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Abstract

Mammalian cells acquire cholesterol, a critical membrane constituent, through multiple 

mechanisms. We synthesized mimics of cholesterol, fluorescent N-alkyl-3β-cholesterylamine-

glutamic acids, that are rapidly incorporated into cellular plasma membranes compared with 

analogous cholesteryl amides, ethers, esters, carbamates, and a sitosterol analogue. This process 

was inhibited by ezetimibe, indicating a receptor-mediated uptake pathway.

Abstract

Cholesterol (1) is a critical constituent of membranes of mammalian cells. Cells acquire 

exogenous forms of this sterol through multiple mechanisms involving structurally distinct 

cell surface receptors. Lipoprotein particles such as low-density lipoprotein (LDL) and high-

density lipoprotein (HDL) carry cholesteryl esters (2) and associated protein and lipid 

components throughout the bloodstream.1 Cells expressing LDL and HDL receptors actively 

internalize these natural nanoparticles via receptor-mediated endocytosis. In contrast, 

Niemann-Pick C1 Like 1 protein (NPC1L1) plays key roles in the cellular uptake of dietary 

(unesterified) cholesterol (1), as found in mixed micelles.2 This receptor was identified in 

20043 as a target of ezetimibe (3), a drug used to treat hypercholesterolemia. More recent 
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studies suggest that although NPC1L1 is a primary target of ezetimibe and its active 

glucuronide metabolite,4-6 other proteins, such as the HDL receptor SR-BI, can also be 

inhibited by this drug.7 Recent proteomics experiments have identified over 250 cholesterol-

binding proteins, including receptors, channels, and enzymes.8

Derivatives of cholesterol have numerous biological applications. These compounds have 

been used to facilitate the delivery of small inhibitory RNA (siRNA),9 enhance DNA 

transfection,10 probe cellular membrane subdomains,11 and assay cholesterol transport 

processes.12-17 Cholesteryl carbamates have been extensively investigated, and cellular 

uptake of cholesteryl carbamate-conjugated siRNA has been reported to be similar to uptake 

of cholesteryl esters, requiring binding to HDL or LDL,9 followed by internalization via 

HDL or LDL receptors. This initial lipoprotein-binding step can slow cellular uptake, and 

the presence of high concentrations of serum (e.g. 10%) in media typically reduces the 

activity of these compounds, likely because of competition between serum lipoproteins and 

cognate cell surface receptors.

In an effort to mimic the molecular recognition properties of free cholesterol (1), we 

hypothesized that the protonated secondary amino group of N-alkyl-3β-

cholesterylamines,18, 19 as found in compounds 4-7, might function as a bioisostere for the 

3β-hydroxyl group of cholesterol. Thus, in contrast to cholesteryl esters, cholesteryl 

carbamates, and structurally related compounds, which may require lipoprotein-mediated 

cellular uptake, these compounds might bind to receptors on cell surfaces that recognize free 

cholesterol or structurally similar metabolites through alternative mechanisms. We further 

hypothesized that the addition of anionic amino acids might affect binding to serum proteins 

and increase the affinity of these compounds for cells.

To investigate how structural features affect recognition of cholesterol derivatives and related 

compounds by proteins on the surface of cells, we synthesized the fluorescent molecular 

probes 4-13. For probes derived from 3β-cholesterylamine, this steroid building block,20 and 

some cholesterylamine-derived intermediates,21 were prepared as previously reported. The 

novel building block 3β-sitosterylamine was prepared from sitosterol using methodology 

described for the synthesis of 3β-cholesterylamine.20 The 4-carboxy Pennsylvania Green 

fluorophore was prepared as previously described.22 Full synthetic details are provided in 

Scheme S1 and Scheme S2 of the supporting information. These probes were designed to 

systematically compare membrane anchors derived from N-alkyl-3β-cholesterylamines 

(4-7), a sitosteryl analogue (8), a N-acyl-3β-cholesterylamine (10), or cholesterol (9, 11–13) 

linked to the hydrophobic Pennsylvania Green23, 24 (PG) fluorophore through amino acid 

subunits. We hypothesized that the carbonyl linked to the steroid in amide 10, ester 11 or 

carbamates 12 and 13 would be similar to natural cholesteryl esters, and this structural 

modification might correspondingly affect their ability to bind cell surfaces.

As shown in Figure 1, confocal laser scanning microscopy was employed to compare living 

human Jurkat lymphocyte cells after treatment with 4–13. These experiments demonstrated 

that a brief (5 minute) treatment of cells with 4 or 5 (2 μM) at 37 °C results in robust 

fluorescent staining of cellular plasma membranes. Examination of these cells after 1 hour 

showed enhanced cellular binding, uptake of the probe, and localization in transferrin-
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positive early/recycling endosomes (Figure 1 and Figure S1 of the supporting information). 

Binding of 4 (and 5) to cell surfaces was predominantly receptor-mediated as evidenced by 

up to 80% inhibition upon coaddition with excess (200 μM) ezetimibe (3, Compare Figure 

1A and 1C, and see Figure S3 of the supporting information). This inhibition indicates that 

proteins on cell surfaces may recognize these compounds as mimics of free cholesterol or 

related cholesterol metabolites. These metabolites might include structurally related 

cholesterol sulfate25 and cholesterol glucuronide,26 which are present in micromolar 

concentrations in the bloodstream of animals. Comparison of 4 with 6 lacking the glutamic 

acid residue in the linker region revealed that the anionic moiety of 4 is critical for rapid 

high affinity/efficacy binding to cells (Figure 1, compare panels B and G). Moreover, despite 

the presence of a structurally analogous glutamic acid, the cholesteryl carbamate 12 showed 

low cellular binding and cellular uptake compared with 4, supporting the hypothesis that 

carbamates engage a mechanistically distinct cellular uptake pathway. However, this loss of 

activity of 12 could be at least partially rescued by addition of a second glutamic acid, as 

found in 13.

Using ezetimibe (3, 200 μM, 0.2% DMSO) as a specific competitor, we quantified the 

relative affinities (Kd, app) and efficacies (Bmax) of rapid binding of 4-13 to Jurkat 

lymphocytes in media containing 10% serum. Data from saturation binding experiments 

after treatment for five minutes, designed to limit cellular uptake by endocytosis, are shown 

in Figure 2, Table 1, and the supporting information. The high affinity and efficacy of 

binding of 4 and 5 to cell surfaces compared to 6-12 revealed that N-alkyl cholesterylamines 

bearing an anionic functional group and a spacer residue such as β-alanine most efficiently 

bind cell surfaces, a critical initial step for initiation of endocytosis and delivery of linked 

agents. The absence of substantial cellular binding of the sitosterolamine analogue (8), 

differing from 4 by the presence of an additional ethyl group in the tail of the sterol, further 

supports a specific receptor-mediated uptake mechanism. This result is consistent with 

limited receptor-mediated27, 28 uptake of phytosterols such as sitosterol by mammalian cells.

To investigate whether other cell types show differential effects, we examined rapid (5 min) 

binding of 4, 5, 8, and 13 to three different human cell lines. Human Jurkat cells, grown in 

suspension were compared with the human cell lines HeLa and HEK-293, which were 

suspended in media prior to treatment. As shown in Figure 3, HeLa cells bound the 

fluorescent cholesterol mimics to the greatest extent. Comparison of HeLa with Jurkat and 

HEK-293 cells revealed 3.3-fold to 8.1-fold more specific binding to HeLa cell surfaces 

compared to the other cell lines. These results might be explained by higher expression by 

HeLa cells of a specific receptor that interacts with these compounds.

For these assays, cellular fluorescence was converted to molecules of equivalent fluorescein 

(MEFL) using fluorescent bead standards. For the Jurkat cell line, this analysis indicated that 

treatment with 4 or 5 at a concentration of 2 μM for 5 minutes loads 0.5–1.5 × 106 molecules 

into the plasma membrane of individual cells. This rapid and massive increase in cellular 

fluorescence suggested that an enzyme may be actively inserting these compounds into the 

cellular plasma membrane. Further analysis of time-dependent fluorescence resulting from 

treatment with 4, 5, 8, and 13 using the Mechaelis-Menten model of enzyme kinetics is 

shown in Figure 4. These studies revealed that the cellular uptake of 4, 5, and to a lesser 
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extent 13, is highly efficient, with 1.8–5.0 × 105 molecules incorporated per minute per cell, 

consistent with a catalytic process. Kinetic values of KM and Vmax from this analysis are 

shown in Table 1.

In conclusion, we identified novel structure-activity relationships that govern binding of 

fluorescent cholesterol mimics to the surface of living mammalian cells. New cholesterol-

mimetic membrane anchor motifs of 4, 5, and 13 were identified that engage a rapid cellular 

uptake pathway, consistent with a receptor-mediated process, that catalytically inserts these 

compounds into the plasma membrane. Although the receptor or enzyme targeted by these 

compounds has not yet been identified, it is unlikely to be NPC1L1, the classical 

pharmacological target of ezetimibe, because this protein is not highly expressed outside of 

the liver and intestine,29 and the active metabolite ezetimibe-glucuronide, prepared as 

previously reported,30 does not inhibit binding of 4 to Jurkat cell surfaces (data shown in 

Figure S2 of the supporting information). Given that cholesterol trafficking and distribution 

involves dynamic receptor-mediated and vesicular processes that are not completely 

understood,31 these compounds have potential as novel probes and tools for the delivery of 

impermeable molecules into mammalian cells.
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Fig. 1. 
Differential interference contrast (DIC) and confocal laser scanning microscopy of living 

Jurkat lymphocytes in media containing 10% serum. Cells were treated with fluorescent 

compounds 4–13 (2 μM)at 37 °C for 5 min or 1 h. In panel C, ezetimibe (3, 200 μM in 0.2% 

DMSO) was included to illustrate competitive inhibition of uptake of 4. Scale bar = 7.5 

microns.
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Fig. 2. 
Specific binding of compounds 4–13 to plasma membranes of living Jurkat lymphocytes in 

media containing 10% serum. Cells were treated with 4–13 for 5 min at 37 °C and analyzed 

by flow cytometry with and without excess ezetimibe (3, 200 μM) in saturation binding 

experiments. The linear non-specific binding component was subtracted from the total 

binding data followed by curve fitting with a one-site binding model (GraphPad Prism 6).
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Fig. 3. 
Total binding (A) and specific binding (B) of compounds 4, 5, 8, and 13 to three mammalian 

cell lines. Cells in media containing 10% serum were treated with compounds, without (A) 

and with (B) excess ezetimibe (3, 200 μM), in triplicate at 22 °C for 5 min. Jurkat, HeLa, 

and HEK-293 cells were suspended in media prior to treatment and analysis of fluorescence 

by flow cytometry.
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Fig. 4. 
Analysis of the kinetics of cellular uptake of compounds 4, 5, 8, and 13. Panels A-D: Living 

Jurkat lymphocytes in media containing 10% serum were treated with compounds in 

triplicate at 22 °C, aliquots were sampled at the times shown and fluorescence analyzed by 

flow cytometry. Panel E: Values of MEFL/min, obtained by linear regression of the data 

shown in A-D, was analyzed with a Michaelis-Menten model (GraphPad Prism 6).
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Unnumbered Figure. 
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Table 1

Left columns: Apparent affinity (Kd, app) and efficacy (Bmax) of binding of 4–13 to plasma membranes of 

living Jurkat cells. Cells were treated with compounds at 37 °C for 5 min in media containing 10% FBS (± 

SEM). Non-specific binding was quantified with ezetimibe (200 μM) as a competitor; vehicle = 0.2% DMSO; 

NC: Not calculated due to low efficacy. Right columns: Values of KM and Vmax calculated from Michaelis-

Menten analysis of rapid time-dependent cellular uptake at 22 °C (Figure 3). ND: Not determined. MEFL: 

molecules of equivalent fluorescein. Data, based on measurements in triplicate, is reported as mean ± SEM.

Compd. Kd, app (μM) Bmax (MEFL × 106) KM (μM) Vmax (MEFL / min × 105)

4 1.4 ± 0.5 0.9 ± 0.1 1.5 ± 0.3 1.8 ± 0.2

5 1.2 ± 0.2 2.1 ± 0.2 2.6 ± 0.7 5.0 ± 0.8

6 NC NC ND ND

7 7.7 ± 4.1 3.1 ± 1.3 ND ND

8 NC NC 1.8 ± 0.5 0.2 ± 0.1

9 NC NC ND ND

10 NC NC ND ND

11 NC NC ND ND

12 NC NC ND ND

13 3.2 ± 0.6 2.34 ± 0.28 5.8 ± 2.2 1.9 ± 0.5
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