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Abstract
For four decades, since W. Helfrich’s pioneering study of smectic A liquid crystals in 1973,
continuum elastic models (CEMs) have been employed as tools to understand the energetics of
protein-induced lipid bilayer deformations. Among the assumptions underlying this use is that all
relevant protein–lipid interactions can be included in the continuum representation of the protein–
bilayer interactions through the physical parameters determined for protein-free bilayers and the
choice of boundary conditions at the protein/bilayer interface. To better understand this
assumption, we review the general structure of CEMs, examine how different choices of boundary
conditions and physical moduli profiles alter the predicted bilayer thickness profiles around
gramicidin A (gA) and mitochondrial voltage-dependent anion channels (VDAC), respectively,
and compare these profiles with those obtained from all-atom molecular dynamics simulations.
We find that the profiles differ qualitatively in the first lipid shell around the channels, indicating
that the CEMs do not capture accurately the consequences of the protein-induced local changes in
lipid bilayer dynamics. Therefore, one needs to be careful when interpreting the results of CEM-
based analyses of lipid bilayer-membrane protein interactions.
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1. Introduction
Membrane protein function is regulated by changes in the host lipid bilayer composition
(Sandermann, 1978; McElhaney, 1989; Bienvenüe and Marie, 1994; Dowhan, 1997; Lee,
2004; Andersen and Koeppe, 2007; Marsh, 2008). This regulation arises because: first,
membrane proteins are coupled to the lipid bilayer through hydrophobic (Singer and
Nicolson, 1972) as well as more specific (Lee, 2011) interactions, which make the system
respond so as to maximize the match between the protein’s hydrophobic transmembrane
domain and the lipid bilayer hydrophobic core (Andersen and Koeppe, 2007); second,
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bilayer-spanning proteins perturb their surrounding bilayer (Marsh, 2008; Seelig et al.,
1981), which incurs an energetic cost, the bilayer deformation energy (ΔGdef) (Mouritsen
and Bloom, 1984; Huang, 1986); and third, membrane proteins occur in different
conformations (Brown, 1994; Lundbaek et al., 2010) that in general will interact differently
with the bilayer. The difference in bilayer deformation energy between two different protein

conformations (I and II) becomes the bilayer contribution  to the

total free energy difference  for the conformational transition (Lundbaek et al.,
2010):

(1)

where  denotes energetic contributions intrinsic to the protein (or contributions
other than those due to the protein–bilayer interactions). The equilibrium distribution

between different protein conformations (nII/nI) will vary with changes in 
associated with changes in lipid bilayer properties from, for example, lipid bilayer
composition:

(2)

where kB is the Boltzmann constant and T is temperature in Kelvin.

To evaluate the role of the bilayer in membrane protein function, ΔGdef has been evaluated
using continuum models of elastic bilayer deformations (Huang, 1986; Helfrich, 1973;
Helfrich and Jakobsson, 1990; Aranda-Espinoza et al., 1996; Nielsen et al., 1998; Nielsen
and Andersen, 2000; Partenskii and Jordan, 2002), which we denote as continuum elastic
models (CEMs), as well as other models (Brown, 2008; Tang et al., 2006; Zimmerberg and
Kozlov, 2006). In this review we evaluate CEMs based on the smectic liquid crystalline
approximation (Huang, 1986), in which a cylindrical membrane protein with a hydrophobic
length (l) is embedded in a lipid bilayer with an unperturbed hydrophobic thickness, d0. In
this model, ΔGdef caused by a protein inclusion has three contributions: compression-
expansion (CE), due to changes in membrane thickness; splay-distortion (SD), due to
deviations from the (approximately) parallel alignment of the acyl chains of the lipids; and
surface tension (ST), due to changes in the surface area. We base our analysis on a
cylindrically symmetrical bilayer from the protein center, in which ΔGdef can be expressed
as:

(3)

with

(4)

where r0 is the distance from the protein center to a protein-lipid contact; u(r) the space-
dependent deviation of the membrane from the unperturbed condition—the lipid adaption to
the protein inclusion (u(r) = (d0 − d(r))/2, where d(r) is the membrane thickness at distance r
from the protein center); and c0 the intrinsic monolayer curvature, Ka the compression
modulus, Kc the bending (splay) modulus, and α the surface tension coefficient.
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Fig. 1 sketches u(r) for the systems with positive (top) and negative (bottom) hydrophobic
mismatches. Mathematically, ΔGdef is a functional of u(r). Because ΔGdef must be a
minimum at equilibrium, there will be a u(r) profile that minimizes ΔGdef. Such a profile
satisfies the Euler–Lagrange equation, which up to the second derivative of u(r) is written
as:

(5)

Hence, for a particular set of parameters, u(r) can be determined by solving Eq. (5) with
boundary conditions specified by the endpoints of the integral in Eq. (3). This procedure is
discussed further below.

The surface tension contribution to ΔGdef has been found to be negligible (Huang, 1986;
Helfrich and Jakobsson, 1990). Neglecting the surface tension term, ΔGdef can be expressed
as a biquadratic function of l − d0 and c0:

(6)

where the elastic spring coefficients, HB, HX, and HC are functions of d0, r0, Ka, and Kc. Eq.
(6) can be derived from Eq. (4) (cf. (Nielsen and Andersen, 2000; Lundbaek et al., 2005)),
which allows explicit evaluation of the H coefficients and the bilayer thickness profile (u(r)).
The biquadratic form of Eq. (6), however, applies more generally (Andersen and Koeppe,
2007; Rusinova et al., 2011) because ΔGdef can be expressed as a Maclaurin series in l − d0
and c0, where the first-order derivatives for reasons of symmetry are zero:

(7)

where ΔGdef(0, 0) denotes the energetic cost of embedding a protein of hydrophobic length
d0 (i.e., l = d0) in a bilayer with c0 = 0, including the loss of conformational entropy of the
lipid acyl chains adjacent to the protein (Fattal and Ben-Shaul, 1993) and the H coefficients
become phenomenological spring coefficients. The ΔGdef(0, 0) term is assumed to be zero
in the conventional CEM, which leads to Eq. (6).

In general, assuming uniform bilayer moduli, Eq. (3) is solved by minimization and
becomes:

(8)

where γ = α/Kc and . The solution to Eq. 2 (8) requires four boundary
conditions. Two are straightforward, because the protein-induced bilayer deformation should
disappear far from the protein: u(r = ∞) = 0 and du/dr(r = ∞) = 0. The other two are not,
though it usually is assumed that one of them is determined by the hydrophobic match
condition at the protein/lipid boundary: u(r0) = (l − d0)/2 (Helfrich and Jakobsson, 1990;
Nielsen et al., 1998). This assumption is likely to be valid in the case of proteins with a
single transmembrane helix (Kim and Im, 2010), where there usually will be a well-defined
transition between the helix’s hydrophobic and hydrophilic residues, but it may be
problematic in the case of proteins with multiple transmembrane segments where the
hydrophobic/hydrophilic transition in adjacent segments may not be aligned (Mondal et al.,
2011). (The hydrophobic match condition also may be violated in the case of very large
mismatches between the protein’s hydrophobic length and the hydrophobic thickness of the
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unperturbed bilayer, where there may be hydrophobic slippage (Lundbaek and Andersen,
1999).) The final boundary condition is the most problematic. In the simplest case, it is the
slope (s) or the curvature (c) of the bilayer/solution interface at the protein/lipid boundary
that minimizes ΔGdef (Helfrich and Jakobsson, 1990). But this so-called natural boundary
condition (Lebedev, 1965) turns out to predict ΔGdef values that are inconsistent with
experimental results (Huang, 1986; Helfrich and Jakobsson, 1990; Nielsen et al., 1998;
Nielsen and Andersen, 2000; Goulian et al., 1998). Though this discrepancy might indicate a
fundamental failure of CEMs, it more likely reflects that some feature of protein–lipid
bilayer interactions is not incorporated in the description because it is possible to account
satisfactorily for the experimental results if s (or c) is allowed to vary.

The CEM of protein-induced bilayer deformations has been tested using gramicidin A (gA)
single-channel experiments, where the single-channel appearance rate (f) and lifetime (τ)
was examined as a function of membrane tension σ (Goulian et al., 1998), and in
experiments that determined how σ varies as a function of unperturbed bilayer thickness (d0)
(Lundbaek and Andersen, 1999). Neither the f – σ nor τ – σ relations (Goulian et al., 1998)
nor the τ – d0 relation (Lundbaek and Andersen, 1999) conform to predictions based on the
CEM using uniform bulk bilayer elastic moduli and the value of s that minimizes ΔGdef
(Eqs. (3) and (6)). The experimental results, however, could be fit by varying s at the
channel/bilayer boundary, indicating that there are additional constraints on lipid packing
such as the energetic cost of acyl chain tilt (Nielsen et al., 1998); the τ – d0 relation could be
fit by assuming s = 0. Alternatively, or in addition, the bilayer elastic moduli close to the
channel may differ from (be larger than) the bulk moduli (Partenskii and Jordan, 2002).
Either modification of the basic CEM would be compatible with the τ – d0 results, but the
former (constraining s to be 0) is difficult to reconcile with the observed effects of varying
the spontaneous curvature (Nielsen and Andersen, 2000; Lundbaek et al., 1997; Andersen
and Ingolfsson, 2010). These observations on the consequences of varying the modulus
profile and boundary condition raise fundamental questions about the CEM. What is the
proper boundary condition for the CEM? Where and in what conditions does the continuum
assumption hold or break down? Can the CEM be applied to the region close to the protein/
bilayer contact (e.g., the first shell of the lipids) or is it limited to some distance from the
protein/lipid contact?

Protein–lipid interactions may be dominated by physical interactions near the contact
because the relatively rigid protein may impose constraints on the acyl chain motions
(similar to the rigidity imposed by cholesterol), and/or because more specific atomic details
become more important. Hence, the choice of boundary condition for the CEM and the
range of applicability of the CEM require validation from molecular-resolution experimental
and computational investigations of protein–lipid interactions. In this review we use of all-
atom molecular dynamics (MD) simulations to explore the lipid organization adjacent to
bilayer-spanning proteins and compare the results from the CEM analyses with those
obtained from the MD simulations. The MD simulations require large systems and long time
scales to obtain well-converged membrane profiles, and the results are subject to the
unavoidable limitations of the force fields. However, despite these limitations, all-atom MD
simulations with carefully fine-tuned force fields (such as the CHARMM36 lipid force field
(Klauda et al., 2010)) provide a valuable starting point for analysis which can be revisited
when more accurate simulations are available. Membrane deformations also have been
examined using coarse-grained (CG) models (Yoo and Cui, 2009) such as MARTINI
(Marrink et al., 2007) which reduce computer requirements, but incur the risk that detailed
features may be not be predicted accurately.

The following section provides additional historical background. We then compare the
profiles obtained from the CEM using various boundary conditions and physical parameters
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with those from MD simulations of gA channels embedded in four different homogeneous
lipid bilayers, and the voltage dependent anion channel (VDAC) in a heterogeneous lipid
bilayer. We further explore the energetic consequences of protein-induced lipid bilayer
perturbations to illustrate the usefulness and limitations of CEMs in protein-bilayer systems.

2. Historical background
The CEM was first explicitly applied to the deformation of lipid bilayers with cylindrical
symmetry by Huang (Huang, 1986), using the mechanical theory developed for smectic A
lipid crystals by W. Helfrich (Helfrich, 1973), which simplifies to a near-parallel structure in
the continuum representation. In its original formulation, the model was assumed to be a
symmetric lipid bilayer around the membrane center, and the included transmembrane
protein also was assumed to have cylindrical symmetry and to be aligned normal to the
unperturbed membrane surface (Fig. 1). The deformation profile u(r) usually is taken to be
the distance from the ideal, non-perturbed position of the bilayer/solution interface to the
actual position of the perturbed interface.

Huang evaluated the possible importance of the surface tension (ST) term, and concluded
that it introduces only a small change (<3%) in the coefficient of the second term in Eq. (8).
Ignoring this term leads to an analytic solution for the deformation profile. By analyzing the
changes in gA channel lifetimes as a function of lipid bilayer thickness, Huang concluded
that a “concave-then-convex” deformation profile (cf. Fig. 1B) that extended out to r ≈ 35A̋
provides for a suitable solution to match the gA channel lifetime in the negative
hydrophobic mismatch condition. Helfrich and Jakobsson (Helfrich and Jakobsson, 1990)
included the ST term in their analysis and solved the profile numerically. Their calculation
confirmed that the ST term is negligible for thin membranes, but that it may become
important in thicker membranes, such those containing solvent. Another analytic solution
was derived by Aranda-Espinoza et al. (Aranda-Espinoza et al., 1996), where the extent of
deformation region and ΔGdef were examined according to the slope boundary condition
and moduli. Nielsen et al. (Nielsen et al., 1998; Nielsen and Andersen, 2000) further
developed the theory by examining the effect of altering the boundary conditions at the
protein/bilayer boundary (extending the analysis of Helfrich and Jakobsson). They examined
the consequences of using two different boundary conditions, a free contact slope where the
deformation energy is evaluated at the value of s that minimizes ΔGdef(s = smin) and at a
fixed slope (s = 0). They concluded that the smin boundary condition underestimates ΔGdef
about two-fold and that ΔGdef evaluated using the s = 0 boundary condition is in better
agreement with experimental results.

The preceding studies all assumed the elastic moduli to be uniform throughout the system.
This assumption was relaxed by Partenskii and Jordan (Partenskii and Jordan, 2002), who
introduced space-dependent moduli variations (their model will be referred to as the PJ
model). The possibility of space-dependent moduli had been raised earlier, but the PJ model
was the first to examine the consequences of spatially varying moduli near the protein/
bilayer boundary. This was important because even though the lipid bilayer elastic moduli
have been determined for various bilayers (Nielsen and Andersen, 2000; Waheed and
Edholm, 2009; Kucerka et al., 2005; Katsov et al., 2004; Chen and Rand, 1997), the
presence of a protein is likely to alter the acyl chain dynamics in the vicinity of the relatively
rigid protein (Fattal and Ben-Shaul, 1993). Because lipid molecules near the protein will be
more constrained than in the bulk, the lipid will be stiffer which will tend to increase the
elastic moduli. Assuming that the modulus profile, K(r), depends only on the radial distance
r, Partenskii and Jordan expressed K(r) as:
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(9)

where K0 is the modulus at the protein/bilayer boundary, Kbulk the bulk modulus, and λ a
characteristic length. Partenskii and Jordan first evaluated ΔGdef for K0 = Kbulk and with
either s = smin or s = 0, and then varied K0 to find the value that would make ΔGdef
(evaluated at the smin for that particular K(r) profile) equal to the ΔGdef at s = 0. They found
that the modulus at the boundary should be approximately four-fold larger than the bulk
value (Partenskii and Jordan, 2002) to change ΔGdef from the value estimated by Helfrich
and Jakobsson (Helfrich and Jakobsson, 1990), ~4 kBT, to a value consistent with
experimental changes in single-channel lifetimes, 10 to 12 kBT.

Choe et al. (Choe et al., 2008) suggested additional contributions to ΔGdef, such as
electrostatic and non-polar contributions, and used a global minimization method to find the
deformation profile. Such coupling, however, remains technically challenging. Zhou et al.
(Zhou et al., 2010) introduced a formal coupling of the elastic and electrostatic interactions
in a finite-element analysis of bilayer deformation, but this approach has not been extended
to include membrane proteins.

Recently, Mondal et al. (Mondal et al., 2011) were able to relax the assumption of radial
symmetry and extend the CEM to two-dimensional (2D) systems. They further were able to
relax the assumption of strong hydrophobic coupling (with no exposure of hydrophobic and
polar groups to each other). In this case, the energy-minimizing condition was determined
iteratively using the curvature boundary condition at the protein/bilayer boundary.

The proper choice of boundary conditions at the protein/bilayer boundary remains to be
determined. The s = smin condition is the most widely used and the easiest to defend from a
theoretical point of view, but yields poor agreement with the available experimental results.
The s = 0 condition provides better agreement (assuming uniform elastic moduli), but is
harder to justify theoretically. Moreover, the role of acyl chain tilt remains uncertain
(Nielsen et al., 1998; Kuzmin et al., 2005). s probably should be somewhere between s = 0
and s = smin in order to balance the need to minimize the deformation energy (in the
conventional CEM) and the acyl chain packing constraints at the protein/bilayer boundary.
However, one also needs to consider that the moduli on a priori grounds should vary as a
function of distance from the protein. To resolve these questions and independently test the
assumptions that underlie the development of CEMs of membrane protein–lipid bilayer
interactions, it becomes important to compare the predictions from CEM-based descriptions
with the results from all-atom MD simulations, which until recently has been impractical
due to limitations in computational resources.

3. Comparison of deformation profiles from CEMs with all-atom MD
simulations

The MD-based bilayer deformation profiles to be described below were calculated using all-
atom MD simulation trajectories of gA in four homogeneous lipid types
(dilauroylphosphatidylcholine (DLPC), dimyristoylphosphatidylcholine (DMPC),
dioleoylphosphatidylcholine (DOPC), and 1-palmitoyl-2-oleoyl-phosphatidylcholine
(POPC)) (Kim et al., 2012) and VDAC in a mixed (heterogeneous) lipid bilayer containing
dioleoylphosphatidylethanolamine (DOPE), dioleoylphosphatidylcholine (DOPC), and
cholesterol (Rui et al., 2011). These systems are large (the number of atoms is up to ~70,
000) and were simulated for sufficiently long times to allow for calculation of reliable
deformation profiles. For further details, please see METHODS in Kim et al. (Kim et al.,
2012) and Rui et al. (Rui et al., 2011). The MD trajectories of the lipid molecules were
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converted into 2D membrane thickness profiles, tested for radial symmetry (in the case of
the gA system (Kim et al., 2012)), and averaged to generate 1D thickness profiles. These
profiles then were smoothed using a cubic B-spline in order to achieve numerical stability
when calculating the derivatives of the profiles in Eqs. (4) and (8). Fig. 2 shows the
smoothed MD profiles for gA and VDAC, and Table 1 lists the average lipid properties. The
distance from the protein center to a protein-lipid contact (r0) was 7.5A̋ (for gA) and 21.5A̋
(for VDAC), which was respectively used as the radius of the (cylindrical) protein in the
CEM calculations.

We compared various boundary conditions used in CEM calculations of ΔGdef to find the
boundary condition that best reproduces the MD deformation profile. The boundary
conditions examined were s0 = 0 (Huang, 1986; Nielsen et al., 1998) and s0 obtained from
the MD profiles (sMD). Following Helfrich and Jakobsson (Helfrich and Jakobsson, 1990),
we also tested s0 = smin, which resulted in profiles that differed considerably from the MD
profiles, and too small ΔGdef estimates. This case was not considered further. Table 2
summarizes information about the bulk elastic moduli from experiments and MD
simulations. Given this information, and assuming that the MD-derived profiles fairly
closely mirror the actual profiles, we calculated ΔGdef using (i) the uniform moduli in Table
2, (ii) the PJ space-dependent modulus model for all moduli, and (iii) the MD-derived area
compressibility profile obtained from the gA simulations to describe the space-dependence
of the other moduli. Fig. 3 shows the space-dependent modulus profiles we used.

3.1. Gramicidin A
gA is a 15-amino acid peptide with an alternating L-D amino acid sequence that forms cation-
selective transmembrane channels by transmembrane dimerization of single-stranded, right-
handed β-helices with 6.3 residues/turn. The gA channels have been extensively used to test
CEMs because the structure is known to be proximately cylindrical (PDB:1JNO (Townsley
et al., 2001)).Figure 4 plots the thickness profiles (dH) for the hydrophobic bilayer obtained
from the MD simulations as well as the CEM profiles calculated using the three different
boundary conditions and modulus models: (i) s0 = 0 (red), (ii), s0 = sMD (green) with MD-
based K(r) in Fig. 3, and (iii) s0 = sMD (blue) with K(r) = constant. The resulting ΔGdef and
their components are listed in Table 3.

As expected, the CEM dH profiles depend on the choice of boundary conditions, but none of
the boundary conditions imposed at the protein-bilayer contact (r = r0) reproduces the MD
profiles. The s0 = 0 profiles show the largest deviation from the MD profiles. Even though
the boundary conditions were swept to search for the best-fit and energy-minimized
conditions (data not shown) in addition to the plotted conditions, the CEM-derived profiles
invariably show significant deviations from the MD-derived profiles. The non-monotonic
(oscillating) behavior of the CEM solution was observed in earlier studies (Huang, 1986;
Aranda-Espinoza et al., 1996; Nielsen et al., 1998), as illustrated schematically in Fig. 1, but
the distances of the extrema in the CEM-derived profiles from the protein-bilayer contact are
longer than those from MD simulations (Fig. 4). Moreover, regardless of hydrophobic
mismatch condition (positive mismatch: DLPC, near match: DMPC, and negative mismatch:
DOPC and POPC), all the MD profiles display minimum corresponding to the first lipid
shell around the protein.

The various moduli profiles are reflected in different estimates for ΔGdef, as summarized in
Table 3. Not surprisingly, ΔGdef is increased when evaluated using models in which the
moduli increase near the protein, whether the increase is described by the PJ model or MD-
based areal compressibility profiles. The common feature is that the splay-distortion (SD)
term is the dominant contribution to ΔGdef. In the case of s0 = sMD, the ΔGdef estimates
obtained using the uniform (experimental) moduli or the space-dependent MD-derived
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moduli are similar ranging from 4 to 9 kcal/mol (7–15 kBT). The s0 = 0 boundary condition
resulted in the largest deviation from the MD-derived profile, and the energy values are
inconsistent with the other observations. (For consistency among the different estimates, the
gA channel’s hydrophobic length that was used in these estimates was based on the MD
simulations, and 5 – 6A̋ longer than the length used in most other CEM models.) The PJ
model also predicts large ΔGdef (about three-fold larger than those deduced using the
uniform moduli profile), though the bilayer thickness profiles are similar (data not shown).
This illustrates the importance of any modulus increased near the protein-lipid boundary.

3.2. Voltage dependent anion channel
VDAC is in the outer membrane of mitochondria, and plays an important role in cell
metabolism by providing a selective pathway for the movement of anions and small
metabolites between the cytosol and the mitochondrial intermembrane region (Hodge and
Colombini, 1997). For the simulations, we used the NMR-derived human VDAC1 isoform
(hVDAC1) structure (PDB:2K4T) (Hiller et al., 2008). The lipid bilayer profile around
VDAC has zero gradient at r = 45 A̋ (corresponding to the periodic boundary in the MD
simulations), and we took this point to represent the unperturbed bilayer (r∞ = 45 A̋). The
pure bulk bilayer was not realized in the MD simulations because of larger radius of VDAC
as compared to gA; i.e., the distance between the nearest VDACs (between the primary
system and its images) was about 90A ̋ that was not sufficient for the membrane to reach its
bulk condition. The vanishing boundary at r = 45 A̋ includes the areal density of VDAC,
which is another energy component associated with inserting a protein into a lipid bilayer.
The MD-derived membrane profiles were fitted by the CEMs using sMD with uniform
moduli and the PJ model (Fig. 5). As was the case for gA, any combination of boundary
conditions failed to reproduce the MD profile. Again the transition from the protein-lipid to
the bulk condition in the CEM profiles extends longer than in the MD profile. The resulting
ΔGdef estimates are 73.43 kcal/mol (ΔGCE = 12.48/ΔGSD = 60.46/ΔGST = 0.48) with
uniform moduli and 211.15 kcal/mol (44.06/165.60/1.49) with the PJ model. As was the
case for the gA, the PJ model resulted in about three-fold larger ΔGdef values than those
with the uniform moduli profile. In contrast to the gA cases, however, the change in the
elastic moduli profile affected the membrane deformation profiles in the case of VDAC.

4. Concluding discussion
CEMs have been used for more than 25 years to understand the energetics in protein-
induced lipid bilayer deformations. The range of validity of the CEM calculations remains
uncertain, however, because direct comparison with experiments or MD simulations have
been hindered by insufficient experimental resolution (which still is true) and the
computational demands for well-converged molecular simulations (where the resources are
beginning to become available). Concerns about the applicability of CEMs arise because the
protein–lipid bilayer interactions are simplified (choice of boundary condition and
uncertainty about the spatial variation of the elastic moduli), which is known to impact on
estimates of ΔGdef. To begin addressing these issues, we have reviewed the variations in the
CEMs and compared predictions obtained using the CEMs with those from the all-atom MD
simulations.

Both the gA and the VDAC systems show that the deformation in the first lipid shell around
the protein is not fully described by the CEMs. The most noticeable difference between the
MD- and the CEM-derived profiles is the extent of the oscillating region (Figs. 4 and 5). The
length of the transition region is much shorter in MD than CEM, meaning that the protein–
lipid interactions exert short-range effects on the membrane deformation. The continuum
representation in the first lipid shell appears to be over-simplified, indicating that a different
physical model will be needed to account for the deformation profile in the first lipid shell.
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Beyond the first lipid shell, the CEM seems to be in good agreement with the MD profiles. It
is possible to improve the prediction of ΔGdef (relative to experimental values), but the
effects on the deformation profile turn out to be modest, at least in the case of gA. In this
context, it is important that, while bulk moduli are known for many different bilayers, there
is little information about their space-dependent properties. We also note that, though the
area compressibility (Ka) can be accurately estimated from MD simulations, the bending
moduli (Kc) are more difficult to obtain.

Comparison of the CEM- and MD-derived results shows that protein–lipid interactions
profoundly alter the conditions assumed in the development of the CEMs. This conclusion,
though dependent on the force fields used in the MD simulations, is unlikely to change as
more accurate simulations become available. More realistic consideration of global
energetics probably would require that Eq. (3) includes explicitly any interactions between
protein and lipid, as well as the residual exposure contribution identified by Mondal et al.
(2011). This would be particularly important for the first lipid shell around the protein. The
deformation profile should eventually be calculated by minimizing ΔGdef plus the other
energy contributions—including electrostatics and non-polar energies—and the space-
dependent behavior of the elastic moduli. Eventually, one probably would need to
reformulate Eq. (3) to include asymmetric bilayer deformations, as well as possible
redistribution of the membrane lipids within the perturbed bilayer, for more realistic analysis
of membrane–protein interactions.
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Fig. 1.
Bilayer deformation profiles upon inclusion of a cylindrically symmetric protein. (A)
Positive hydrophobic mismatch (l > d0) and (B) negative hydrophobic mismatch (l < d0),
where l represents the hydrophobic length of the transmembrane protein and d0 represents
that of the unperturbed lipid bilayer. The hydrophobic match condition is used at the protein-
lipid contact (r = r0) and the unperturbed membrane condition is assumed at r = r∞. Also,
symmetry of the upper and lower leaflets is assumed.
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Fig. 2.
The membrane (hydrophobic thickness) profiles obtained and smoothed from the MD
simulations of (A) gA and (B) VDAC systems. The dotted cylinder represents the
cylindrical approximation of the protein structure in the CEM and the radii are 7.5 A̋ (gA)
and 21.5 A̋ (VDAC), respectively.
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Fig. 3.
Space-dependent modulus profiles used for the gA system. We used three different choices
of moduli: first, the uniform profile, which assumes that the bulk values apply throughout
the system (not shown); second, the space-dependent modulus profile from Partenskii and
Jordan (PJ) (Partenskii and Jordan, 2002); as well as four profiles determined from MD-
based areal compressibility profiles.
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Fig. 4.
Comparison of the CEM-derived thickness profiles with the MD-derived profiles for the gA
systems in membranes composed of (A) DLPC, (B), DMPC, (C) DOPC, and (D) POPC.
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Fig. 5.
Comparison of the thickness profiles around VDAC from MD and CEM. The black lines are
for the MD-derived profile (dotted) and its smoothed profile (solid). The boundary
conditions for the CEMs were from the MD profiles (s0 = sMD) with uniform modulus (red)
and the PJ model (blue). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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Table 1

Smoothed membrane profiles based on a cubic B-spline function for gA and VDAC

Protein Lipid type d0 [Å] l [Å] ∂u/∂r(r0) unitless ∂2u/∂r2(r0) [Å−1] ∂2u/∂r2(r∞)a [Å−1]

gA DLPC 20.2 26.7 0.806 −0.067 −0.001

DMPC 24.9 27.9 0.515 0.220 −0.003

DOPC 28.1 28.0 0.458 0.256 0.003

POPC 28.5 27.9 0.415 0.294 0.004

VDAC Mixedb 30.4 25.7 0.559 −0.119 0.002

a
50 Å for gA and 45 Å for VDAC.

b
DOPE:DOPC:cholesterol = 40:40:1.
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Table 2

Physical parameters used in the CEM calculation: Ka is the compression–expansion (area compressibility)
modulus, Kc is the bending modulus, and α is the surface tension coefficient. Ka values are from experiments

and our MD simulations.a

Lipid type Ka [10−11N/Å] Kc [10−10N/Å] α [10−13N/Å]

DLPC 2.34b/2.24a 5.5c 3.0d

DMPC 2.34b/2.38a 6.9c

DOPC 2.40d/2.11 3.6d

POPC 2.78e/1.97 8.5e

Mixedf 1.78g 6.6h 3.0

a
from Kim et al., 2012.

b
from Waheed and Edholm, 2009.

c
from Kucerka et al., 2005.

d
from Nielsen and Andersen, 2000.

e
from Olsen et al., 2009.

f
DOPE:DOPC:cholesterol = 40:40:1. The parameters are from the average of the DOPC and DOPE values.

g
from Katsov et al., 2004.

h
from Chen and Rand, 1997.
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Table 3

Calculated ΔGdef (in kcal/mol) for gA in four types of lipid membrane according to the boundary condition
using (A) uniform moduli and (B) spatially varying moduli using the boundary condition from the MD profile.
The values in the parentheses denote the contributions from the compression-expansion (CE), splay-distortion
(SD), and surface tension (ST) terms

Lipid type s0 =sMD s0 =0

(A) Uniform modulus (experimental values)

 DLPC 7.59 (2.25/5.13/0.21) 14.84 (9.45/5.28/0.11)

 DMPC 4.19 (0.62/3.49/0.08) 2.72 (1.70/0.99/0.03)

 DOPC 4.22 (1.11/3.05/0.06) 0.00 (0.00/0.00/0.00)

 POPC 9.27 (2.74/6.47/0.06) 0.13 (0.08/0.05/0.0)

Lipid type PJ Area compressibility
from MD

(B) Space-dependent modulus with s0 = sMD

 DLPC 23.35 (8.85/13.66/0.85) 8.05 (2.38/5.42/0.25)

 DMPC 11.97 (2.81/8.84/0.33) 4.42 (0.74/3.67/0.01)

 DOPC 11.89 (4.16/7.49/0.24) 5.11 (1.38/3.66/0.06)

 POPC 25.62 (9.88/15.53/0.21) 8.97 (2.66/6.24/0.07)

For consistency, the ΔGdef estimates are based on the hydrophobic length of the gA dimer that was deduced from the MD simulations. This

length, 27–28 Å, is 5–6 Å longer than the length based on the gA structure and previous CEM analyses (Huang, 1986;Nielsen et al., 1998).
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