

Author Manuscript

Chem Commun (Camb). Author manuscript; available in PMC 2012 June 14

Published in final edited form as:

Chem Commun (Camb). 2011 December 14; 47(46): 12524–12526. doi:10.1039/c1cc14807a.

Intramolecular monomer-on-monomer (MoM) mitsunobu cyclization for the synthesis of benzofused thiadiazepinedioxides[†]

Pradip K. Maity^a, Quirin M. Kainz^{a,b}, Saqib Faisal^{a,c}, Alan Rolfe^a, Thiwanka. B. Samarakoon^a, Fatima Z. Basha^c, Oliver Reiser^b, and Paul R. Hanson^a

Oliver Reiser: Oliver.Reiser@chemie.uni-regensburg.de; Paul R. Hanson: phanson@ku.edu ^aDepartment of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS, 66045 and The University of Kansas Center for Chemical Methodologies and Library Development (KU-CMLD), 2034 Becker Drive, Delbert M. Shankel Structural Biology Center, Lawrence, KS 66047

^bInstitute for Organic Chemistry, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany

^cH. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Science, University of Karachi, Karachi, Pakistan

Abstract

The utilization of a monomer-on-monomer (MoM) intramolecular Mitsunobu cyclization reaction employing norbornenyl-tagged (Nb-tagged) reagents is reported for the synthesis of benzofused thiadiazepine-dioxides. Facile purification was achieved *via* ring-opening metathesis (ROM) polymerization initiated by one of three metathesis catalyst methods: (i) free metathesis catalyst, (ii) surface-initiated catalyst-armed silica, or (iii) surface-initiated catalyst-armed Co/C magnetic nanoparticles.

The ongoing effort in the search for new pharmacophores and small molecular probes is a key feature of modern drug discovery. The Mitsunobu reaction and its variants¹ represent versatile synthetic methods which are pivotal to accessing small molecules for drug discovery.² The Mitsunobu reaction is a mild and effective method for the conversion of alcohols into a variety of functionality through the formation of C-C, C-O, C-N and C-S bonds, including the ability to invert the stereochemistry of stereogenic carbinol-bearing centers. A formal "redox" reaction, the Mitsunobu reaction is promoted under relatively mild conditions by a combination of a tertiary phosphine, usually triphenylphosphine (PPh₃) and an azodicarboxylate, usually diethyl or diisopropyl ester (DEAD or DIAD). Such is the scope of the Mitsunobu reaction, its application has played a pivotal role in the synthesis of natural products,³ and bioactive small molecules.⁴ Despite these powerful attributes, the Mitsunobu reaction suffers from the need for tedious purifications to isolate the desired product, an operational disadvantage in both high-throughput chemistry and natural product synthesis. Addressing this issue, several variants of the Mitsunobu reaction have been developed which include tagged, immobilized and water-soluble reagents that allow for facile separation of the desired product from unwanted Mitsunobu by-products.⁵

Methods developed within our group for facile purification-free Mitsunobu protocols have focused on the application of a polymer-on-polymer (PoP) Mitsunobu protocol, employing

Correspondence to: Oliver Reiser, Oliver.Reiser@chemie.uni-regensburg.de; Paul R. Hanson, phanson@ku.edu.

[†]Electronic supplementary information (ESI) available. See DOI: 10.1039/c1cc14807a

ROMP-derived oligomeric triphenylphosphine (OTPP) and oligomeric benzylethyl azodicarboxylate (OBEAD) reagents,⁶ as well as a monomer-on-monomer (MoM)Mitsunobu protocol, employing norborneneyl-tagged (Nb-tagged) PPh₃ and BEAD reagents.⁷ In the latter case, facile sequestration of the excess and spent reagents was achieved *via* ring-opening metathesis (ROM) polymerization initiated by any one of three methods utilizing Grubbs catalyst [(IMesH₂)(PCy₃)(Cl)₂Ru=CHPh cat-**B**]:⁸ (i) free catalyst in solution, (ii) surface-initiated catalyst-armed silica,^{9,10} or (iii) surface-initiated catalyst-armed carbon-coated (Co/C) magnetic nanoparticles (Nps) (Scheme 1).^{7,11}

The intramolecular Mitsunobu reaction has been widely utilized as a cyclization protocol for the synthesis of heterocyclic molecules.¹² Building on these reports, we herein report the synthesis of benzofused thiadiazepine-dioxides *via* an intramolecular 7-membered MoM Mitsunobu cyclization reaction, whereby facile purification was achieved utilizing ROMP sequestration initiated by free metathesis catalyst or catalyst-armed particle surfaces (Scheme 2).

The synthesis of benzofused thiadiazepine-dioxides **3a** and **3b** was investigated utilizing the intramolecular MoM Mitsunobu cyclization with the readily prepared Nb-tagged PPh₃ (Nb-TPP) and DEAD (Nb-BEAD) reagents.⁶ The corresponding hydroxy-benzylsulfonamide starting materials **2a** and **2b** were rapidly generated *via* a microwave-assisted S_NAr protocol (Scheme 3).¹³

With sulfonamides 2a-b in hand, the application of MoM cyclization reaction was investigated utilizing Nb-TPP and Nb-BEAD (Table 1). Initially, purification was achieved by phase switching of all Nb-tagged species in solution (monomeric reagents and spent reagents) by addition of free metathesis catalyst [(IMesH₂)(PCy₃)(Cl)₂Ru=CHPh, cat-**B**] (Method **A**) to induce ROM polymerization. The ROM polymerization event was followed by precipitation to produce the desired benzofused thiadiazepine-dioxides **3a** and **3b** in good yield and excellent crude purity (Table 1, entries 1–2). Purification was followed by TLC analysis, whereby the typical Mitsunobu multispot crude reaction mixture was reduced to a single spot after utilizing this polymerization sequestration protocol. Despite this success, the need for precipitation of the crude reaction mixture to remove the polymerized reagents/ spent reagents was deemed not ideal for a high-throughput appproach. Therefore, alternative syntheses of benzofused thiadiazepine-dioxides **3a** and **3b** were investigated utilizing a catalyst-armed surface generated from either Nb-tagged Co/C magnetic particles, or Nbtagged silica particles.

After polymerization sequestration of excess reagents/spent reagents on the surface of the magnetic Co/C beads [Method B], **3a** and **3b** could be obtained in reasonable crude purity by collecting the nanobeads with an external magnet, decanting the solution and evaporating the solvent (Table 1, entries 3–4). Noteworthy, this work-up procedure is carried out within a few seconds, being an operational advantage to conventional filtration techniques. However, to further improve the product purity the solution was filtered over a silica SPE. As an alternative method, the sequestration by Nb-tagged silica particles [Method C] was applied to generate **3a** and **3b** in comparable yields and purities with simple filtration through Celite[®] SPE to isolate the desired product, avoiding the need for precipitation (Table 1, entries 5–6). Building on these results, substrate scope was evaluated across all three purification sequestration protocols **A**–**C** for the synthesis of **3c–3n** *via* MoM Mitsunobu cyclization (Scheme 4). Thus, benzofused thiadiazepine-dioxides **3c–3f** were generated with free cat-**B** [Method **A**], compounds **3g–3j** *via* Nb-tagged Co/C magnetic particles [Method **B**] and benzofused thiadiazepine-dioxides **3k–3n** utilizing Nb-tagged Silica particles [Method **C**].

In conclusion, we have demonstrated the application of a MoM intramolecular Mitsunobu cyclization for the synthesis of bi- and tri-cyclic benzofused thiadiazepine-dioxides. Facile purification of crude reaction mixtures was achieved *via* ROM polymerization sequestration of excess reagents/spent reagents. This was accomplished initially utilizing free metathesis catalyst Cat-**B**, followed by precipitation. The method was further optimized utilizing catalyst-armed surfaces generated from either Nb-tagged Si-particles or Nb-tagged Co/C magnetic nano-particles.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We gratefully acknowledge the National Institute of General Medical Science (Center in Chemical Methodologies and Library Development at the University of Kansas, KU-CMLD, NIH P50 GM069663 and NIH-STTR R41 GM076765) with additional funds from the State of Kansas, the International Doktorandenkolleg NANOCAT (Elitenetzwerk Bayern), the Deutsche Forschungsgemeinschaft (Re 948/8-1, "GLOBUCAT"), the Bayer-Science and Education foundation, and the EU-Atlantis program CPTUSA-2006-4560 for funding this research. We thank Materia Inc. for providing metathesis catalyst.

Notes and references

- For leading reviews on the Mitsunobu reaction, see: (a) Mitsunobu O. Synthesis. 1981:1.(b) Hughes DL. Org Prep Proced Int. 1996; 28:127.(c) Nam NH, Sardari S, Parang K. J Comb Chem. 2003; 5:479. [PubMed: 12959554] (d) Dandapani S, Curran DP. Chem–Eur J. 2004; 10:3130. [PubMed: 15224321] (e) Dembinski R. Eur J Org Chem. 2004:2763.(f) But TYS, Toy PH. Chem–Asian J. 2007; 2:1340. [PubMed: 17890661] (g) Reynolds AJ, Kassiou M. Curr Org Chem. 2009; 13:1610. (h) Swamy KCK, Kumar NNB, Balaraman E, Kumar KVPP. Chem Rev. 2009; 109:2551. [PubMed: 19382806] and references cited therein
- (a) Abero MA, Lin NH, Garvey DS, Gunn DE, Hettinger AM, Wasicak JT, Pavlik PA, Martin YC, Donnelly-Roberts DL, Sullivan JP, Williams M, Arneric SP, Holladay MW. J Med Chem. 1996; 39:817. [PubMed: 8632405] (b) Park AY, Moon HR, Kim KR, Chun MW, Jeong LS. Org Biomol Chem. 2006; 22:4065. [PubMed: 17312958] (c) Zapf CW, Del Valle JR, Goodman M. Bioorg Med Chem Lett. 2005; 15:4033. [PubMed: 16002286]
- (a) Toma T, Kita Y, Fukuyama T. J Am Chem Soc. 2010; 132:10233. [PubMed: 20662499] (b) Bruder M, Smith SJ, Blake AJ, Moody CJ. Org Biomol Chem. 2009; 7:2127. [PubMed: 19421451] (c) Poullennec KG, Romo D. J Am Chem Soc. 2003; 125:6344. [PubMed: 12785755] (d) Venukadasula PKM, Chegondi R, Maitra S, Hanson PR. Org Lett. 2010; 12:1556. [PubMed: 20196547]
- 4. (a) Mishra JK, Panda G. J Comb Chem. 2007; 9:321. [PubMed: 17284080] (b) Samanta K, Chakravarti B, Mishra JK, Dwivedi SKD, Nayak LV, Choudhry P, Bid HK, Konwar R, Chattopadhyay N, Panda G. Bioorg Med Chem Lett. 2010; 20:283. [PubMed: 19932024]
- (a) Chu Q, Henry C, Curran DP. Org Lett. 2008; 10:2453. [PubMed: 18484733] (b) Lan P, Porco JA Jr, South MS, Parlow JJ. J Comb Chem. 2003; 5:660.(c) Starkey GW, Parlow JJ, Flynn DL. Bioorg Med Chem Lett. 1998; 8:2385. [PubMed: 9873546] (d) Danapani S, Newsome JJ, Curran DP. Tetrahedron Lett. 2004; 45:6653.(e) But TYS, Toy PH. J Am Chem Soc. 2006; 128:9636. [PubMed: 16866510] (f) Taft BR, Swift EC, Lipshutz BH. Synthesis. 2009; 2:322.(g) Yang J, Dai L, Wang X, Chen Y. Tetrahedron. 2011; 67:1456.(h) Figlus M, Tarruella AC, Messer A, Sollis SL, Hartley RC. Chem Commun. 2010; 46:4405.(i) Figlus M, Wellaway N, Cooper AWJ, Sollis SL, Hartley RC. ACS Comb Sci. 2011; 13:280. [PubMed: 21438502] (j) Bergbreiter DE, Yang YC, Hobbs CE. J Org Chem. 2011; 76:6912. [PubMed: 21714575]
- (a) Harned AM, Song He HS, Toy PH, Flynn DL, Hanson PR. J Am Chem Soc. 2005; 127:52. [PubMed: 15631444]
 (b) Of notable importance is the seminal advances made by Barrett and co-workers demonstrating the concept of reagent annihilation (norbornenyl-tagged DEAD), see;
 (c) Barrett AGM, Roberts RS, Schröder J. Org Lett. 2000; 2:2999. [PubMed: 10986092] For additional

Chem Commun (Camb). Author manuscript; available in PMC 2012 June 14.

examples of in situ scavenging, see: (d) Moore JD, Harned AM, Henle J, Flynn DL, Hanson PR. Org Lett. 2002; 4:1847. [PubMed: 12027629]

- Maity PK, Rolfe A, Samarakoon TB, Faisal S, Kurtz R, Long TR, Schätz A, Flynn D, Grass RN, Stark WJ, Reiser O, Hanson PR. Org Lett. 2011; 1:8. [PubMed: 21121636]
- Cat-B: (a) Scholl M, Ding S, Lee CW, Grubbs RH. Org Lett. 1999; 1:953. [PubMed: 10823227] It should be noted that the Grubbs first generation catalyst (PCy₃)₂(Cl)₂Ru=CHPh [Cat-A] is deactivated in the presence of Ph₃P=O; (b) Schwab P, Grubbs RH, Ziller JW. J Am Chem Soc. 1996; 118:100.(c) Schwab P, France MB, Ziller JW, Grubbs RH. Angew Chem, Int Ed Engl. 1995; 34:2039.
- (a) Buchmeiser MR, Sinner F, Mupa M, Wurst K. Macromolecules. 2000; 33:32.(b) Krause JO, Lubbad S, Nuyken O, Buchmeiser MR. Adv Synth Catal. 2003; 345:996–1004.(c) Kim NY, Jeon NL, Choi IS, Takami S, Harada Y, Finnie KR, Girolami GS, Nuzzo RG, Whitesides GS, Laibinis PE. Macromolecules. 2000; 33:2793.

10. Rolfe A, Loh JK, Maity PK, Hanson PR. Org Lett. 2011; 13:4. [PubMed: 21128690]

- (a) Schätz A, Long TR, Grass RN, Stark WJ, Hanson PR, Reiser O. Adv Funct Mater. 2010; 20:4323.(b) Grass RN, Athanassiou EK, Stark WJ. Angew Chem. 2007; 119:4996.(c) Schätz A, Grass RN, Stark WJ, Reiser O. Chem–Eur J. 2008; 14:8262. [PubMed: 18666291] (d) Schätz A, Grass RN, Kainz Q, Stark WJ, Reiser O. Chem Mater. 2010; 22:305.(e) Wittmann S, Schätz A, Grass RN, Stark WJ, Reiser O. Angew Chem, Int Ed. 2010; 49:1867.
- (a) Ottesen LK, Olsen CA, Witt M, Jaroszewski JW, Franzyk H. Chem–Eur J. 2009; 15:2966.
 [PubMed: 19191236] (b) Arya P, Wei CQ, Barnes ML, Daroszewska M. J Comb Chem. 2004;
 6:65. [PubMed: 14714986] (c) Kung PP, Swayze E. Tetrahedron Lett. 1999; 40:5651.(d) Banfi L, Basso A, Giardini L, Riva R, Rocca V, Guanti G. Eur J Org Chem. 2011:100.
- (a) Rolfe A, Samarakoon TB, Hanson PR. Org Lett. 2010; 12:1216. [PubMed: 20178346] (b) Rolfe A, Samarakoon TB, Klimberg SV, Brzozowski M, Neuenswander B, Lushington GH, Hanson PR. J Comb Chem. 2010; 12:850. [PubMed: 20879738] (c) Samarakoon TB, Hur MY, Kurtz RD, Hanson PR. Org Lett. 2010; 12:2182. [PubMed: 20394415] (d) Ullah F, Samarakoon TB, Rolfe A, Kurtz RD, Hanson PR, Organ MG. Chem–Eur J. 2010:10959. [PubMed: 20715214]

Scheme 1. Catalyst-armed Silica- and Co/C magnetic nanoparticles.

Scheme 2.

Synthesis of benzofused thiadiazepine-dioxides *via* a intramolecular MoM Mitsunobu c/ yclization.

Scheme 3.

Synthesis of hydroxy-benzylsulfonamides **2a–b** via microwave- assisted S_NAr.

Scheme 4.

Synthesis of benzofused thiadiazepine-dioxides. (**3c–3f**: Method A; **3g–3j**: Method B; **3k–3n**: Method C).

Table 1

Intramolecular MoM Mitsunobu-Sequestration

	HO N	² "MoM A i. Nb-BE ii. Seque	AD, Nb-TPP AD, Nb-TPP stration	• $R^{1}\frac{1}{11}$	R ² = 4-CIBn R ² = 4-CIBn R ² = 4-OMeBn
Entry	Sequestration	Comp.	Method	Yield (%)	Crude Purity (%) ^a
1b	Cat-B	3а	A	85	>95%
2^b	Cat-B	3b	A	88	>95%
3 <i>c</i>	Co/C Nb-tagged	3a	в	87	>95%
4^{C}	Co/C Nb-tagged	3b	в	81	>95%
5d	Si Nb-Tagged	За	С	89	>95%
p^9	Si Nb-Tagged	3b	С	84	>95%
^a Purity d	letermined by ¹ HNN	R.			
b _{Isolated}	l via precipitation in	Et20.			
^c Isolated	l via magnetic decant	ation and 1	filtration thr	ough Silica S	PE.
d _{Isolated}	<i>l via</i> filtration throug	h Celite [®]	SPE.		