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Abstract

N-methyl D-aspartate receptor (NMDA) subunit 2B (NR2B)-containing NMDA receptors and 

mitochondrial protein cyclophilin D (CypD) are well characterized in mediating neuronal death 

after ischemia, respectively. However, whether and how NR2B and CypD work together in 

mediating synaptic injury after ischemia remains elusive. Using a de novo ischemia model of 

oxygen-glucose deprivation (OGD) in hippocampal slices, we identified a NR2B-dependent 

mechanism for CypD translocation onto the mitochondrial inner membrane. CypD depletion 

(CypD null mice) prevented OGD-induced impairment in synaptic transmission recovery. 

Overexpression of neuronal CypD mice (CypD+) exacerbated OGD-induced loss of synaptic 

transmission. Inhibition of CypD-dependent mitochondrial permeability transition pore (mPTP) 

opening by cyclosporine A (CSA) attenuated ischemia-induced synaptic perturbation in CypD+ 

and non-transgenic (nonTg) mice. The treatment of antioxidant EUK134 to suppress 

mitochondrial oxidative stress rescued CypD-mediated synaptic dysfunction following OGD in 

CypD+ slices. Furthermore, OGD provoked the interaction of CypD with P53, which was 

enhanced in slices overexpressing CypD but was diminished in CypD-null slices Inhibition of p53 

using a specific inhibitor of p53 (pifithrin-μ) attenuated the CypD/p53 interaction following OGD, 

along with a restored synaptic transmission in both nonTg and CypD+ hippocampal slices. Our 

results indicate that OGD-induced CypD translocation potentiates CypD/P53 interaction in a 

NR2B dependent manner, promoting oxidative stress and loss of synaptic transmission. We also 

evaluate a new ex-vivo chronic OGD-induced ischemia model for studying the effect of oxidative 

stress on synaptic damage.
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1. Introduction

Many in vivo, in vitro, and human studies have established a role for glutamate 

excitotoxicity in neuronal damage after ischemia. Excessive release of glutamate and 

overactivation of glutamate receptors [predominantly N-methyl-D-aspartate (NMDA) 

receptor] are primarily responsible for the neuronal death that occurs during ischemic stroke 

(Lipton and Rosenberg, 1994, Mattson, 1997, Lee et al., 1999, Arundine and Tymianski, 

2004, Tu et al., 2010). More specifically, overactivation of the N-methyl D- aspartate 

receptor subunit 2B (NR2B) causes intracellular Ca2+ overload and recruits several 

molecules, such as phosphatase and tensin homologs deleted on chromosome TEN (PTEN) 

(Zhang et al., 2013) and death-associated protein kinase 1 (DAPK1) (Tu et al., 2010) that 

directly bind to the NMDA receptors, and nNOS that indirectly couples to the NMDA 

receptors via PSD95 (Cao et al., 2005), leading to neuronal loss (Taghibiglou et al., 2009a, 

Tu et al., 2010, Lai et al., 2011, Zhang et al., 2013, Lai et al., 2014). Studies on the majority 

of NMDA receptor antagonists showed no beneficial efficacy in clinical trials (Ikonomidou 

and Turski, 2002, Kemp and McKernan, 2002, Albensi et al., 2004). It is therefore necessary 

to study the intracellular players connecting NMDA receptor activation to neuronal death 

after ischemia.

In addition to NR2B-containing NMDA receptors and the associated intracellular signaling 

pathways, mitochondria play a critical role in ischemia-mediated neuronal necrosis. It is 

known that ATP production within mitochondria is ceased upon the onset of ischemia, thus 

neurons are initially insufficiently supply/ or depleted with energy, leading to ion hemostasis 

interruption, massive glutamate release, NR2B overactivation (Siesjo, 1992, Martin et al., 

1994, Taylor et al., 1999). When mitochondria are reintroduced with glucose and oxygen 

during reperfusion, further mitochondria damage with elevated oxidative stress is elicited 

(Choi, 1995, Chan, 2004, Honda et al., 2005), which is harmful for the recovery of neuronal 

function after ischemia. Therefore, suppressing mitochondrial oxidative stress and damage is 

anticipated to promote neuronal function recovery.

Cyclophilin D (CypD), a key component of mitochondrial permeability transition pore 

(MPTP), is located in matrix under physiology condition. CypD can be translocated onto 

mitochondrial inner membrane during pathological insults such as oxidative stress, which 

triggers the opening of mPTP and elevates reactive oxygen free radicals (ROS) accumulation 

in cells (Baines et al., 2005, Schinzel et al., 2005, Du et al., 2008). In ischemia condition, 

either genetic deletion of CypD or pharmacological inhibition of CypD-dependent mPTP 

opening suppresses oxidative stress in parallel, reduces necrosis cell death (Shiga et al., 

1992, Uchino et al., 1998, Khaspekov et al., 1999, Baines et al., 2005, Schinzel et al., 2005). 

The most recent studies demonstrated that in response to oxidative stress induced by brain 

ischemia/reperfusion injury, p53, a tumor suppressor protein, accumulates in the 

mitochondrial matrix and triggers mPTP opening and necrosis by physical interaction with 
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CypD (Karch and Molkentin, 2012, Vaseva et al., 2012, Zhao et al., 2013, Pei et al., 2014). 

However, whether and how CypD is translocated onto mitochondrial membrane and 

contributes to functional recovery when neurons reintroduced with glucose and oxygen 

remains unknown.

In the present study, using a de novo ischemia model, OGD, in hippocampal slices lacking 

and gaining neuronal expression of CypD, we identified an NR2B-dependent mechanism to 

trigger CypD translocation onto the mitochondrial inner membrane, enhancing CypD/p53 

interaction and oxidative stress, leading to inhibition of the recovery of synaptic 

transmission following OGD. Our results offer new insight into the role of NR2B-containing 

NMDA receptors and mitochondrial CypD translocation in OGD-induced synaptic 

dysfunction. Disassociation of NMDA receptor with mitochondrial CypD translocation 

could be a new target for restoring synaptic function upon ischemic stroke.

2. Materials and methods

2.1 Animals

Protocols involving animal use were approved by the Animal Care and Use Committee of 

the University of Kansas-Lawrence in accordance with the National Institutes of Health 

guidelines for animal care. CypD homozygous null mice (CypD−, mice with Ppif−/− 

depletion) were kind gifts from Dr. Jeffery D. Molkentin (Baines et. al., 2005). The offspring 

of CypD null mice (termed CypD− mice) mice were identified by PCR using primers 

[IMR5115: TTCTCACCAGTGCATAGGGCTCTG and IMR5116: 

GCTTTGTTATCCCAGCTGGCGC (reverse)]. To generate transgenic mice overexpressing 

CypD in neurons (termed CypD+ mice) driven by the Thy1-promoter, we subcloned full 

length human CypD coding sequences into a Thy1 transgenic construct. The construct was 

verified by sequencing. Transgenic founders were backcrossed 10 times into C57BL6/J mice 

for analysis of expression patterns. Tg mice were identified by PCR using primers [5'-

GCTTTCCCCACCACAGA-3' (forward) and 5'-TGTTAGGACCAGCATTAG -3' 

(backward)]. Male mice at 3-5 month-old were used for this study.

2.2 Pharmacological treatment

Drugs were prepared as stock solutions and diluted to the desired final concentration in 

artificial cerebral spinal fluid (ACSF) containing: 124 mM NaCl, 4.4 mM KCl, 2 mM 

CaCl2, 2 mM MgSO4, 1mM Na2HPO4, 25 mM NaHCO3, 10mM D-(+)-glucose or sucrose 

(for glucose-free ACSF), immediately before application. Hippocampal slices with drugs 

were incubated in recovery or recording sub-immerse chambers as needed. The final 

concentrations and sources of the drugs were as follows: Cyclosporin A (CSA; 1 μM, 

Sigma), Ro 25-6981 (Ro25; 1 μM, Sigma), PPPA (0.5 μM; Tocris), Pifithrin-μ (PFT; 5 μM, 

Sigma), EUK 134 (EUK; 500 nM, Cayman Chemical). The final concentration of vehicle 

control ethanol was less than 0.5% in all experiments, which is the same concentration of 

ethanol in the solution containing drugs for the treatment. All reagents were purchased from 

Sigma (St. Louis, MO) instead of otherwise stated.
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2.3 Slice preparation and oxygen glucose deprivation (OGD)

Animals were decapitated according to the approved protocol and hippocampi were rapidly 

removed. Transverse hippocampal slices (400 μm in thickness) were sectioned as we 

previously described (Huang et al., 2014, Zhang et al., 2014). All steps were performed in 

ice-cold oxygenated ACSF solution. Before recording, hippocampal slices were recovered at 

30°C for 1.5 h in ACSF continuously bubbled with 95% O2 and 5% CO2. During recording, 

we transferred hippocampal slices into the recording immerse chamber that was maintained 

at 22 ± 0.5 °C and perfused with oxygenated normal ACSF (or 95% N2 and 5% CO2 

bubbled glucose-free ACSF for inducing OGD) at a rate of 2.5–3 ml/min. The slice was 

incubated for another 15-20 minutes followed by recordings of a stable baseline of synaptic 

transmission for 20 minutes. Field-excitatory post-synaptic potentials (fEPSPs) were 

recorded for the CA1 region of the hippocampus by placing both the stimulating and the 

recording electrodes in the CA1 stratum radiatum. We assayed the basal synaptic 

transmission (input-output curve) by plotting stimulus voltage (V) against slopes of fEPSPs 

to generate input-output relations; we then established a 20 min baseline recording using 

low-frequency stimulation (0.033 Hz; 0.1 ms impulse duration) and the adjusted intensity 

that induced fEPSPs with ~50% of the maximal fEPSP amplitude. In experiments using 

pharmacological reagents, drugs were continuously perfused over slices starting 5 minutes 

before OGD induction and administered for the entire period of OGD. Values of fEPSP 

amplitude are expressed as mean ± SEM percentage change relative to mean baseline 

amplitude. Reported effects on synaptic function are equal to synaptic transmission recovery 

of fEPSPs calculated as the averaged relative amplitude of fEPSPs with respect to baseline 

values after re-introduction of oxygenated normal ACSF (35 to 40 min after the end of 

OGD).

2.4 Mitochondrial isolation and inner membrane fraction preparation

Brain slices were prepared and subjected to OGD with drug treatment as indicated above, 

and then mitochondria were isolated from brain slices as described previously (Messier, 

2005, Huang et al., 2014, Wang et al., 2014). Samples were placed in 9 ml of ice-cold 

mitochondria isolation buffer [225 mM mannitol, 75mM sucrose, 2mM K2HPO4 (pH 7.2)], 

and homogenized (10 strokes) using a Douce homogenizer (Kontes Glass Co.). Homogenate 

was centrifuged at 1300g for 5min at 4°C. The resultant supernatant was then centrifuged at 

34,000g for 10 min after layering on 15% Percoll. After centrifugation, the homogenate was 

resuspended and incubated for 5 min on ice in 20ml of mitochondria isolation buffer with 

0.02% digitonin (Sigma), centrifuged at 8,000g for 10min. The pellet was washed twice in 

1.5ml mitochondria isolation buffer and centrifuged again at 8,000g for 10min and the final 

pellets were resuspended in 200 μl mitochondria isolation buffer. The mitochondrial inner 

membrane fraction was prepared as described previously (Du et al., 2008) and the total 

protein concentration of isolated mitochondria fraction was determined by protein assay 

(Bio-Rad Lab).

2.5 Co-immunoprecipitation and immunoblotting assays

For immunoprecipitation, hippocampal slices were homogenized in non-denaturing lysis 

buffer containing 50 mM Tris HCl (pH 7.4), 150 mM NaCl, 1 mM EDTA, 0.5% NP-40 and 
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protease inhibitors (EMD Millipore, #539137). After centrifugation at 12,000 × g for 10 min 

at 4°C, the supernatant of homogenate or mitochondrial inner membrane fractions (500 μg) 

was incubated with an antibody to p53 (Santa Cruz, #) for 16 h at 4°C and then incubated 

with protein A/G-agarose beads (Thermo scientific, #20421) for 2 h at 4°C. Precipitated 

complexes were washed in lysis buffer and bound proteins were analyzed by 

immunoblotting. For western blot experiments, samples were separated in SDS-PAGE gels, 

transferred onto membranes, and then incubated with polyclonal rabbit anti-CypD 

(generated in our lab (Du et al., 2008), mouse anti-CypD (Abcam, #ab110324), mouse anti-

actin (Sigma, #2228) or mouse anti-Hsp 60 (Enzo, #ADI-ESP-741) antibody, followed by 

anti-rabbit IgG (Life Technologies, #G-21234) or anti-mouse IgG (Life Technologies, 

#M-30107) incubation. The density of immunoreactive bands relative to Hsp60 was 

determined using NIH Image J software.

2.6 CypD histological assay

Tg CypD+, CypD−, and nonTg mouse brains were fixed by perfusion with 4% 

paraformaldehyde and coronal sections (30 μm) were cut with a Vibratome (Leica VTS1000, 

Wetzlar Germany). Sections were collected and immersed in wash buffer (0.1 M sodium 

phosphate, 0.5 M sodium chloride, 0.1% Triton X-100, pH 7.4) for 1 hour. After 

preincubation with blocking solution (10% normal goat serum, 0.3% Triton X-100 in PBS , 

pH 7.4) for one hour at room temperature, sections were co-immunostained with primary 

antibodies [mouse anti-CypD (Ab110324, 1:500; Abcam) and rabbit anti-SODII (1:5000, 

ADI-SOD-111, Enzo life Sciences, USA) or rabbit anti-MAP2 (1 : 500, A16657, life 

technologies, USA) at 4 °C for overnight. Sections were then incubated with Alexa Fluor 

594-conjugated goat anti-rabbit IgG and 488 goat anti-mouse IgG secondary antibodies (1 : 

1000, Invitrogen) for 1 h at room temperature. Nuclei were stained by DRAQ5 (5 μM, Cell 

Signaling) for 10 min at room temperature. The staining images were taken under confocal 

microscopy. Brain sections incubated with non-immune IgG or 2nd antibody alone were used 

as negative controls. An investigator who was blinded to experimental groups analyzed all 

images. For quantification of human CypD staining, brain sections were randomly selected 

and measured using MetaMorph software (Molecular Devices, CA).

2.7 Statistical analysis

All data are reported as the mean ± SEM. Statistical comparisons between experimental 

groups or between fEPSP amplitudes measured during baseline and after the OGD protocol 

were performed by applying one-way ANOVA followed by individual post hoc Fisher test. 

Differences were considered significant when p < 0.05.

3. Results

3.1 Generation and characterization of transgenic mice overexpressing neuronal CypD

To determine the effect of neuronal CypD, we generated transgenic (Tg) CypD mice with 

overexpression of human CypD in neurons under the control of Thy-1 promoter (Tg CypD+ 

mice). Tg CypD+ mice were identified as bearing the transgene from analysis PCR 

amplification of tail DNA (Fig. 1A). CypD levels were increased by 3-4 fold in brains of Tg 

CypD+ mice compared to the brains of nonTg littermates (Fig. 1B-C) as shown by 
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immunoblotting with specific antibody to CypD (Du et al., 2008). Immunostaining of brain 

section with CypD antibody verified that CypD was increased in cortical and hippocampal 

neurons of Tg CypD+ mice but was absent in CypD null mice (CypD−) (Fig. 1D-E). 

Consistent with the immunoblotting results, CypD expression levels were increased by 3-4 

fold in neurons of cortex and hippocampus (Fig. F). CypD-positive staining signals were 

extensively overlaid with MAP-2, a neuronal marker, verifying neuronal expression of CypD 

in Tg CypD+ mice. No CypD staining signals were found in CypD null mice (Fig. 1D-E). 

Using the double immunofluorescent staining with CypD and mitochondrial protein SODII, 

increased expression of neuronal CypD in hippocampus and cortex of CypD+ mice was 

identically co-localized with SODII (Fig. 1G), indicating mitochondrial localization of 

CypD in CypD+ mice. CypD null mice were also used for the study to determine whether 

blockade of CypD affords a protective effect on ischemia-induced synaptic injury.

3.2 CypD is a critical molecular target for synaptic transmission recovery following 
ischemia

We first characterized loss of synaptic transmission during OGD and synaptic transmission 

recovery following reintroduction of glucose and oxygen in hippocampal slices. Depending 

on the incubation temperature, hippocampal slices showed diminished and irreversible 

fEPSPs within minutes at body temperature, but could be a longer time at hypothermia 

condition (Taylor et al., 1999). In the present study, we aimed to evaluate both protective and 

deleterious effects on synaptic transmission recovery after OGD, we thereby first explored a 

condition in which synaptic transmission can be relatively tolerant to a longer time of OGD 

insult and partially recovered after OGD. We recorded fEPSPs from the CA1 region of 

hippocampal slices of nonTg mice at different temperature. Consistent with the previous 

report (Taylor et al., 1999), performing OGD experiment at 22 ± 0.5 °C resulted in tolerance 

to 30 min of OGD and that fEPSP amplitude partially recovered and reached a stable level 

of depression after glucose and oxygen reintroduced (34.5 ± 6 % of baseline, n = 7 slices). 

In contrast, we observed a rapid decrease in fEPSP amplitude during 15 min of OGD at 33 

± 0.5°C (mean amplitude of the last 3min of OGD was 1.3 ± 2 % of baseline, n=9), and 

fEPSPs amplitude did not recover after 40 min following reintroduction of oxygenated 

ACSF (mean relative amplitude of fEPSPs was 9.2 ± 5 % of baseline, n = 9). Therefore, we 

assessed the effect of OGD insult at 22 ± 0.5°C for 30 minutes duration to assess the effect 

of CypD on synaptic functional recovery following OGD.

Given that CypD-mediated mPTP opening causes cell death after ischemic insult (Karch and 

Molkentin, 2012, Vaseva et al., 2012, Zhao et al., 2013, Pei et al., 2014) and that CypD 

translocation onto the mitochondrial inner membrane is a critical step for mPTP channel 

formation and mitochondrial permeable transition (Du et al., 2008, Du et al., 2011), we 

investigated if OGD triggers CypD translocation from mitochondrial matrix to the inner 

membrane, a key step for formation of MPTP, in the non Tg control animals. 

Immunoblotting of isolated mitochondrial inner membrane fractions revealed that CypD 

levels were significantly elevated after OGD when compared to non-OGD control 

mitochondrial inner membrane fractions (p < 0.05, Fig. 2A, B). To determine if CypD-

mediated mPTP opening is involved in OGD-induced synaptic transmission deficit, 

hippocampal slices were treated with cyclosporine A (CSA, 1 μM), an inhibitor of CypD-
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dependent mPTP opening. Treatment with CSA enhanced synaptic transmission recovery 

after OGD followed by glucose and oxygen reperfusion (57.6 ± 7 % of baseline, n = 9 slices, 

p < 0.05 vs vehicle-treated slices; Fig. 2C, D), suggesting a role for CypD-mediated mPTP 

in the recovery of synaptic transmission after OGD.

To evaluate the role of CypD in regulation of synaptic transmission recovery after OGD, 

CypD-deficient (CypD−) or CypD-overexpressed (CypD+) hippocampal slices were 

subjected to OGD. We found that loss of synaptic transmission was significantly prevented 

in CypD-deficient slices (77.9 ± 7 %, n = 14 slices) compared to nonTg slices insulted by 

OGD (40.2 ± 10 %, n = 9; p < 0.05; Fig. 3A, B). There was a greater suppression of synaptic 

transmission recovery (9.3 ± 2 %, n = 10 slices) in CypD-overexpressed slices than nonTg 

slices in the present of OGD (40.2 ± 10 %, n = 9; p < 0.05; Fig. 3A, B). Additionally, CSA 

treatment abrogated the effect of CypD overexpression on synaptic transmission recovery 

after OGD (66.2 ± 8 %, n = 11; p < 0.05; Fig. 3C, D). These data demonstrate the 

involvement of CypD in OGD-mediated impairment of synaptic transmission.

3.3 NR2B activation potentiates OGD-induced CypD translocation

Since NR2B activation exacerbates neuronal injury, we sought to determine whether OGD-

induced CypD translocation required NR2B activation in nonTg control animals. Consistent 

with previous reports, the phosphorylation level of NR2B at ser1303 was significantly 

increased upon OGD (Fig. 4A, B), suggesting that the overactivation of NR2B-containing 

NMDA receptors exists in our experimental conditions. Blockade of NR2B but not NR2A 

inactivation (Fig. 4C, E) significantly prevented OGD-induced CypD translocation. 

Accordingly, less CypD protein was found in OGD-induced mitochondrial matrix fraction 

compared to vehicle-treated control (Fig. 4D), indicating that more CypD protein was 

translocated from matrix to the inner membrane. Recordings of fEPSPs from non-OGD 

control slices treated with NR2B inhibitor, Ro 25-6981 (1 μM), or the NR2A inhibitor PPPA 

(0.5 μM), showed non-significant reduction in fEPSP amplitude (Fig. 4F, G). However, 

NR2B inactivation preserved synaptic transmission but not NR2A inhibitor treatment after 

OGD (Fig. 4H, I), suggesting the specific effect of NR2B inhibition on OGD-induced 

synaptic impairment. Our data indicate the CypD translocation via OGD-induced NR2B 

activation is, at least in part, responsible for the damage of synaptic transmission recovery 

after OGD.

3.4 CypD/p53 interaction and related oxidative stress are required for synaptic dysfunction 
in ischemia

Given that CypD/p53 interaction elicits mPTP opening and oxidative stress, leading to 

ischemia-induced cell death (Karch and Molkentin, 2012, Vaseva et al., 2012, Zhao et al., 

2013, Pei et al., 2014), we next sought to investigate whether CypD/p53 interaction is 

responsible for OGD-induced deficit in synaptic transmission recovery among nonTg, CypD

− and CypD+ mice. We determined the effect of NR2B on CypD/p53 interaction among 

these mice using co-immunoprecipitation procedure for hippocampal homogenates. As 

previously reported, CypD formed a complex with p53 in OGD-induced slices compared to 

vehicle-treated nonTg slices (Fig. 5A). CypD+ slices significantly increased OGD-induced 

CypD/p53 complex formation compared to nonTg slices (Fig. 5A). No CypD/p53 complex 
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was found in CypD− slices either before or after OGD (Fig. 5A). These data indicate a 

protective effect of CypD depletion on OGD-induced synaptic dysfunction. Accordingly, 

increased CypD expression exacerbates synaptic perturbation induced by OGD-mediated 

ischemia, possibly via OGD-induced elevation of CypD/p53 complex formation.

We next tested if inhibition of p53 by perfusion of nonTg slices with pifithrin-μ (PFT), an 

inhibitor of p53, affects interaction of CypD with p53. Administration of p53 inhibitor 

pifithrin-μ to nonTg hippocampal slice blocked CypD/p53 complex formation as seen in co-

immunoprecipitation assay for brain mitochondria (Fig. 5B), suggesting the involvement of 

p53 activation in OGD-induced CypD/p53 interaction.

Given that NR2B activation was necessary for CypD translocation and was critical for OGD-

induced synaptic dysfunction, we next investigated if inactivation of NR2B suppresses 

mitochondrial CypD/p53 interaction after OGD. As shown in Fig. 5C, treatment with NR2B 

inhibitor Ro 25-6981 but not NR2A inhibitor PPPA blocked OGD-induced CypD/p53 

complex formation in nonTg mice. There were no significant effects of both inhibitors (R0 

25-6981 and PPPA) on the CypD/p53 interaction in nonTg slices without OGD. These 

results suggest that activation of NR2B-containing glutamate receptors is required for OGD-

induced CypD/p53 interaction, which in turn regulates synaptic transmission recovery after 

OGD.

To further evaluate the direct role of p53 in synaptic transmission following OGD, we 

measured fEPSPs recovery from nonTg and CypD-overexpressed hippocampus with or 

without treatment of p53 inhibitor pifithrin-μ (PFT). The perfusion of PFT (1 μM) in nonTg 

slices did not affect synaptic transmission in the absence of OGD (p > 0.05; Fig. 6A, B), 

whereas treatment with PFT maintained synaptic transmission after OGD compared to 

vehicle-treated slices (p < 0.05; Fig. 6A, B). We further demonstrated that synaptic 

depression was significantly restored in CypD+ slices with the continuous perfusion of PFT 

compared to CypD+ vehicle treated slices after OGD/reperfusion (p < 0.05; Fig. 6C, D). 

Treatment of PFT to CypD− hippocampal slice failed to show further beneficial effects on 

synaptic transmission after OGD (data not show). These data indicate that blockade of p53 

activity and CypD/p53 interaction protects against synaptic depression after OGD insult 

even under conditions of increased CypD expression. Taken together with the protective 

effect of lacking CypD in OGD-mediated perturbation, these results suggest that CypD/p53 

interaction followed by NR2B activation contributes to OGD-impaired synaptic transmission 

recovery.

CypD/p53 complex formation is involved in generation of mitochondrial oxidative stress 

(Karch and Molkentin, 2012, Vaseva et al., 2012, Zhao et al., 2013, Pei et al., 2014). We next 

examined if antioxidants treatment would promote synaptic transmission recovery after 

OGD. We tested the effect of antioxidant EUK134 on fEPSPs recovery after OGD (Fig. 6E, 
F). When slices overexpressing CypD were continuously perfused with antioxidant EUK 

134 (500 nM), we observed significant rescue of synaptic transmission after OGD (86.3 

± 4 %, n = 8 slices; p < 0.05 vs. vehicle treated slices after OGD; Fig. 6E, F). The protective 

effect of EUK134 perfusion was not due to modulation of NR2B-containing receptor 
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activation since it didn't affect pSer1303 NR2B after OGD. Thus, CypD/p53-mediated 

oxidative stress is involved in synaptic depression in ischemia.

4. Discussion

A large body of studies has established that activation of NR2B and the associated 

intracellular signaling pathways are responsible for ischemic stroke-induced synaptic injury 

and neuronal loss. An increasing number of evidence also suggests that mitochondria are 

important for ischemia-induced neuronal death. Here we provide the first piece of evidence, 

showing that NR2B activation actually works together with mitochondrial CypD and 

suppresses the recovery of synaptic transmission upon OGD. Our results suggest OGD-

induced CypD translocation onto mitochondrial membrane dependent on NR2B activation. 

Additionally, OGD-induced CypD translocation facilitates CypD/p53 complex formation 

and enhances oxidative stress, which is responsible for the loss of synaptic transmission.

Our current data illustrated a new finding that OGD induced CypD translocation onto 

membrane via an NR2B-dependent mechanism. CypD is one of the key regulatory 

components of mPTP and plays a vital role in a number of disorders, including Alzheimer's 

disease (AD) (Du et al., 2008, Du et al., 2009, Du et al., 2010, Du et al., 2011), diabetes 

(Lumini-Oliveira et al., 2011, Itoh et al., 2012, Wang et al., 2014) and ischemia (Nakagawa 

et al., 2005, Schinzel et al., 2005, Vaseva et al., 2012, Pei et al., 2014). Inhibition of CypD 

activity and blockade of mPTP opening reduces infarct size after ischemia/reperfusion 

(Shiga et al., 1992). Studies in genetically CypD-deficient mice provided direct evidence for 

the role of CypD in mediating mPTP opening, oxidative stress and subsequent necrotic cell 

death after cerebral or cardiac ischemia/reperfusion (Nakagawa et al., 2005, Schinzel et al., 

2005, Vaseva et al., 2012). However, whether and how CypD translocate onto mitochondrial 

membrane under OGD insults are not well understood. In the present study, we first detected 

an increased CypD level in the inner membrane of mitochondria subjected to OGD, 

suggesting that OGD-induced CypD translocation may underline the enhanced mPTP 

opening leading to mitochondrial oxidative stress and synaptic dysfunction. Indeed, 

inhibition of mPTP by perfusion of pharmacological inhibitor CSA ameliorated loss of 

synaptic transmission and increased synaptic recovery. Similar protective effects on OGD-

induced synaptic failure were obtained from genetic depletion of CypD. Furthermore, 

overexpression of neuronal CypD exacerbated the synaptic transmission loss after OGD. We 

also demonstrated that OGD-induced NR2B activation is necessary for CypD translocation 

based on the observation that blockade of NR2B instead of NR2A suppressed CypD 

translocation onto the inner membrane of mitochondria. In parallel, blockade of NR2B but 

not NR2A activation in OGD protects against OGD-induced insufficient recovery of 

synaptic transmission.

While it is well known that glutamate mediates excitatory synaptic transmission in the brain 

and accelerates synaptic degeneration in a number of neuronal disorders including ischemic 

stroke (Lipton and Rosenberg, 1994, Mattson, 1997, Lee et al., 1999, Arundine and 

Tymianski, 2004), the mechanisms underlying NR2B-driven CypD translocation onto 

membrane have not been elucidated yet. As to our knowledge, extracellular glutamate levels 

rise abruptly in ischemia, thereby resulting in over-activation of NR2B-containing NMDAR 
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at extrasynaptic sites. Activated NR2B subunits directly interact with PTEN (Zhang et al., 

2013) or DAPK1 (Tu et al., 2010), or indirectly associate with nNOS via PSD95 (Cao et al., 

2005), subsequently modulate downstream signaling pathways such as calpain, p25, striatal-

enriched protein tyrosine phosphatase (STEP), p38, JNK, PKC and sterol regulatory element 

binding protein-1 (SREBP1) for excitotoxic neuronal death (Cheung et al., 2003, 

Taghibiglou et al., 2009a, Taghibiglou et al., 2009b, Xu et al., 2009, Li et al., 2013). 

Activation of NR2A-containing NMDA receptors via synaptic transmission leads to 

activation of the prosurvival signaling proteins Akt, ERK, and CREB (Xu et al., 2009, Lai et 

al., 2014). Similar to what was previously reported, blockade of NR2B instead of NR2A has 

a protective effect on synaptic transmission recovery after ischemia. More interestingly, our 

results suggest that activation of NR2B underlies OGD-induced CypD translocation onto the 

inner membrane of mitochondria, oxidative stress and deficits in synaptic transmission 

recovery. This study certainly adds new insights into the body of glutamate toxicity relevant 

to ischemia, which is a connection of NR2B activation to CypD-mediated synaptic injury 

upon OGD. Thus, blockade of NR2B activation by interception of NR2B with CypD 

interaction could hold a potential therapeutic strategy for ischemia-induced synaptic and 

neuronal damage.

Our results also indicated that CypD/p53 complex might not only cause cell death but also 

mediate the functional deficit of synaptic transmission recovery after OGD. P53 was 

recently reported to be rapidly translocated to mitochondria and to form CypD/p53 complex 

following ischemic insult, which results in mPTP opening and oxidative stress, leading to 

cell death in vivo and in vitro (Vaseva et al., 2012, Pei et al., 2014). Indeed, we observed 

NR2B activation-dependent mitochondrial translocation of CypD, which promoted 

CypD/p53 complex formation after OGD. The CypD/p53 interaction was modulated by 

CypD expression level, and in parallel the synaptic transmission recovery was associated 

with CypD expression. Similarly, inhibition of p53 by its inhibitor PFT during OGD 

significantly suppressed CypD/p53 interaction as well as promoted synaptic transmission 

recovery. These results suggest that CypD/p53 interaction contributes to synaptic 

transmission deficit in OGD. Furthermore, inhibition of CypD-dependent mPTP opening by 

CSA, or suppression of mitochondrial oxidative stress by administration of antioxidant 

EUK134 abolished impairment in OGD-insulted synaptic transmission in CypD-

overexpressed slices in which CypD/p53 interaction was augmented after OGD.

It is noted that our experiments were performed in ex vivo conditions, and therefore the 

further studies using in vivo ischemic stroke model would be favorable. In addition, some of 

the OGD studies, including the present one, were carried out at room temperature condition 

in which hippocampal slice is more tolerant to a long time OGD insult (Taylor et al., 1999). 

The observed events might not fully stand in in vivo conditions. Given that hypothermia is 

the most beneficial and operative method in clinic for neuronal protection, the results 

generated in hypothermia condition are more closed to clinical implication. In this study, we 

performed our in vitro ischemic experiments at room temperature condition. We 

demonstrated that inhibiting oxidative stress either by CAS or EUK134 treatment was 

beneficial for synaptic transmission after OGD. Therefore, this novel ex vivo ischemia 

mouse model may be more appropriate to study oxidative damage rather than excitotoxic 

damage in ischemic condition. Additionally, NR2B-mediated CypD translocation might be 
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only part of the mechanisms for the deficits of synaptic transmission recovery after OGD. 

Our current investigation did not distinguish the effects of NR2B-mediated CypD 

translocation on the severity of OGD damage during glucose and oxygen deprivation period 

from the direct effects on recovery processes when glucose and oxygen reintroduced to 

hippocampal slices.

In summary, using an ex vivo ischemia model on slices of CypD null mice, mice 

overexpressing neuronal CypD and nonTg littermates, we clearly demonstrate that NR2B 

activation promotes CypD translocation along with CypD/p53 interaction following OGD-

induced ischemia. The absence of CypD or inhibition of p53 completely abolishes 

CypD/p53 interaction and improves synaptic transmission recovery after OGD. The possible 

underlying mechanism of OGD-induced synaptic injury is that NR2B activation drives 

CypD translocation to the mitochondrial inner membrane where CypD interacts with P53, 

promoting oxidative stress, eventually leading to synaptic dysfunction after OGD. Thus, 

disassociating NR2B activation and mitochondrial CypD membrane translocation might 

promote synaptic transmission recovery after OGD. Advanced understanding of the 

mitochondrial mechanism for ischemia-induced synaptic injury such as those shown here 

will help to develop new potential therapeutic strategies to prevent brain damage after brain 

ischemia.
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Highlights

1) OGD induces CypD translocation in a NR2B-dependent manner

2) NR2B-dependent CypD translocation facilitates CypD/p53 complex 

formation

3) Pharmacological blockade of CypD translocation or CypD/p53 interaction 

rescues synaptic transmission

4) Genetic modulation of CypD expression regulates CypD-mediated membrane 

transition pore, CypD/p53 interaction, and synaptic injury

5) Evaluation of a new ex-vivo chronic OGD-induced ischemia model for 

studying the effect of oxidative stress-induced synaptic injury
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Figure 1. Identification and characterization of transgenic (Tg) CypD+ mice
A) Cyclophilin D (CypD) transgenic mice (+) and nontransgenic (nonTg, −) control mice 

were identified by PCR results. B-C) Immunoblotting of brain homogenates from Tg CypD 

(lane 2, +) mice and nonTg littermate controls (lane 1, −) for CypD, using anti-human CypD 

antibody. C) Quantification of CypD immunoreactive bands normalized to β-actin. Data are 

presented as fold increase relative to nonTg mice. N = 5-6 mice/group. D-F). The double 

immunofluorescent staining of brain sections for CypD (red) and MAP2 (green) in 

hippocampus (D) and cortex (E) from the indicated Tg mice. Nuclei were stained by 

DRAQ5 as shown in blue. F) Quantification of CypD staining intensity in hippocampus and 

cortex regions of the indicated Tg mice. G) Representative immunostaining images for 

CypD (green) and SODII (red, mitochondrial marker) and nuclei (blue) in hippocampal and 

cortical neurons. Scale bar = 25 μm.
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Figure 2. OGD triggers CypD translocation and inhibition of mPTP by cyclosporin A (CSA) 
promotes synaptic transmission recovery after OGD
A) Representative immunoblotting bands show CypD levels in mitochondrial inner 

membrane in the indicated groups of slices. VDAC, CCo and HSP60 were used as out 

membrane of mitochondria, inner membrane of mitochondria and mitochondrion matrix 

marker, respectively. B) Quantification of CypD immunoactive bands relative to CCo in the 

indicated groups. N = 4 mice per group. C) Changes of the amplitude of field-excitatory 

post-synaptic potentials (fEPSPs) in indicated groups. CSA (1 μM) treatment started 5 min 

before OGD (bar) and presented during entire OGD period. D) Synaptic transmission 

recovery of fEPSPs calculated as the averaged relative amplitude of fEPSPs compared to 

baseline values after re-introduction of oxygenated normal ACSF (from 35 to 40 min after 

the end of OGD). N =9 slices from 4-5 male mice (3-4 month-old age) per group.
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Figure 3. Effect of CypD on synaptic dysfunction after ischemia
A) Cyclophilin D (CypD) overexpression suppresses and CypD deficiency restores synaptic 

transmission after oxygen and glucose deprivation (OGD), respectively. B) Summary of the 

field-excitatory post-synaptic potentials (fEPSPs) recovery during the last 5 min of OGD in 

indicated groups. C) Inhibition of CypD− mPTP by cyclosporin A (CSA) during OGD 

significantly preserved synaptic transmission in CypD overexpressed animals. D) Synaptic 

transmission recovery of fEPSPs calculated as the averaged relative amplitude of fEPSPs 

compared to baseline values after re-introduction of oxygenated normal artificial 

cerebrospinal fluid (ACSF, see methods section) (from 35 to 40 min after the end of OGD) 

in indicated groups. N = 8-14 slices from 4-5 male mice per group.
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Figure 4. N-methyl D-aspartate receptor subunit 2B (NR2B) activation is involved in OGD-
induced cyclophilin D (CypD) translocation and synaptic injury
A-B) Representative immunoblotting bands (A) and Quantification of (B) show the 

phosphorylation level of NR2B at ser1303 in indicated groups. C-D) Representative 

immunoblotting bands show CypD levels in mitochondrial inner membrane fraction and 

matrix (D) in indicated groups. E) Quantification of CypD immunoreactive bands 

normalized to CCo in indicated groups shown in panel C. N =4 mice per group. F) 
Inhibition of either NR2A (PPPA, 0.5 μM) or NR2B (Ro 25-6981, 1 μM) by its inhibitor 

perfusion (bar) suppressed synaptic transmission under normal condition. G) Average of the 

last 5 min of reperfusion fEPSPs amplitude in the indicated groups. H) Inhibition of NR2B 

but not NR2A significantly ameliorated synaptic injury after OGD. I) Synaptic transmission 

recovery of field-excitatory post-synaptic potentials (fEPSPs) calculated as the averaged 

relative amplitude of fEPSPs compared to baseline values after re-introduction of 
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oxygenated normal artificial cerebrospinal fluid (ACSF, see methods section) (from 35 to 40 

min after the end of OGD). N = 6-10 slices from 4-5 male mice (3-4 month-old age) per 

group.
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Figure 5. The effect of p53 and NR2B activation on OGD-induced CypD/p53 complex formation 
in nonTg mice
A) Immunoprecipitation of hippocampal homogenates with p53 antibody followed by 

immunoblotting with CypD antibody revealed CypD immunoreactive bands at 53kD in 

OGD-exposed non-transgenic (nonTg) hippocampal tissue. CypD/p53 complex was elevated 

in CypD-overexpressed mice and absent in CypD-deficient animals. β-actin bands show the 

equal amounts of protein used for Co-immunoprecipitation experiments. B). Pifithrin-μ 

(PFT, 5μM) treatment significantly suppressed OGD-induced CypD/p53 interaction in 

mitochondrial fractions. C) Inactivation of NR2B subunit instead of NR2A prevented 

CypD/p53 interaction from the isolated brain mitochondria after OGD. Experiments 

repeated at least 3 times; 5-6 mice per group. PFT: pifithrin-μ; Ro25: Ro25-6981
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Figure 6. Suppression of CypD/p53 complex formation via blockade of p53 or antioxidant 
EUK134 perfusion maintained synaptic function after oxygen and glucose deprivation (OGD)
A) p53 inhibitor, pifithrin-μ (PFT, 5 μM), perfusion (dash line) of non-transgenic (nonTg) 

slices did not change field-excitatory post-synaptic potentials (fEPSPs) under baseline 

conditions. However, it significantly promoted synaptic transmission recovery after OGD 

(solid bar). B) Synaptic transmission recovery of fEPSPs calculated as the averaged relative 

amplitude of fEPSPs compared to baseline values after re-introduction of oxygenated 

normal artificial cerebrospinal fluid (from 35 to 40 min after the end of OGD). C-D) CypD-

overexpressed slices pretreated with p53 inhibitor preserved synaptic transmission after 

OGD. E-F) CypD/p53 complex formation increases due to oxidative stress. The antioxidant 

EUK134 pretreatment (0.5 μM) abolishes the deleterious effect of OGD on synaptic 

transmission in CypD+ slices. N = 6-10 slices from 4-5 male mice (3-4 month-old age) per 

group.
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