
COMPLICATED LANGUAGE DATA IN COMPUTABLE FORM 

Danie 1 G. Hays 
University of Missouri--Columbia 

This paper describes some features of a system for preparing and 
storing language data in a digital computer in such a form that it is 
readily available for examination and analysis. The system, called 
ACTS, for Arbitrarily Complicated Text System, allows the language ana-
lyst considerable flexibility both in the use of conventions and in 
being able to represent in the machine interrelated data of various 
sorts. 

ACTS was designed to handle heavily annotated transcriptions of 
discourses, and related data, though it may be used of course with 
language data that have a simpler form. It might be used to store a 
set of newspaper articles, for instance, or even a set of unrelated 
sentences; though it is most useful when data of diverse types are 
interspersed in a corpus. 

In its present state of development, ACTS consists -0f (1) rout-
ines for text input, including routines for handling symbol conventions 
constructed by the linguist, (2) programmed procedures for segmenting 
the text and inserting structural labels in its internal representation, 
and (3) procedures for setting up directories which allow the linguist 
to get to various parts of his data easily and without the tedium of 
human bookkeeping. It is programmed in PL/I and runs on an IBM 360/65 
computing system, with heavy reliance on disc storage. 

The Character Representation Problem 

One of the annoying aspects of using the computer with language 
data is that with present machines, there are usually not enough symbols 
available, or else they are not just the ones which are needed. Stand-
ard computer input and output devices--card punching machines and high 
speed printers--have enough characters to satisfy a person adding some 
numbers, or a businessman keeping a parts inventory, but you are not 
likely to see a schwa represented on one, and there are many other 
characters which linguists are fond of which will not be found there 
either. 

Except for some slow-speed devices, or else some extremely expens-
ive photocomposition and picture drawing devices which may not be avail-
able, the language analyst who wishes to use the computer must make some 
compromise with his need to see the graphs he i? used to looking at, 
and to accept some conventions for equivalent representations using the 
available sets of characters. Often, especially in the case of "exotic" 
languages, conventions for computer representation do not exist and 
must be invented by the language analyst himself. 

ACTS has facilities for defining equivalences among input symbols, 

82 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KU ScholarWorks

https://core.ac.uk/display/213420971?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


COMPLICATED LANGIJAGE DATA IN COMPUTABLE FORM 83 

internal representations, and characters in the output media. These 
facilities provide more flexibility than is usually available in working 
with strings of characters. 

For reference, Figure 1 lists the character sets available on 
some standard IBM input and output devices. In many computing centers, 
the IBM 029 cardpunch is the standard data preparation device, and a 
printer with 60-character print chain in the standard output device. 
Neither have lower case letters, among other characters which might be 
useful. 

If it is possible, it is desirable to use a typewriter-like device 
for preparation of text for entry into the computer, such as a remote 
terminal linked by telephone lines to the computing system, or a device 
such as the IBM MTST, which records a character code on a magnetic tape 
cartridge every time the typist hits a key. Since "bouncing balls" for 
Selectric typewriters have a wide variety of character sets, including 
at least one version of phonetic script, the symbol problem for input 
is not so serious as it once was. 

Output is a more serious problem. If a remote typewriter terminal 
is used for input, it can be used for output as well; but this conven-
ience is expensive, and may be prohibitive for the output of large amounts 
of language data. For a language analysis project which involves the 
computer, it seems likely therefore that at least some of the time, 
line printers, with conventions for the representation of one linguistic 
symbol by a different available symbol--or some combination of the avail-
able symbols--may be desirable. 

Because of the above considerations, ACTS has several character 
conversion facilities in the programs for taking in text and printing 
it out. Four classes of correspondence can be specified. 

First, there are one-to-one mappings of input character code to 
internal storage character code, and to output character code. For 
example, suppose your bouncing ball has the @ character in the usual 
position, but you do not need it. You want a vertical bar character 
instead. So you specify a one-to-one character conversion from @ to 
the internal representation of the vertical bar. You will then get a 
vertical bar on the high-speed printer on output, automatically, if 
that character exists on the print chain. If you are using a 48-
character chain, which does not have the vertical bar, you could spec-
ify a one-to-one mapping from the internal representation to the slash 
character. 

Second, it is possible to specify a unary shift character which 
allows digraphs in the input which contain the shift character in the 
first position to be converted to single character representations in-
ternally. For instance, if* is defined as a unary shift, you can 
specify that *( is to be converted to the internal representation for 
a square open bracket. A reverse mapping, from a single character 
internally, to an output digraph, is also possible. · 

In addition, bracketing shifts may be used. Here, an upshift-



84 FIFTH KANSAS CONFERENCE 

Input device character sets: 

1. IBM 029 card punch. 
0 through 9 A through Z • , : ; ? - ( ) / 1 11 

* & @ # $ ¢ % + = < >.not-sign, vertical bar 
2. Typewriter-based devices. 

Varies, especially with Selectric typewriter devices. 
Ordinarily, • , : ; ? - ( ) / 1 11 * & @ # $ ¢ % + = 

plus 3 or 4 other special characters. 
Output device character sets: 

1. 48-character print chain on high~speed printer. 
0 through 9 A through Z 
. ' - ( ) I I * & $ + = 

2. 60-character print chain. 
All the above, and : ; ? 11 @ # % < > not-sign, 
vertical bar 

3. 120-character print chain. 
All the above, lower case letters, superscript 
numerals, superscript+ - ( ), square brackets, 
one-line braces, dash, plus-minus sign, degree 
symbol, exclamation point, round bullet, square 
bullet, and a few others. 

Figure l. Sets of Characters Available on Representative Input and 
Output Devices 



COMPLICATED LANGUAGE DATA IN COMPUTABLE FORM 85 

character and a downshift-character are defined. Characters within 
the pair are treated in a special way. Often, bracketing shifts are 
used to lead to a representation of some other alphabet, or may with 
punchcard input indicate underlining. 

Finally, over~rinting can be handled. If% is defined as an over-
print indicator, t e string 0%/ could be converted into a representation 
of the symbol ~. On output, this representation could be specified 
to lead to an actual overprint by the line printer. 

Structure of the Basic Text File 

The symbol conversion routines described above may be used in-
dependently of the rest of ACTS, but they are only preliminary to the 
second phase of processing, during which the text, with its input pecu-
liarities straightened out, is segmented and labelled. The result of 
this phase is a data representation in computer storage called the 
basic text file. In this phase, cues which are present explicitly in 
tlle"text, sU'Cll""as symbols which the user defines as brackets for a type 
of data, as well as surface contextual cues, are used by the program. 
The program does not use information from the syntactic or semantic 
structure of the natural language which is represented, but relies only 
on the "graphic syntax" and related interpretations supplied by the user 
for his symbol strings. 

Let us take a simple example of what is meant by segmenting and 
labelling a text. In the sentence 

It's a cold day in October, honey-pie. 

the basic units may be taken to be graphic words, non-terminal punct-
uation marks, and terminal punctuation marks. The graphic words are 
bounded by blanks or by punctuation. The sentence itself is a higher 
order unit bounded on the left by the boundary of the whole text, and 
on the right by a terminating punctuation. This example, though simple, 
is not witho.ut some problems. The apostrophe in 11 It's 11 must be dis-
tinguished from possible occurrences of the same symbol in quotation 
pairs, and there is an option of whether to treat "honey-pie" as one 
word or two words, or perhaps a special data type for compound word. 

Any time the computer is used to process the sentence in its bare, 
unsegmented form, let us say for purposes of dictionary lookup, it must 
provide tests to do enough segmenting to, for instance, separate words 
from punctuation and determine that some apparent punctuation characters 
are actually part of the word. Human beings do this sort of task easily 
and naturally, but computers are notoriously 11 literal minded. 11 

If the sentence occurs along with a number of others, and one is 
interested in picking out one sentence at a time, the machine must scan 
through the text looking for terminal punctuators. This is simple enough 
to do, but does require comparing every character in the text with a list 
of legal terminal punctuation characters. If the punctuation 11 

••• 
11 occurs, 

the program must perform a further test every time the character 11 11 is 
encountered. 



86 FIFTH KANSAS CONFERENCE 

However, if the text is segmented once and marked, it does not have 
to be resegmented each time it is examined. Computers are fast, but 
they are expensive, and in the long run unnecessary operations mean 
unnecessary expenses. Furthermore, the kind of text segmentation and 
marking that is performed by ACTS leads readily to the construction of 
directories stored separately from the text itself, which allow rapid 
and efficient entry into the text by data-type, and even by content for 
a given type of data. It is as if one had/a text and the functional 
equivalent of a concordance stored in the computer along with it. 

Not all text which a language analyst might be interested in con-
sists only of sentences strung out one after the other, however. Es-
pecially if the investigator is interested in descriptions of language 
and language-related behavior as it occurs in real situations, more 
kinds of data will be reflected in the transcript--and will need to be 
sorted out. Such sorting is very tedious for human beings. Utterances 
have speakers. Utterances are often directed to other speakers, possibly 
in the presence of other people. People make gestures, and do other 
things when they are speaking and in between times they are speaking. 
The language as it comes out of the mouth is subject to what are often 
ignored in linguistic investigations as performance peccadilloes--yet 
these actually occurring forms may be important to note before a too-
has ty translation and reduction to the investigator's version of Stand-
ard Form. 

Other kinds of data may be interesting as well. The class of 
situations or physical settings in which a discourse occurs, and in 
some cases the genre of the discourse--which may be particularly rel-
evant for written language but also I think has some applicability to 
spoken language--these may also be important to note. Information 
about objects or events in the situation which are referenced by a lan-
guage user may be important also in analyzing the text. There are other 
kinds of data which language analysts have examined at one time or another, 
such as prosodic data of various sorts. Also, it is often helpful to 
include incidental and unsystematic observations or annotations along 
with the basic data, to indicate insights, peculiar circumstances, or 
tentative interpretations. Months after the data were.gathered, a note 
to oneself will help recall just what was going on, whereas the bare 
data might only be puzzling. 

In the current version of the data-structuring program in ACTS, 
the investigator may define as many as 255 data-types, and specify cues 
and contexts for their recognition. Included in this number, which is 
arbitrary but convenient for technical reasons when working with IBM 
computers, are both elementary data-types and higher-order data-types. 

What is elementary and what is not depends on the choice of the 
investigator, and his formal specifications for his data structure. 
One man's elementary type may be another man's higher-order type. In 
the example of language-switching text in Figure 2, "a word of a lan-
guage" is taken to be an elementary data-type, whereas in the example 
of phonetic text in Figure 3, 11 word 11 is a higher-order data-type sub-
suming word segments and some other kinds of data such as stress in-
dicators. 



COMPLICATED LANGUAGE DATA IN COMPUTABLE FORM 87 

Before Character Conversion 

:Juanita: *S Pero *E what ••• what I think about that is they're way 
out there. 

:Maria: *S Pero lo gastas todo al gas. (under Juanita) 
:Juanita: *E I think, *S yo gasto ma/'s gas .•. ma/'s gas en ir pa' 

'lla/' a comprar esa cosa barata cuando podi/'a 
comprarla aqui/'. 

:Juanita: 

Figure 2. 

(He) 

(She) 

Figure 3. 

Third Actor Block 
After Character Conversion 

*E I think' *S yo gas to mas gas ••. mas gas en i r pa I '11 a a 
' ' comprar esa cosa barata cuando pod1a comprarla aqu1. 

Language Switching Text Example 

A Phonetic Representation 



88 
FIFTH KANSAS CONFERENCE 

The kinds of c~es which are used in the recognition of data-types 
are of several kinds. First, the internal character set is sorted into 
several classes, such as alphabetic characters, numeric characters, and 
special characters whose function may be recognized by their class mem-
bership. Second, symbols or strings of symbols are specified as explicit 
brackets for certain data-types. Third, left and right contexts, above 
and beyond explicit bracketing symbols, are defined in terms of the basic 
units and higher order units which will have been recognized in earlier 
stages of processing. 

In internal storage in the computer, each token of an elementary 
data-type is marked with a left-boundary marker so that it can be found 
when examining the text sequentially, a numerical code for the type, and 
a tag which contains information of use to the system, such as inform-
ation about graphic connectibility and perhaps other information sup-
plied by the user. Higher-order data-types, such as sentences, actor 
block, etc., are marked in a similar fashion, and their contents are 
the concatenation of all lower-order data tokens in their range. 

Thus, the basic text file might be thought of as an "invisible" 
labelled bracketing of the raw text, where the bracketing is determined 
from a graphic syntax. This characterization is complicated by the 
possibility of discontinuous units, however. The dafa structures are 
not restricted to trees, since, for instance, sentences can start in one 
speaker block, and end in another. For this reason, the recognition 
routine is a bit involved, but works as it were from the top down when 
explicit bracketing strings are given, and from smaller units to higher-
order ones when more complicated contexts are involved. 

Let us consider some possible structuring of linguistic texts. 
For the example of code-switching given in Figure 2 (which was kindly 
supplied by Professor Donald Lance), the structuring program would, in 
addition to segmenting words and punctuation marks, put "invisible 
brackets" around each stretch of text belonging to one speaker, mark 
the beginnings of sentences, and mark the annotation "(under Juanita)" 
in a special way so that it can be retrieved easily along with other 
annotations which begin with the keyword "under". In addition, pass-
ages marked with the *E or *S left context would be marked according 
to the language, and each text word in the passage would be marked also 
for its language. 

For the example of a phonetic representation of a brief dialogue, 
given in Figure 3 (which was supplied by Harriett Nutt Hays), a some-
what more complicated structure is called for. 

It is assumed for this example that the necessary special characters 
exist on your typewriter-like input device, and that suitable character 
mappings have been established between the input code and the internal 
code. Stress symbols are in the input preceded by an 11 invisible 11 code 
for a backspace (which is treated by the machine as a character). This 
backspace code is used by the data structuring program to identify the 
occurrence of a segment belonging to the "stress ·mark" data-type. The 
numerals in the input are recognized as belonging to the data-type "pitch 
symbol" simply by virtue of their being numerals. The terminal contour 



COM[>£ICAT8U LANGUAG!!: DA'.Z1A IN COMPW'ABLE' FORM 89 

data-type is similarly recognized. 

The elementary data-types for this example might be: 

a. phonetic segment, consisting of strings containing adjacent 
characters representing vowels, consonants, semivowels, 
etc. 

b. stress mark 
c. pitch symbol 
d. terminal contour indicator 
e. open speaker designation bracket 
f. speaker designation string 
g. close speaker designation bracket. 

The higher-order data-types would be: 

h. phonetic 11 word 11
, consisting of phonetic segments, stress 

marks, and pitch symbols bounded by blanks or possibly by 
a blank and a terminal contour indicator 

i. phonological 11 clause 11
, consisting of strings of phonetic 

11 words 11 bounded on the right by terminal contours 
j. speaker designation units, consisting of data-types, e, f, 

and g in sequence 
k. speaker blocks, consisting of everything from the begin-

ning of a speaker designation unit to just before the start 
of the next such unit (or end of the text). 

With the text structured and marked internally in this way, data-
accessing directories can be constructed that allow access to the data 
at various levels. Accessing the data by the content of various types 
is also possible. 

Finding the Data 

A more technical discussion of the mechanisms used in getting to 
the data in a somewhat earlier version of ACTS is given in Hays (in press). 
Technical details are not important for this presentation, but the fact 
that there are two basic ways of accessing the data may be helpful in 
understanding the system. 

In one kinq of access file, the locations in the basic text file 
of tokens of a given data-type, or set of data-types, are listed one 
after another. This kind of directory is of most immediate use when the 
researcher wants to quickly pick out higher-order units such as sentences, 
or to locate tokens of types which occur infrequently and are hard to see 
when scanning the text by eye. In the second kind of access file, the 
contents of the occurrences of the data-type, in the case of elementary 
units, or the contents of some elementary unit within a given set of 
higher-order units are sorted, allowing the text to be entered by content. 
If the user is interested in the occurrences of English "function words", 
for instance, he could give the machine a list of function words and find 
the sentences in which they occur. Or, all utterances spoken by a spec-
ified actor could be located directly. 



90 
PIFTJJ KANSAS CONFERENCE 

In constructing the access files, the user can choose which data-· 
types are to be grouped together for retrieval purposes, and he can . 
also choose the kinds of data he wants to reference by one means or 
the other. 

Summary 

Some features of ACTS, a computer-based system for handling lang-
uage data, have been described. This system has facilities for symbol 
conversions, to aid the linguist in setting up conventions for repre-
senting his data within the limitations of sets of characters on computer 
input and output devices. In addition, it allows rather elaborate struc-
turing and 1abe11 i ng of the basic data, so that the da.ta may be more 
easily retrievable. 

REFERENCES 

Hayes, Daniel G. In press. 'Accessing information in behavioral 
description analysis.• In Proceedings of the Seventh Annual 
National Information Retrieval Colloquium. Philaaelphia, College 
of Surgeons. 


