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Abstract

Disulfiram (DSF), used for the treatment of alcohol use disorders (AUDs) for over six decades, 

most recently has shown promise for treating cocaine dependence. Although DSF’s mechanism of 

action in alcohol abuse is due to the inhibition of liver mitochondrial aldehyde dehydrogenase 

(ALDH2), its mechanism of action in the treatment of cocaine dependence is unknown. DSF is a 

pro-drug, forming a number of metabolites each with discrete pharmacological actions. One 

metabolite formed during DSF bioactivation is S-(N, N-diethylcarbamoyl) glutathione 

(carbamathione) (carb). We previously showed that carb affects glutamate binding. In the present 

studies, we employed microdialysis techniques to investigate the effect of carb administration on 

dopamine (DA), GABA, and glutamate (Glu) in the nucleus accumbens (NAc) and medial 

prefrontal cortex (mPFC), two brain regions implicated in substance abuse dependence. The effect 

of DSF on DA, GABA, and Glu in the NAc also was determined. Both studies were carried out in 

male rats. Carb (20, 50, 200 mg/kg i v) in a dose-dependent manner increased DA, decreased 

GABA, and had a biphasic effect on Glu, first increasing and then decreasing Glu in both the NAc 

and mPFC. These changes all occurred concurrently. After carb administration, NAc and mPFC 

carb, as well as carb in plasma, were rapidly eliminated with a half-life for each approximately 4 

min, while the changes in DA, GABA, and GLu in the NAc and mPFC persisted for 

approximately two hours. The maximal increase in carb (Cmax) in the NAc and mPFC after carb 

administration was dose-dependent, as was the area under the curve (AUC). DSF (200 mg/kg i p) 

also increased DA, decreased GABA, and had a biphasic effect on Glu in the NAc similar to that 

observed in the NAc after carb administration. When the cytochrome P450 inhibitor N-

benzylimidazole (NBI) (20 mg/kg i p) was administered before DSF dosing, no carb could be 

detected in the NAc and plasma and also no changes in NAc DA, GABA, and GLu occurred. 

Changes in these neurotransmitters occurred only if carb was formed from DSF. When NBI was 
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administered prior to dosing with carb, the increase in DA, decrease in GABA, and biphasic effect 

on GLu was similar to that seen after dosing with carb only. The i p or i v administration of carb 

showed similar changes in DA, GABA, and GLu, except the time to reach Cmax for DA as well as 

the changes in GABA, and GLu after i p administration occurred later. The elimination half-life of 

carb and the area under the curve (AUC) were similar after both routes of administration. It is 

concluded that carb must be formed from DSF before any changes in DA, GABA, and GLu in the 

NAc and mPFC are observed. DSF and carb, when administered to rats, co-release DA, GABA, 

and GLu. Carb, once formed can cross the blood brain barrier and enter the brain. Although 

inhibition of liver ALDH2 is the accepted mechanism for DSF’s action in treating AUDs, the 

concurrent changes in DA, GABA, and GLu in the NAc and mPFC after DSF administration 

suggest that changes in these neurotransmitters as a potential mechanism of action not only for 

AUDs, but also for cocaine dependence cannot be excluded.
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1. Introduction

Disulfiram (DSF), accidentally discovered approximately 65 years ago, has been used since 

then as a deterrent for alcohol use disorders (AUDs) (Hald and Jacobson, 1948). Clinical 

studies also have shown DSF to be a useful drug candidate for the treatment of cocaine use 

(Carroll et al., 1998, 2000; George et al., 2000; Petrakis et al., 2000; Carroll et al., 2004). 

Recently, DSF also has shown promise in the treatment of non-substance abuse disorders 

such as pathological gambling (Reuter et al., 2005). At this time other than for AUDs, there 

are no pharmacotherapies currently approved by any regulatory agency for the treatment of 

cocaine use or pathological gambling disorders. Although DSF’s mechanism of action in 

treating AUDs is established as being due to its inhibition of liver mitochondrial aldehyde 

dehydrogenase (ALDH2), the mechanism of action of DSF in treating cocaine dependence 

or pathological gambling is unknown, but suggests a central mechanism. Seminal studies 

(Yourick and Faiman, 1989, 1991) showed DSF to be a pro-drug that requires bioactivation, 

and a number of metabolites are formed each with discrete pharmacological properties. The 

chemical pathways, the metabolites formed, including the metabolite S-methyl N, N-

diethylthiolcarbamate sulfoxide (DETC-MeSO) which is responsible for ALDH2 inhibition 

which is responsible for the anti-alcohol effect (Hart and Faiman, 1992), and the respective 

cytochrome P450 and other enzymes identified in DSF’s bioactivation have been described 

previously in a comprehensive series of studies (Fig. 1) (Madan et al., 1993; Hart and 

Faiman, 1993; Madan and Faiman, 1994a; Madan and Faiman, 1994b, 1995; Madan et al., 

1994; Madan and Faiman, 1995; Madan et al., 1995, 1998).

The finding that DSF was effective independent of concurrent alcohol use (Carroll et al., 

2004), and coupled with previous studies that carb does not inhibit ALDH2 (Jin et al., 1994; 

Nagendra et al., 1997), suggested DSF’s mechanism of action for the treatment of cocaine 

dependence must be due to a metabolite further downstream from DETC-MeSO (Fig. 1). 

Since the concentration of reduced glutathione (GSH) in vivo is high (1–6 mM) (Potter and 
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Tran, 1993), the DSF metabolites DETC-MeSO and S-methyl N, N-diethylthiolcarbamate 

sulfone (DETC-MeSO2) (Jin et al., 1994; Nagendra et al., 1997) rapidly carbamoylate the 

sulfhydryl of glutathione to S-(N, N-diethylcarbamoyl) glutathione, the metabolite of 

interest and is referred to as carbamathione (carb) (Schloss, 2007) (Fig. 1).

In earlier studies, we showed that the i v administration of carb to mice irreversibly blocks 

glutamate binding to mouse brain synaptic membranes (Nagendra et al., 1997), and 

speculated that carb may affect both the N-methyl-D-aspartate (NMDA) and non-NMDA 

glutamate receptor subtypes. NMDA receptor antagonists are known to increase brain DA 

(Cano-Cebrian et al., 2003). Non-competitive NMDA receptor antagonists (Thomson et al., 

1985) also increase the release of glutamate (GLu) from the PFC (Moghaddam et al., 1997; 

Del Arco and Mora, 2002; Lorrain et al., 2003) and NAc (Razoux et al., 2007), and DA from 

the PFC (Moghaddam et al., 1997; Lorrain et al., 2003). The glutamatergic system also 

modulates DA in the NAc (Imperato et al., 1990a, 1990b; Youngren et al., 1993; Taber et 

al., 1996; Sesack et al., 2003). Pharmacological modulation of the GABAergic system in 

cocaine-treated rats affects extracellular DA in the NAc. In addition, several studies reported 

that GABA-transaminase inhibition increase GABA and DA (Gerasimov et al., 2001; 

Dewey et al., 1998; Morgan and Dewey, 1998; Pan et al., 2012). Both DA and GLu also 

have been implicated in cocaine dependence (Kalivas, 2007). Thus, DA, GABA, and GLu 

appear inter-related in the addictive process for cocaine, and possibly other drugs of abuse, 

as those studies as well as others (Tzschentke and Schmidt, 2003; Spanagel and Kiefer, 

2008; Uys and LaLumiere, 2008) have shown.

Cocaine dependence, as well as other substance abuse disorders is considered to be a brain 

disease (Leshner and Koob, 1999). Thus, efforts have been made to identify psychoactive 

agents that affect the dopaminergic, GABAergic, and glutamatergic pathways, and evaluate 

their potential in treating cocaine dependence (Preti, 2007; Gass and Olive, 2008; Karila et 

al., 2008; Shorter and Kosten, 2011; Somaini et al., 2011). Unfortunately, the clinical 

effectiveness of these agents is inconsistent (Vocci and Ling, 2005; Pierce and Kumaresan, 

2006; Preti, 2007; Kampman, 2010; Shorter and Kosten, 2011). Given that DSF’s efficacy in 

treating cocaine dependence appears independent of ALDH2 inhibition (Carroll et al., 2004), 

that carb seems to have an effect on GLu binding (Nagendra et al., 1997), and the inter-

dependent relationship between DA, GABA, and GLu (Sesack et al., 2003; Lapish et al., 

2006; Del Arco and Mora, 2008), we hypothesized that the DSF metabolite carb may be 

responsible for the increase in brain DA after DSF administration, and also possible changes 

in GABA and GLu. To test this hypothesis we carried out microdialysis studies to determine 

carb’s effect on these neurotransmitters in the NAc and mPFC, two brain regions central to 

the addictive process (McFarland and Kalivas, 2001). DA, GABA and GLu were determined 

concurrently since all three neurotransmitters have been implicated in cocaine dependence 

(Kalivas, 2007).

2. Methods

2.1. Chemicals, reagents, and drugs

All chemicals, reagents, and solutions used for the analysis of DA, GABA, and GLu, have 

been described previously (Kaul et al., 2010, 2011). Carb was synthesized using the method 
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of Jin et al. (1994) with modification (Schloss, 2007). DSF and N-benzylimidazole (NBI) 

were purchased from Sigma–Aldrich, St. Louis, MO, USA).

2.2. Analytical procedures

Analysis of NAc and mPFC DA, GABA, GLu and carb in microdialysis samples in the carb 

dose–response studies (Figs. 2–4) were carried out utilizing a previously developed method 

employing micellar electrokinetic chromatography with laser-induced fluorescence (MEKC-

LIF) (Kaul et al., 2011) which measured DA, GABA, and GLu simultaneously in both the 

NAc and mPFC (Kaul et al., 2011). The detection and quantification of carb in the 

microdialysis samples from the plasma was determined concomitantly with these 

neurotransmitters using recently developed LC MS/MS techniques (Kaul et al., 2010).

2.3. Animals, surgeries, and microdialysis studies

Male Sprague-Dawley rats (Charles River Laboratories, Wilmington, MA) weighing 300 g 

to 400 g were used. Rats were housed in a temperature and humidity controlled animal 

facility maintained on a 12 h light/dark cycle with access to food and water ad libitum. 

Animals were brought into the laboratory from the animal facility, kept individually in their 

cage, and acclimated for 24 h before studies were initiated. Experiments were conducted 

during the light phase. Prior to surgery, the rats were initially anesthetized by isofluorane 

inhalation, followed by a subcutaneous injection of a mixture of ketamine (67.5 mg/kg), 

xylazine (3.4 mg/kg) and acepromazine (0.67 mg/kg).

Rats were implanted with an i v catheter for the carb or an intraperitoneal (i p) catheter for 

the DSF drug-dosing studies followed by the vascular and brain microdialysis probes. For i 

v drug-dosing, a PE-10 cannula (Fisher Scientific, Pittsburgh, PA) was implanted into the 

external femoral vein, with the cannula exiting the skin of the rat at the back of the neck 

between the shoulders (Kaul et al., 2011). For the DSF i p studies, a recently developed 

route of administration was employed which minimized animal handling since 

neurotransmitter concentrations can change as a result of stress associated with animal 

handling. This technique avoided this possibility. A 5–10 cm of PE-50 cannula (Fisher 

Scientific, Pittsburgh, PA) was inserted into the abdominal cavity so that the end of the 

cannula lay between the small intestine and the ventral cavity wall. The cannula was held in 

place by suturing it to the edge of the opening in the muscle wall. The muscle incision was 

sutured and the free end of the cannula was externalized through an incision at the back of 

the neck between the shoulders. This i p technique allowed the drugs to be administered to 

the rats without the need to handle each animal multiple times for drug-dosing.

The dialysis brain probes for determining the neurotransmitters in the shell of the NAc and 

in the mPFC were implanted as follows. Holes 1 mm in diameter were drilled through the 

skull at the insertion sites and intra-cerebral guide cannulas were lowered into the specified 

regions using a micromanipulator attached to the stereotaxic apparatus. The guide cannulas 

were positioned 2 mm above the specified regions and then affixed to the skull with dental 

cement. The dummy probe in the guide cannula was replaced with microdialysis probes 

(CMA 12 Elite) with 2 mm membranes purchased from CMA Microdialysis (North 

Chelmsford, MA). The coordinates of the insertion sites relative to the bregma line were 
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+1.5 mm anterior, +0.9 mm lateral and −6.2 mm ventral for the NAc shell site and +3.7 mm 

anterior, +0.7 mm lateral and −1.0 mm ventral for the mPFC (Paxinos and Watson, 1986). 

After the surgical procedures, the rats were administered 0.5–3 ml/kg of saline 

subcutaneously to prevent dehydration. A heating pad was placed under the rats to provide 

warmth during recovery from anesthesia. Plasma carb samples were obtained from a 

microdialysis probe implanted into the jugular vein utilizing vascular probes that were 

fabricated in-house. After surgical implantation, the brain and vascular probes were perfused 

with aCSF and Ringer’s solution respectively at a rate of 2 µL/min. The perfusion and 

collection of three minute samples in the microdialysis dose–response studies after carb 

administration or five minute collection times after DSF was initiated 24 h after surgery. 

This same post-surgery time period before initiation of the studies has been used 

successfully by others (Devoto et al., 2012).

2.4. Microdialysis probe calibration

Microdialysis samples were collected using a CMA 100 micro infusion pump and a 

HoneyComb fraction collector (Bioanalytical Systems Inc., West Lafayette, IN). The 

characteristics of the implanted microdialysis probes were evaluated at the end of each 

experiment. The relative recovery of carb through the microdialysis probes was estimated by 

delivery experiments (Song and Lunte, 1999) by perfusing 1 µmol/L carb through the 

microdialysis probes in vivo at 2 µL/min and determining the percentage that perfused 

through the membrane. The in vivo extraction efficiency (mean ± SEM) for carb was 

determined to be 25.8 ± 4.1% for the brain probes and 57.5 ± 10.4% for the plasma vascular 

probes. The concentration of carb determined in the microdialysis samples was corrected for 

the extraction efficiency of the probe used. The in vitro extraction efficiency (mean ± SEM) 

for DA, GABA, and GLu was estimated to be 14.1 ± 1.9%,17.2 ± 1.8%, and 13.5 ± 1.4% 

respectively. The concentrations of DA, GABA, and GLu were expressed as percent (mean 

± SEM) of baseline concentrations in order to monitor changes from basal levels after either 

carb or DSF administration.

2.5. Drug dosing

Carb (20, 50, and 200 mg/kg i v) was prepared in sodium bicarbonate solution (Kaul et al., 

2010). DSF was prepared as a suspension in saline solution and then sonicated, and 

administered at a dose of 200 mg/kg i p. NBI was prepared in saline with a few drops of 0.1 

mol/L HCl added and the solution sonicated. The dose of NBI administered was 20 mg/kg i 

p (Hart and Faiman, 1993). In the studies with carb, microdialysis sampling was carried out 

every three minutes. In these dose–response studies, a sample size of five rats per dose of 

carb was used. After all probes were in place in each rat, perfusion with aCSF was initiated 

60 min before the i v administration of carb. At this time neurotransmitter concentrations 

were stable (Figs. 2 and 3). Carb was then administered i v for each dose of carb and 

microdialysate samples collected every three minutes for two hours. This procedure was 

repeated for a total of five rats for each dose of carb studied which constituted the sample 

size. For the DSF experiments (Figs. 6 and 7), this dosing procedure was repeated except 

that in the DSF or DSF plus NBI studies the drugs were given i p using the newly developed 

technique, and microdialysate sampling carried out every five minutes. This procedure was 
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repeated for a total of three rats for each dose of DSF or DSF plus NBI which constituted the 

sample size.

2.6. Histology

At the completion of each experiment, the rats were killed by placing the animal in an 

isofluorane chamber for 30 min. Rat brains were harvested for histological confirmation of 

brain probe position. The rat brains were fixed in buffered formalin (10%). The tissues were 

embedded in paraffin wax and the sections cut at 5 µm and stained with hematoxylin-eosin. 

Only probes with at least 85% of the active dialysis membrane in the NAc shell or mPFC 

were included in the study.

3. Animal use

All animal experiments were conducted during the light phase and in accordance with 

guidelines established by the Institutional Animal Care and Use Committee at the University 

of Kansas and in accordance with NIH approved guidelines and met AAALAC standards.

4. Data and statistical analysis

In Figs. 2–8, data are given as mean ± SEM. Values for the first five consecutive samples 

were averaged to calculate basal neurotransmitter levels. In the carb and DSF studies, the 

start of drug administration (time point zero) was corrected for the lag time of the 

microdialysis system. For the carb dose–response studies, statistical and post-hoc analysis 

were performed with two-way repeated measures analysis of variance (RM ANOVA) to 

compare neurotransmitter levels between treatment doses (between-group factor) and 

treatment over time (repeated measures factor). For the DSF plus NBI inhibition studies, a 

one-way ANOVA was performed separately for each neurotransmitter (DA, GABA, GLu) 

(Table 3) and phase (I, II, III) (Fig. 7) to determine if drug treatments were significantly 

different from each other. Each phase refers to the time period when measurements were 

obtained. Phase I was 30 min before any drug treatment, Phase II was 30 min after the first 

NBI treatment, and Phase III was the 35 min period within the region of the maximal DA 

response. When phase-related one-way ANOVAs were significant, post-hoc tests were 

carried out (Bonferroni) to determine if the DSF treatment was significantly different from 

the other two treatments. The α level for statistical significance was set at p < 0.05 for all 

comparisons. When assumptions for homoscedasticity were not supported, ANOVAs were 

based on log10 transformations of the data.

5. Results

5.1. Carbamathione and NAc dopamine, GABA, and glutamate

Carb (20 mg/kg, 50 mg/kg, and 200 mg/kg i v) increased DA 96%, 232%, and 616%, (p < 

0.05) respectively in the NAc shell (Fig. 2), with the maximal increase occurring 

approximately 15 min after drug administration. Extracellular GABA decreased 23%, 42%, 

and 77%, respectively (p < 0.05) at these three doses, with the maximal decrease occurring 

approximately 45 min after carb administration. GLu in the NAc exhibited a biphasic effect. 

Initially, GLu increased 29%, 37% and 101% (p < 0.05) after each dose of carb, remained 
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elevated for approximately 39 min, after which GLu then decreased 26%, 39%, and 84%, 

respectively (p < 0.05) below basal levels.

5.2. Carbamathione and mPFC dopamine, GABA, and glutamate

In the mPFC (Fig. 3), after i v carb (20 mg/kg 50 mg/kg and 200 mg/kg) administration, 

extracellular DA increased 66%, 159%, and 395% respectively (p < 0.05), although the 

increase in DA was less than that seen in the NAc. Carb also decreased extracellular GABA 

29%, 47%, and 82% at these three doses (p < 0.05). As observed in the NAc, carb also 

produced a biphasic effect on extracellular GLu in the mPFC. Initially, extracellular GLu in 

the mPFC increased 35%, 70%, and 140% (p < 0.05) respectively at the three doses, and 

remained elevated for approximately 30 min, after which GLu then decreased of 29%, 47%, 

and 79% below basal levels for approximately one hour after drug administration before 

returning to base-line values. These changes in GABA and GLu were similar to those found 

in the NAc. As observed in the NAc, the greater the dose of carb administered, the greater 

the change in DA, GABA, and GLu in the mPFC.

Of interest was that the peak increase in DA in the NAc at all three doses occurred 

approximately 15 min after carb dosing whereas in the mPFC (Fig. 3) the peak effect 

occurred approximately 50 min after drug administration. Furthermore the peak DA 

concentration reached in the NAc was greater than that in the mPFC. The time for the 

maximal decrease in GABA and times for the changes in GLu were similar to those in the 

NAc.

5.3. Post-hoc analysis of carbamathione on NAc and mPFC dopamine, GABA, and 
glutamate

Post-hoc analysis (Table 1) of the effect of these doses (treatment-dose) on DA in the NAc 

showed that the effect of 200 mg/kg of carb was significantly different than from a dose of 

50 mg/kg and 20 mg/kg but the 50 mg/kg dose was not statistically different from the 20 

mg/kg dose. This was the same for GLu. For GABA, post-hoc analysis found statistically 

significant differences between all three doses of carb. In the mPFC, post-hoc analysis 

showed a statistically significant increase in DA and a decrease in GABA at all three doses. 

For GLu, only the 50 mg/kg versus the 20 mg/kg dose showed no statistically significant 

difference (Table 1). The lack of statistical significance between the 50 mg/kg and 20 mg/kg 

dose after carb administration for GLu in the NAc and mPFC appears to be due to the 

greater variability in neurotransmitter concentration and limited sample size.

5.4. Concentration–time profile of carbamathione in NAc, mPFC, and plasma

A comparison of the concentration–time profile between carb in the NAc, mPFC, and in the 

plasma after each i v dose of drug is given in Fig. 4A and B respectively. The peak 

concentration of carb in the NAc and mPFC occurred after 5 min, and in the plasma 

approximately 3 min after carb administration at the respective doses and then decreased 

rapidly. The rapid loss of carb in the NAc and mPFC (Fig. 4A) and in plasma (Fig. 4B) was 

in contrast to the changes in extracellular DA, GABA and GLu observed in the NAc (Fig. 2) 

and mPFC (Fig. 3). In those brain regions the increase in DA, decrease in GABA, and the 

biphasic effect that occurred with GLu were maintained for at least two hours. This suggests 
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that there is no relationship between the concentration of carb in the NAc, mPFC or in 

plasma and the effect of carb on DA, GABA, and GLu in these brain regions.

5.5. Pharmacokinetic parameters

The various pharmacokinetic parameters for carb in the NAc, mPFC, and in plasma are 

given in Table 2. There was a direct relationship between the i v dose of carb administered 

and the carb Cmax and AUC in both the NAc and mPFC, and in the plasma. The carb tmax, 

t1/2, and Kelim were similar in both the NAc and mPFC and in plasma irrespective of the 

dose of carb administered, suggesting a diffusion process and a first-order mechanism.

5.6. Disulfiram and NAc dopamine, GABA, and glutamate

After DSF (200 mg/kg i p) administration, carb was found in the NAc (Fig. 5A). The 

concentration of carb in the NAc was less than the concentration of carb found in the NAc 

after i v carb (Fig. 5B). Similarly, carb in plasma after DSF (Fig. 5A) was less than the 

concentration of carb in plasma after carb administration (Fig. 5B). The time for carb to 

reach the maximal concentration (tmax) after DSF was greater (90 min) than after carb (5 

min) dosing. These differences would be expected since carb was given i v whereas DSF 

was administered i p which requires DSF to be absorbed and then metabolized to form carb 

(Fig. 1).

DSF also produced an increase in NAc DA, decrease in GABA, and a biphasic effect on 

GLu first increasing and then decreasing GLu in the extracellular fluid (Fig. 6) similar to 

that observed in the NAc after carb administration (Fig. 2). DSF increased DA in the NAc, 

remained elevated for approximately 100 min and reached a maximal increase of 

approximately 111% (p< 0.05) over baseline. Although there was an initial increase in 

GABA in the extracellular fluid of the NAc within the first 10 min, GABA then decreased 

and remained at a reduced level for approximately two hours after DSF administration. GLu 

in the NAc exhibited a biphasic effect. GLu increased initially with a peak increase of 35% 

(p < 0.05) over baseline that occurred approximately 75 min after DSF dosing after which 

GLu decreased below basal levels. The maximal GLu decrease was 20% (p < 0.05) which 

occurred approximately 120 min after DSF administration. The peak concentration of DA, 

the maximal decrease in GABA, and the maximal increase and decrease in GLu (Fig. 6) 

after DSF was less than that observed after carb administration (Fig. 2) as would be 

expected. The changes in DA, GABA, and GLu in the NAc after an acute dose of DSF (Fig. 

6) was similar to that found after carb administration (Fig. 2) except that the concentration 

of these neurotransmitters after DSF dosing was lower. This is most likely due to less carb 

formed from DSF and the dose-dependent effect that carb has on these neurotransmitters 

(Fig. 2).

5.7. Inhibition of disulfiram metabolism with N-benzylimidazole and NAc dopamine, GABA, 
and glutamate

The hypothesis that the change in DA, GABA, and GLu in the NAc (Fig. 2) after DSF 

administration is due to formation of carb was tested using the general cytochrome P450 

inhibitor NBI to inhibit DSF metabolism. NBI (20 mg/kg i p) was given to rats 30 min 

before DSF administration and a booster dose of NBI given 30 min after DSF administration 
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in order to maintain inhibition of DSF metabolism (Hart and Faiman, 1993). The effect of 

the inhibition of DSF metabolism on DA, GABA, and GLu in the shell of the NAc is given 

in Fig. 7.

The concentration of DA, GABA, and GLu in the NAc between the NBI only (control 

group) and the NBI plus DSF group were not statistically different (p < 0.05) (Phase III). 

That is, NBI pretreatment blocked DSF-induced changes in these neurotransmitters. 

Although there was a minimal increase early in DA, GABA, and GLu in the NBI plus DSF 

treatment group, this increase was not statistically significant. In rats treated with DSF, carb 

was detected in both the NAc and plasma (Fig. 5). However, in rats treated with NBI and 

then given DSF, no carb could be detected in either the NAc or plasma. These findings 

suggest that in order for a DSF-induced change in DA, GABA, and GLu to occur, carb must 

first be formed. A summary of one-way ANOVA comparisons in NAc DA, GABA, and 

GLu during all three phases of the experimental protocol for the DSF plus NBI studies (Fig. 

7) is given in Table 3. During phase I, which is a measure of neurotransmitter base-line 

values 30 min before NBI treatment, no statistical differences were observed. Similarly, 

there were no statistical differences during phase II, which reflects the first 30 min after NBI 

treatment. Phase III, which is the region of maximal DA, GABA, and GLu response, 

statistically significant differences were apparent only with DA and GLu. Although the trend 

for GABA was in right direction, the small sample size may have contributed to the lack of 

any statistical significance in the GABA group.

5.8. Inhibition of carbamathione metabolism by N-benzylimidazole and NAc dopamine, 
GABA, and glutamate

NBI administration prior to carb dosing was investigated to determine if the inhibition of 

liver drug metabolizing enzymes had any effect on the carb-induced changes in DA, GABA, 

and GLu in the NAc once carb was formed (Fig. 8). In these studies carb was administered i 

p rather than given i v as in the dose–response studies (Fig. 2). Thus the effect of inhibition 

of the drug metabolism as well as comparing i p versus i v administration could be assessed. 

NBI had no effect on carb’s induced increase DA, decrease in GABA, and biphasic effect on 

GLu in the NAc, as the change observed in these neurotransmitters was similar to that 

observed after carb administration without NBI dosing (Fig. 2) An analysis of variance 

comparing DA, GABA, and GLu showed there was no statistical significance between the 

carb group (positive control) and NBI plus carb group. These findings suggest that once carb 

is formed, inhibition of liver cytochrome P450 enzymes has no effect on the basal levels of 

DA, GABA, and GLu. After i p carb administration, the values for the increase in DA, 

decrease in GABA and biphasic effect on GLu in the NAc are about half of that seen after i 

v carb administration (Fig. 2). This would be expected since absorption and distribution of 

carb to the brain must first occur after i p administration compared to a direct effect after i v 

administration. Since carb given i p produced changes in DA, GABA, and GLu in the NAc, 

these findings also suggest that first pass effects don’t play any role in carb’s ability to affect 

the vesicular release of these neurotransmitters.
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6. Discussion

The finding that carb increased DA, decreased GABA, and had a biphasic effect on GLu in 

both the NAc and mPFC concurrently, is the first time this has been reported for a DSF 

metabolite. The mechanism by which carb produced these simultaneous changes in DA, 

GABA, and GLu in both the NAc and mPFC (Figs. 2 and 3) is unclear at this time. Since 

carb affects glutamate binding (Nagendra et al., 1997), the present studies were carried out 

to test the hypothesis that carb could affect DA, GABA, and GLu because of the interaction 

between these neurotransmitters, each of which can modulate their respective release 

(Sesack et al., 2003; Pierce and Kumaresan, 2006). Furthermore, the co-release of DA and 

GLu also has been suggested previously (Trudeau, 2004; Lapish et al., 2006). The increase 

in DA in the NAc and mPFC we observed after carb (Figs. 2 and 3) and DSF (Fig. 6) is 

similar to the findings from microdialysis studies by Vaccari et al. (1996) in which DSF and 

diethyldithiocarbamate (DDTC) (Fig. 1) increased the release of vesicular DA. Those 

investigators proposed that this was due to an interaction with the DA carrier and increased 

membrane permeability. However, from studies in progress (Levant and Faiman, 

unpublished results) we have observed that carb has no effect on the DA transporter. Vaccari 

et al. (1998), employing microdialysis techniques also found that DSF and DDTC increased 

the release of vesicular GLu from the neostriatum. Since DSF is metabolized to carb (Fig. 

1), it is more than likely that any changes in DA and GLu observed by those investigators 

most likely can be attributed to carb. Vaccari et al. (1998) did not observe a biphasic effect 

on GLu in contrast to our findings with carb given either i v (Figs. 2 and 3) or i p (Fig. 8), or 

DSF (Fig. 6).

The concentration of DA in the extracellular fluid of the NAc after carb administration (Fig. 

2) was greater than that found in the mPFC (Fig. 3). Furthermore, the time to reach the 

maximal increase in DA in the NAc after carb administration was approximately 15 min 

compared to approximately 50 min in the mPFC These findings are consistent with the 

findings from in vivo fast-scan cyclic voltammetry studies by Garris and Wightman (1994). 

Those studies showed that the initial rate of release of DA into the extracellular space was 

some 8-fold higher in the NAc than in the mPFC suggesting regional specific DA release 

characteristics. It is possible that the greater tonic DA concentration observed in the NAc 

compared to the mPFC arises from differences in phasic release. Although voltammetry and 

microdialysis data may not reflect the same phenomenon, our results parallel the findings of 

Garris and Wightman (1994). This also could explain the difference for the biphasic effect 

of GLu observed between results for carb (Figs. 2 and 3) and DSF (Fig. 6) and the DSF and 

DDTC findings of Vaccari et al. (1998).

The concentration of carb in the NAc and mPFC increased in a dose-dependent manner (Fig. 

4), and peaked within 5 min in both these brain regions regardless of the dose of carb 

administered, and was undetectable after 30 min. In plasma, carb peaked after 2.5 min and 

was undetectable after 12 min after a low dose and 26 min after a high dose of 

carbamathione (Fig. 4). However, the changes in DA, GABA and GLu in both the NAc and 

mPFC persisted for almost one to two hours (Figs. 2 and 3) long after carb could be detected 

in these brain regions (Fig. 4). This suggests that carb may either affect the vesicular storage 

and release of these neurotransmitters over a prolonged period of time and recovery is slow 
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while carb is rapidly removed, or that a metabolite of carb is responsible for the observed 

effect on these neurotransmitters. Studies in progress suggest the latter may be the case. The 

half-life for carb disappearance from the NAc, mPFC, or plasma are all similar, this being 

approximately 4 min regardless of the dose of carb administered (Table 2) suggesting first-

order kinetics and consistent with passive transfer. There was a direct relationship between 

the area under the curve (AUC) for carb and the dose of carb administered (Table 2) which 

again is consistent with first order kinetics.

DSF, the parent compound of carb, increased carb in the NAc and plasma (Fig. 5) and also 

increased NAc DA, decreased GABA, and had a biphasic effect on GLu (Fig. 6) similar to 

that observed after carb administration (Fig. 2). That the increase in DA after DSF is due to 

carb formation is supported by several lines of evidence. After DSF administration, carb 

appeared in both the NAc and plasma (Fig. 5A), and in addition there was an increase in 

NAc DA, decrease in GABA and a biphasic effect on GLu (Fig. 6) similar to that observed 

after carb administration (Fig. 2). The Cmax for carb in plasma and in the NAc after DSF 

administration (Fig. 5A) occurred after approximately 90 min whereas after carb 

administration (Fig. 5B), the Cmax in the NAc occurred within 5 min and in plasma within 

12 min. The differences between DSF and carb administration (Fig. 5A and B) is because 

DSF was given i p whereas carb, the active metabolite was given i v. The i p administration 

of DSF requires absorption, distribution and metabolism of the drug which explains the 

reason for the lag time before any changes in DA, GABA, and GLu occur (Fig. 6). The DSF 

inhibition studies with NBI provide further evidence that the increase in brain DA is due to 

carb and not the DSF metabolite DDTC as previously proposed (Goldstein et al., 1964). 

When DSF metabolism was inhibited by pretreatment with NBI, there was no statistical 

difference in DA, GABA, and GLu in the NAc between the NBI only-treated group 

(positive control) and the NBI plus DSF group (Fig. 7). Furthermore, no carb could be 

detected either in the NAc or in plasma in rats treated with NBI and then administered DSF. 

Thus, if no carb is formed, no changes in DA, GABA, and GLu were observed (Fig. 7). A 

comparison between i p DSF (Fig. 6) and i p carb (Fig. 8) further supports carb as the active 

metabolite responsible for the changes in DA, GABA, and GLu. The percentage of carb 

formed from DSF is unknown but is presumed to be small since Gessner and Jakubowski 

(1972) estimated that 0.05% of DDTC is converted to DDTC-Me, a precursor to carb (Fig.

1). Carb’s effect on NAc and mPFC DA, GABA, and GLu is dose-dependent (Figs. 2 and 

3). Thus, the change in concentration of these neurotransmitters formed after DSF 

administration (Fig. 6) is smaller when compared to carb (Fig. 8). Reduction of DSF to 

DDTC is dependent upon glutathione reductase ((Strömme, 1963a; Cobby et al., 1977) and 

not the cytochrome P450 enzymes. The CYP 3A4, 2E1 and 2A6 enzymes responsible for 

DSF bioactivation and carb formation (Madan et al., 1995) are necessary after formation of 

DDTC (Fig. 1). If DDTC is the metabolite responsible for the increase in DA after DSF 

administration as proposed (Goldstein et al., 1964), there should have been an increase in 

DA in the NAc after DSF administration in the NBI-treated rats since inhibition of the CYP 

enzymes by NBI occurs downstream from DDTC (Fig. 1). Therefore, once DDTC is 

formed, further metabolism to carb cannot proceed. In vivo, DDTC is rapidly methylated in 

both rodents (Gessner and Jakubowski, 1972), Cobby et al., 1977) and in humans ((Faiman 

et al., 1984), and demethylation of DDTC-Me to DDTC is unlikely (Gessner and 
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Jakubowski, 1972). Additional evidence that the formation of carb from DSF is required for 

any changes in these in these neurotransmitters is seen from the observation that the NAc/

plasma ratio after i v carb (Fig. 4) is approximately 0.16 which is similar to that for the NAc/

plasma ratio after DSF administration (Fig. 5A,), even though the route of administration 

was different, i v versus i p. Finally, that the CYP P450 enzymes are not involved in the 

metabolism of carb after it is formed from DSF is apparent from the findings that carb 

increased DA, decreased GABA, and had a biphasic effect on GLu in the NAc even when 

rats are first treated with NBI and then administered carb (Fig. 8). In addition, the 

pharmacokinetic parameters t1/2, Kelm, and AUC for carb with and without NBI 

pretreatment were similar providing further support that after carb is formed the CYP P450 

enzymes no longer play a role in carb’s effect on changes in DA, GABA, and GLu. An 

important finding is that carb, a glutathione conjugate, given i p crosses the blood brain 

barrier and affects DA, GABA, and GLu in the NAc (Fig. 8). Carb (200 mg/kg) was 

administered both i v and i p. Yet, the AUC, and t1/2 for both routes of administration were 

similar. Only the Cmax and tmax were different with the i p route taking longer to produce its 

effect which is expected.

From a clinical perspective, estimates suggest that adults reduce approximately 50 g of DSF 

within a 24 h period (Strömme, 1963b). This is a large dose of DSF compared to the 

standard 250 mg daily dose used clinically in treating alcohol or cocaine dependence. Thus, 

after the usual 250 mg clinical dose of DSF, little DSF should remain and any DDTC 

formed would be expected to be rapidly metabolized to several metabolites (Gessner and 

Jakubowski, 1972; Johansson, 1992; Madan et al., 1993, 1994) with little DDTC remaining. 

This is supported by human studies as less than 10 ng/ml of DDTC is found in plasma after 

a single dose of DSF (Scappaticci et al., 1990) and 0.7 µg/ml of DDTC found in plasma after 

12 consecutive days of dosing with DSF (Faiman et al., 1984).

These studies show for the first time that the DSF metabolite carb simultaneously increased 

DA, decreased GABA and increased and then decreased GLu in both the NAc and mPFC in 

a dose-dependent manner. Although it has been suggested that corelease of these 

neurotransmitters may occur in various disease states that implicate monoamine pathways 

(Trudeau, 2004), these findings are the first report that DSF as a result of carb formation can 

co-release these neurotransmitters. When the metabolism of DSF was inhibited, no carb was 

detected in brain and plasma, and no change in DA, GABA, and GLu occurred in the NAc.

An increase in brain DA and change in the DA/NE ratio due to DβH inhibition by DSF has 

been proposed as contributing to cocaine dependence ((Gaval-Cruz et al., 2008; Gaval-Cruz 

and Weinshenker, 2009; Schroeder et al., 2010). Although this concept may still be valid, 

the increase in DA appears to be due to carb and not DSF. We did not determine the effect 

of carb on DβH activity. However, carb is not a good drug candidate for inhibiting DβH 

(Hogarth, 2012) as is DDTC, which is the metabolite of DSF responsible for the inhibition 

of this enzyme (Goldstein et al., 1964). Furthermore, in very preliminary in vitro studies we 

found that carb does not bind to copper, the proposed mechanism by which DSF, through its 

metabolite DDTC complexes with the copper of DβH and inhibits this enzyme (Goldstein et 

al. (1964). As for DSF’s efficacy in cocaine dependence or non-substance abuse disorders 

such as pathological gambling, the co-release of DA, GABA, and GLu and their role cannot 
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be discounted considering carb’s simultaneous effect on these neurotransmitters. The 

neurocircuitry in the reward pathway in the brain associated with these neurotransmitters is 

such that each can influence the release of the other (McFarland and Kalivas, 2001; Del 

Arco and Mora, 2008). Focusing only on the role of either DA, GABA, or GLu individually 

in cocaine dependence, or other substance abuse disorders (Leshner and Koob, 1999), may 

only provide limited information. Of interest is that in studies by Yao et al. (2010), those 

investigators found that ALDH2 inhibition attenuates cocaine self-administration and 

prevents cocaine or cue-induced reinstatement in a rat model of cocaine relapse. The 

molecular mechanism proposed is that ALDH2 inhibition increases tetrahydropapaveroline 

(THP) formation through the condensation of 3,4-dihydroxyphenylacetaldehyde (DOPAL) 

and DA forming THP, which through a negative-feedback mechanism reduces DA 

production. Although this is an interesting concept, carb does not inhibit ALDH2 (Jin et al., 

1994; Nagendra et al., 1997), yet carb increases DA in the NAc and PFC (Figs. 2 and 3). 

Studies into carb’s mechanism of action in increasing DA are needed. Also, the present 

studies were carried out in naïve rats and the effect of carb in cocaine or any other substance 

abuse-dependent animal model both biochemically and behaviorally is unknown and needs 

to be determined.

7. Conclusions

DSF is a pro-drug and can be metabolized to a number of metabolites. The finding that the 

metabolite carb increased DA, decreased GABA, and had a biphasic effect on GLu in both 

the NAc and mPFC, and that these neurotransmitters are co-released represents a novel 

finding for this DSF metabolite. Inhibition of DSF metabolism prevented the formation of 

carb and attenuated the changes in DA, GABA, and GLu. Thus, carb must be formed in 

order for DSF to affect these neurotransmitters. The identification of carb as a modulator of 

DA, GABA, and GLu in the NAC and mPFC provides an opportunity for carb to be used as 

a pharmacological tool to better understand the mechanism of action of DSF, not only in 

cocaine dependence but other substance abuse disorders. In light of DSF’s effect on DA, 

GABA, and GLu in the NAc and mPFC, a central action for DSF in treating alcohol and 

cocaine dependence as well as non-substance-related dependencies cannot be excluded.
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Fig. 1. 
Disulfiram bioactivation. DDTC: diethyldithiocarbamate. DDTC-Me: 

diethyldithiocarbamate methyl ester. DDTC-MeSO: diethyldithiocarbamate methyl ester 

sulfoxide. DETC-Me: S-methyl N, N-diethylthiolcarbamate. DETC-MeSO: S-methyl N, N-

diethylthiolcarbamate sulfoxide. DETC-MeSO2: S-methyl N, N-diethylthiolcarbamate 

sulfone. NBI: N-benzylimidazole.
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Fig. 2. 
Dopamine, GABA, and glutamate concentration in the NAc after various doses of i v 

carbamathione. Perfusion of NAc was initiated 60 min before the i v administration of 

carbamathione (t = 0). Microdialysis samples were collected every 3 min for 

neurotransmitter analysis. The basal concentrations of dopamine, GABA, and glutamate in 

microdialysis samples from the NAc were 7.4 ± 1.8 nmol/L, 63.5 ± 11.7 nmol/L, and 2.9 ± 

0.5 µmol/L, respectively. Data shown as a percent of baseline (± SEM; n = 5). See Table 1 

for statistical analysis.
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Fig. 3. 
Dopamine, GABA, and glutamate concentration in the mPFC after various doses of i v 

carbamathione. Perfusion of mPFC was initiated 60 min before the i v administration of 

carbamathione (t = 0). Microdialysis samples were collected every 3 min for 

neurotransmitter analysis. The basal concentrations of dopamine, GABA, and glutamate in 

microdialysis samples from the mPFC were 3.8 ± 0.5 nmol/L, 49.8 ± 11.7 nmol/L, and 2.4 ± 

0.3 µmol/L, respectively. Data shown as a percent of baseline (± SEM; n = 5). See Table 1 

for statistical analysis.
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Fig. 4. 
Carbamathione concentration in the NAc, mPFC and plasma as a function of time after i v 

carbamathione administration. Data depict the mean carbamathione concentration (± SEM; n 

= 5) in the (A) NAc, mPFC and (B) plasma following carbamathione administration (20, 50, 

200 mg/kg i v). Microdialysis samples were collected every 3 min.
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Fig. 5. 
Effect of disulfiram and carbamathione administration on NAc and plasma carbamathione. 

Data depict the mean carbamathione concentration (± SEM) in the NAc (circles) and plasma 

(squares) following (A) disulfiram (n = 3) or (B) carbamathione (n = 5) administration. 

Microdialysis samples were collected every 3 min for carbamathione and 5 min for 

disulfiram.
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Fig. 6. 
Dopamine, GABA, and glutamate levels in the NAc following disulfiram (200 mg/kg; i p) 

administration. Perfusion of NAc was initiated 60 min before the i p administration of 

disulfiram (t = 0). Microdialysis samples were collected at 5 min intervals for 

neurotransmitter analysis. Data shown as mean percent of baseline (± SEM; n = 3).
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Fig. 7. 
Dopamine, GABA, and glutamate in the NAc after inhibition of disulfiram metabolism. NBI 

(20 mg/kg; i p) was administered 30 min before disulfiram (200 mg/kg; i p) and a booster 

dose given 30 min after disulfiram (see arrows). Perfusion of NAc was initiated 60 min 

before the i v administration of disulfiram (t = 0). Arrows are the time at which NBI was 

administered. Microdialysis samples were collected at 5 min intervals for neurotransmitter 

analysis. Data shown as mean percent of baseline (± SEM; n = 3). Phase I represents a 

measure of the baseline 30 min before NBI treatment, Phase II reflects the first 30 min after 
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NBI administration, and Phase III is the region of maximal dopamine, GABA, and 

glutamate response. See Table 2 for statistical comparisons.
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Fig. 8. 
Dopamine, GABA, and glutamate in the NAc after carbamathione administration with and 

without NBI. NBI (20 mg/kg; i p) was administered 30 min before carbamathione (200 

mg/kg; i p) and a booster dose of NBI given 30 min after carbamathione (see arrows). 

Perfusion of NAc was initiated 60 min before the i v administration of carbamathione (t = 

0). Microdialysis samples were collected at 5 min intervals for neurotransmitter analysis. 

Data shown as mean percent of baseline (± SEM; n = 3). A RM ANOVA indicated 
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carbamathione + NBI was significantly different from the NBI only group (p < 0.001) for 

DA, GABA, and Glu).
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Table 1

Summary of analysis of variance results for carbamathione dose–response studies. The table lists the ANOVA 

results for the main effect of dose. Statistical and post-hoc analysis were performed using a two-way repeated 

measures ANOVA.

Measurea Analysis of variance effectb

Dose

df F p

NAc DA 2,6 37.15 <0.01

NAc DA (200 mg vs 50 mg CARB) 1,4 91.79 <0.01

NAc DA (50 mg vs 20 mg CARB) 1,4 6.87 ns

NAc DA (200 mg vs 20 mg CARB) 1,4 58.56 <0.01

NAc GABA 2,6 148.36 <0.01

NAc GABA (200 mg vs 50 mg CARB) 1,4 104.64 <0.01

NAc GABA (50 mg vs 20 mg CARB) 1,4 77.46 <0.01

NAc GABA (200 mg vs 20 mg CARB) 1,4 209.58 <0.01

NAc GLu 2,6 27.54 <0.01

NAc GLu (200 mg vs 50 mg CARB) 1,4 23.54 <0.01

NAc GLu (50 mg vs 20 mg CARB) 1,4 5.15 ns

NAc GLu (200 mg vs 20 mg CARB) 1,4 37.44 <0.01

mPFC DA 2,6 265.08 <0.01

mPFC DA (200 mg vs 50 mg CARB) 1,4 501.92 <0.01

mPFC DA (50 mg vs 20 mg CARB) 1,4 53.03 <0.01

NAc DA (2000 mg vs 20 mg CARB) 1,4 394.46 <0.01

mPFC GABA 2,6 147.09 <0.01

mPFC GABA (200 mg vs 50 mg CARB) 1,4 133.17 <0.01

mPFC GABA (50 mg vs 20 mg CARB) 1,4 22.72 <0.01

NAc GABA (200 mg vs 20 mg CARB) 1,4 231.13 <0.01

mPFC GLu 2,6 37.69 <0.01

mPFC GLu (200 mg vs 50 mg CARB) 1,4 92.05 <0.01

mPFC GLu (50 mg vs 20 mg CARB) 1,4 1.69 ns

NAc GLu (200 mg vs 20 mg CARB) 1.4 57.23 <0.01

a
Post-hoc tests are in italics.

b
Significant probabilities are in bold font.
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