolar solvent and chemically modified C60 NPs 

dispersed as a colloid in water. The toxic effect of NPs in these three different cases may be 

different. For example, dried NPs may be dispersed into the air by forced or natural 

convection and can pose a hazard when inhaled into the lungs. Single NPs or clustered NPs 

may have different biological reactivities. Further, liquid media may affect the dermal 

uptake of NPs.

Dispersion or wetting agents in media also may adversely affect the toxicity of 

nanomaterials. For example, Sager et al. showed that the addition of 

dipalmitoylphosphatidylcholine in PBS improved dispersion of TiO2 and carbon 

nanoparticles; however, it significantly increases the inflammatory response of rats after 

intratracheal instillation.143 Therefore, dispersion agents may improve the physicochemical 

and solution properties of nanomaterials formulations, but they may have adverse effects on 

the safety of these materials.

Sharifi et al. Page 19

Chem Soc Rev. Author manuscript; available in PMC 2016 January 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



6. Conclusions and future challenges

The toxicity of nanomaterials is affected by their composition, much like the parent bulk 

materials. However, additional physicochemical properties play a crucial role in determining 

the toxicity of nanomaterials, such as size, surface chemistry, shape, protein absorption 

gradient and surface smoothness or roughness. Thus, the toxicity of chemically identical 

materials can be altered significantly by the manipulation of several physicochemical 

properties. In order to reduce the considerable knowledge gap between the development and 

in vivo toxicity of NPs, a considerable effort is needed by the scientific community to study 

the physiological effects of acute and chronic exposure to NPs. A fundamental 

understanding of the biological interactions of NPs with cells, proteins, and tissues, is vital 

to the future design of safe nanotechnologies. Prior to their wider adoption in everyday 

products and their clinical use, NP-products must be shown to have a high degree of 

biocompatibility, with minimal negative effects on blood components, genetic material, and 

cell viability.

From limited research conducted in the last several years, inhaled nanoparticles from 

airborne sources are of concern, included carbon-based materials. During the manufacturing 

of nano-based materials, it is imperative that workers are adequately protected from inhaling 

NPs, as the long-term effects of exposure are still unknown. This also suggests that NPs 

should be properly incorporated or sequestered into products to prevent subsequent release 

during use or disposal. Further, dermal contact and other non-inhalation routes of exposure 

to nanoparticles must be studied to understand possible toxic effects.
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Fig. 1. 
In vivo and in vitro studies for nanotoxicity research.
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Fig. 2. 
Scheme showing the importance of the surface charge on the yield of cell uptake. Positively 

charged NPs illustrate significant cellular uptake, in comparison with negative and neutral 

ones, due to the attractive electrostatic interactions with the cell membrane. In addition, 

positively charged NPs are capable of acting as “proton sponges” that disrupt the lysosomes 

to enhance cytoplasmic delivery and induce cell death signaling cascades. The bottom left 

and right panels show TEM images of HeLa cells which have been exposed to negatively 

and positively charged SPIONs, respectively (unpublished work by M. Mahmoudi).
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Fig. 3. 
The diverse forms of engineered nanomaterials: (a) C60 dried onto filter paper is a black 

powder (inset: molecular structure of C60); (b) fullerenes dissolved in a nonpolar solvent 

form a purple solution (top layer); and (c) with relatively mild chemical treatments, such as 

evaporation of the nonpolar phase, C60 becomes water stable in the yellow aqueous phase. 

The material is present as colloidal aggregates that contain between 100–1000 fullerene 

molecules. (Reproduced with permission from ref. 286)
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Table 1

Common blood compatibility test (coagulation test) of NPs

Blood test Test description Measured parameter Test procedure

Prothrombin time (PT) Evaluates extrinsic coagulation 
pathway

Coagulation time Thromboplastin and Ca2+ are added to a blood 
sample containing NPs. The time for clot 
formation is measured.

Activated clotting time 
(ACT)

Evaluates coagulation in 
heparin-treated blood

Coagulation time Similar to PT using heparinized blood

Activated partial 
thromboplastin time 
(APTT)

Evaluates intrinsic coagulation 
pathway

Coagulation time NPs are added to a plasma sample, in which the 
intrinsic pathway is activated by the addition of 
phospholipid, an activator (kaolin, or micronized 
silica), and Ca2+.84,85

Thrombin time (TT) Evaluates blood clot formation 
rates after thrombin treatment 
compared with that of a normal 
plasma control

Coagulation time Addition of a standard amount of thrombin to 
plasma that has been depleted of platelets but 
contains NPs. Clotting time is measured.
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Table 2

Pharmacokinetics studies63

Study NPs Main findings Ref.

PK in BALB/c mice DTPA-CNT with radiotracer [111In] Functionalized SWNT are not retained in any of the 
reticuloendothelial system organs (liver or spleen) and are rapidly 
cleared from systemic blood circulation through the renal excretion 
route

103

PK in A/J mice SiRNA DOTAP/DOPE complexes 
(250 nm)
SiRNA RGD-PEG-PEI complexes 
(130 nm)

Complexation of siRNA with DOTAP/DOPE or RGD-PEG-PEI 
did not affect siRNA blood levels
Complexes distributed mainly in liver and kidney with a rapid renal 
clearance by glomerular filtration
DOTAP/DOPE: highest tissue levels were found in the liver, lung 
and kidney
RGD-PEG-PEI: accumulated in the liver, lung, kidney, spleen

118

PK in BALB/c Mice SPIO 20 nm, nanoferrite 30 nm and 
100 nm, radioimmuno NPs

Clearance of the NPs and mean concentrations in lung, kidney and 
lymph nodes were similar to 111In-ChL6-NP
Similar mean uptake levels in tumors

119

PK and biodistribution 
in Wistar rats

USPIO and USPIO-PHO Long elimination half-life (255 min for USPIO and 776 min for 
USPIO-PHO)
Accumulation in lungs and liver

120

Distribution in Wistar 
rats

Gold NPs 10 nm particles were present in various organ systems (liver, 
spleen, kidney, thymus, heart, testis)
Larger particles were only detected in blood, liver and spleen

121

Distribution in ICR 
mice

50 nm MNP-SiO2 core–shell 
structure (RITC)

The particles were distributed in all organs, and the distribution 
pattern was time dependent

122

Distribution at ICR 
mice

Water soluble, hydroxylated SWCNT 
with radioactive 125I

Accumulated in the liver and kidneys, excreted in the urine after 18 
days

112
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Table 4

Effect of NPs’ shape on biological response

Particle shape Particle examples Toxicity mechanism Physiological response Ref.

Iron oxide, gold Internalization and membrane 
disruption. Highest cellular 
uptake with least membrane 
disruption among all shapes, 
thus least shape dependent 
toxicity

Cell division dysfunction and 
disturbed cellular trafficking; 
Mechanical interference with 
the mitotic spindle and DNA

204–206

SWCNT, MWCNT, 
TiO2, gold, 
mesoporous silica

Internalization and membrane 
disruption. Severe influence on 
initiation of phagocytosis. 
Blockage of transport channels. 
Highest distorting force on cell 
membrane among all shapes. 
Smaller aspect ratios lead to 
faster internalization and less 
cell membrane disruption

Chronic inflammation due to 
frustrated phagocytosis, 
mutagenic events, 
mesothelioma formation

207–213

Gold Dependent on the average radius 
of curvature. Disruption of 
membrane integrity and 
transport may occur

Toxicity due to chronic 
inflammation or impaired 
phagocytosis

202

Nickel, carbon 
black, TiO2

Aggregation or agglomeration 
changes size of particles thus 
increasing their visibility to 
macrophages

Aggregation changes retention 
time of particles; changes in 
size may increase or decrease 
toxicity

143, 214, 215

ZnO, iron oxide Aggregation and cell membrane 
disruption may be dependent on 
the prevalence of high aspect 
ratio particles

Combinational effect similar 
to aggregated particles and 
fibrous particles

16, 216, 217
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Particle shape Particle examples Toxicity mechanism Physiological response Ref.

Quantum dots Similar to spherical NPs Similar to spherical NPs 218
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