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Abstract

In this dissertation we consider the stability of numerical methods approximating

the solution of bounded, stable, and time-dependent solutions of ordinary differential

equation initial value problems. We use Lyapunov exponent theory to determine condi-

tions on the maximum allowable step-size that guarantees that a one-step method pro-

duces a decaying numerical solution to an asymptotically contracting, time-dependent,

linear problem. This result is used to justify using a one-dimensional asymptotically

contracting real-valued nonautonomous linear test problem to characterize the stability

of a one-step method. The linear stability result is applied to prove a stability result for

the numerical solution of a class of stable nonlinear problems. We use invariant mani-

fold theory to show that we can obtain similar stability results for strictly stable linear

multistep methods approximating asymptotically contracting, time-dependent, linear

problems by relating their stability to the stability of an underlying one-step method.

The stability theory for one-step methods is used to devise a procedure for stabilizing

a solver that fails to produce a decaying solution to a linear problem when selecting

step-size using standard error control techniques. Additionally, we develop an algo-

rithm that selects step-size for the numerical solution of a decaying nonautonomous

scalar test problem based on accuracy and the stability theory we developed.
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Chapter 1

Introduction

1.1 Introduction

The topic of this dissertation is the stability of numerical methods for the approximation of time-

dependent (nonautonomous) initial value problems (IVPs) for ordinary differential equations (ODEs).

Differential equations are ubiquitous in the modeling of real-world physical processes and dynami-

cal systems. For physical systems that evolve in time they provide mathematical tools for forecast-

ing the future state of the system from some initially prescribed state (or estimate therof), usually

referred to as the initial condition. The exact solution to most differential equations that model

physical systems is impossible to know exactly. Hence, numerical methods for the approximation

of solutions to differential equations are essential tools for researchers seeking to model and predict

the evolution of a dynamical system.

An enhanced theoretical understanding of time-dependent stability for the numerical solution

of ODE IVPs has far reaching ramifications. In Steyer, A.J. & Van Vleck, E.S (2015), Lyapunov

exponent theory is used to develop a step-size selection algorithm for nonautonomous scalar test

problems based on Lyapunov exponent stability as well as accuracy. This motivated a better the-

oretical understanding of the time-dependent stability of ODE IVP solvers. This led to the devel-

opment of a Lyapunov exponent based stability theory for one-step ODE IVP solvers and general
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linear methods is developed in Steyer, A.J. & Van Vleck, E.S (2016b) and Steyer, A.J. & Van

Vleck, E.S (2016a) respectively. Applications of time-dependent stability theory for ODE IVP

solvers includes work on nonautonomous bifurcations and tipping phenomena in Hoyer-Leitzel,

A. et al. (2016), global error analysis Chung Y.-M. et al. (2016), the computation of inertial man-

ifolds Chung, Y.-M. et al. (2016), and data assimilation Dubinkin, S. et al. (2016). Understanding

the time-dependent stability of ODE IVP solvers can lead to greater computational performance,

more robust algorithms, and better resolution of dynamics.

Ordinary differential equations are important and useful in directly modeling real-life dynam-

ical systems and for the numerical solution of partial differential equations (PDEs) by the method

of lines. There are always errors in the approximation of the solution of an ODE IVP and if these

errors accumulate, then a numerical method can introduce instabilities that are unrelated to the

dynamics of the ODE. If the the numerical solution fails to accurately resolve the stability of a tra-

jectory, then there can be no confidence that the output of a solver will remain accurate over a long

time interval. Thus, understanding and preserving the stability of ODE IVP solvers is crucial for

dynamical systems arising in areas such as climate and earth system modeling where simulations

forecast the state of the system for long periods of time.

Consider the ordinary differential equation (ODE) initial value problem (IVP)

 ẋ(t) = f (x(t), t), t > t0

x(t0) = x0

(1.1)

where t0 ∈ R, d ≥ 1, f : Rd× (t0,∞)→ Rd has derivatives of all orders, and f (x, ·) is bounded on

(t0,∞) for each fixed x ∈Rd . We that the solution x(t;x0) of (1.1) is bounded and Lyapunov stable

in the sense that the solution x(t;y0) of the ODE ẋ(t) = f (x(t), t) with initial condition y0 remains

near to x(t;x0) for all t > t0 whenever y0 is sufficiently close to x0.

We fix an arbitrary norm ‖ ·‖ on Rd and use the same symbol ‖ ·‖ to denote the induced matrix

norm on Rd×d and we also fix an arbitrary orthogonal basis {e1, . . . ,ed} of Rd . The standard

Lyapunov stability analysis of the solution of (1.1) begins with linearization in space about the
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solution x(t;x0) to obtain the associated linear variational equation

u̇(t) = A(t)u(t), t > t0 (1.2)

where the coefficient matrix is defined as A(t) := D f (x(t;x0), t) where D := ∂/∂x. The matrix-

valued function A(t) is bounded and continuous since x(t;x0) is bounded and D f is continuous.

Under mild conditions on A(t) and the nonlinear terms N(x, t) := f (x, t)−A(t)x we can infer the

stability of the solution of (1.1) from the stability of the zero solution u(t)≡ 0 of (1.2). For general

time-dependent linear systems of the form (1.2) the stability of the zero solution is not generally

dependent on the eigenvalues of A(t) and, in fact, examples in Coppel (1978); Kreiss (1978) show

that eigenvalues may give counter-indicative stability information. This has led to the development

of several alternative spectral stability theories for characterizing the stability of the zero solution of

(1.2). The spectral stability theory we consider in this paper is the theory of Lyapunov exponents.

Our contribution in this dissertation is to apply the approximation theory for Lyapunov expo-

nents by QR methods to develop a time-dependent stability theory for numerical methods approx-

imating a class of stable initial value problems. This theory allows us to weaken the hypotheses

made in AN-stability and B-stability theory requiring that the differential equation is uniformly

contracting at the expense of acquiring an inherent step-size restriction. First we use local error es-

timates to give conditions on the maximum allowable step-size so that a one-step method produces

an asymptotically decaying solution when solving a test problem of the form

ẋ(t) = λ (t)x(t), λ (t) ∈ R (1.3)

where λ (t) is asymptotically contracting in the sense that its time average is negative on all suf-

ficiently large time intervals. For such test problems the coefficient function λ (t) is allowed to

take on positive values for infinitely many t and because of this we can show that, in contrast

to A-stability theory, there are no Runge-Kutta methods that produce a decaying numerical so-

lution to all such test problems without a step-size restriction. We employ a time-dependent
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orthogonal change of variables to transform to a corresponding linear system with an upper tri-

angular coefficient matrix and use this system to justify characterizing the numerical stability of

a one-step method approximating a time-dependent linear problem (1.2) using test problems of

the form (1.3). This is contrasted to the time-independent case where a similarity transformation

(i.e. a time-independent change of variables) to the Jordan canonical form is used to justify us-

ing time-independent scalar test problems to characterize the stability of methods approximating

time-independent linear problems. In general, numerical stability is not automatically preserved

under a time-dependent orthogonal change of variables since the step-size must be small enough

so that this change of variables resolves the geometry of the change of variables is preserved at

the discrete level. We show that under generic hypotheses on (1.2) we can determine an additional

step-size restriction so that this change of variables accurately preserves the underlying geometry.

The linear theory we develop is then used to prove a stability result for Runge-Kutta methods solv-

ing a nonlinear system of the form (1.1) whose linear part satisfies the hypotheses of the linear

theory we develop. The linear theory for one-step methods is extended to strictly stable linear

multistep methods by reducing their analysis when applied to linear problems to that of one-step

methods. We then use the theory as the basis for step-size selection algorithms we develop based

on controlling the Lyapunov exponent stability.

The stability analysis of numerical methods that approximate the solution of (1.1) for time-

dependent and time-independent problems is a well-developed field. The earliest work on the

stability of time-stepping methods solving initial value problems is due in Dahlquist (1963) where

A-stability and the theory of linear stability domains for linear multistep methods is developed and

it is shown how to characterize the numerical stability of linear multistep methods approximating

the solution of a time-independent linear problem ẋ(t) = Ax(t) where A∈Rd×d by using test prob-

lems of the form ż(t) = λ z(t) where λ ∈ C. The notion of A-stability and linear stability domains

was extended to Runge-Kutta methods independently in Ehle, B.L (1968); Ehle, B.L. (1973) and

Axelsson (1969). Following this, stability theories for Runge-Kutta methods such as AN-stability,

B-stability, and algebraic stability and deeper results on A-stability were developed in Butcher, J.C.
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& Burrage, K. (1979); Butcher, J.C. (1975, 1987); Crouzeix (1979); Nevanlinna (1977); Nevan-

linna, O. & Liniger, W. (1978, 1979); Nevanlinna, O. & Jeltsch, R. (1982); Nevanlinna & Sipilä,

A.H. (1974); Scherer (1979); Wanner (1976) and in many other works. For an extensive survey of

these classical theories see Hairer, E. et al. (1987); Hairer, E. & Wanner, G. (1991). The theories

of algebraic stability, B-stability, and AN-stability all deal with the numerical stability of nonau-

tonomous linear and dissipative nonlinear problems that are uniformly contracting in some sense.

Runge-Kutta methods that are, e.g., B-stable and used to solve a uniformly contracting problem

will generally produce a contracting numerical solution at each step with no step-size restriction.

While this is quite a desirable property for a method to have it is also quite restrictive. For in-

stance no explicit method is B-stable. There are relatively recent results such as González, C.and

Palencia, C. (1999); González, C. & Palencia, C. (2000) and Boutelje, B.R. & Hill, A.T. (2010)

that allow for a somewhat larger class of methods, but still require that the problem is uniformly

contracting.

In recent years the approximation theory of Lyapunov exponents by QR methods has been

developed extensively (Dieci, L. & Van Vleck, E.S. (2002, 2003); Dieci & Van Vleck, E.S. (2005);

Dieci, L. & Van Vleck, E.S. (2006, 2007); Dieci & Van Vleck, E.S. (2009); Badawy, M. & Van

Vleck, E.S. (2012)). For any fundamental matrix solution X(t) of a nonautonomous linear system

of the form (1.2) there exists unique QR factorization X(t) = Q(t)R(t) where Q(t) is orthogonal

and R(t) upper triangular with positive diagonal entries. The linear system ẏ(t) = B(t)y(t) that

results from the change of variables x(t) = Q(t)y(t) has an upper triangular coefficient matrix

and generically the Lyapunov exponents can be expressed in terms of the diagonal elements of

B(t) (see Dieci, L. & Van Vleck, E.S. (2003)). Continuous QR methods approximate Q(t) by

solving an additional system of differential equations that depends on A(t) and then approximate

the Lyapunov exponents using the resulting approximations to the diagonal entries of B(t).

While relying heavily on the methods and techniques used in the analysis of QR methods in

Dieci & Van Vleck, E.S. (2005) and Van Vleck, E.S. (2010), this paper still constitutes a substantial

body of original research. Our focus is to apply the existing theory to determine step-size restric-

5



tions for the numerical preservation of asymptotic decay as opposed to finding conditions on the

local error so that a numerical method approximates the exact Lyapunov exponents of a continuous

time system. We use the theory of QR methods to determine step-size restrictions, prove rigorous

decay estimates, and justify characterizing the stability of a method using a scalar test problem.

This is analogous to the time-independent stability theory for Runge-Kutta methods which relies

on eigenvalues, linear algebra, and similarity transformations to obtain estimates and justify using

complex scalar test problems to characterize the stability of a method. Additionally, our results

are used to provide a practical method to stabilize a solver that unstably solves an asymptotically

contracting linear problem and to develop a method for selecting step-size based on accuracy and

Lyapunov exponent stability.

Stability theories for time-stepping methods solving (1.2) typically assume that the differential

equation is uniformly contracting. However, there are many stable and decaying problems that

are only decaying in an asymptotic limit. Understanding the numerical stability of such problems

is important since there exist non-uniformly decaying differential equations for which a one-step

method with adaptive step-size error control can still fail to produce a decaying numerical solution.

For instance, consider the following linear problem,

ẋ(t) = A(t)x(t)≡ [Q(t)B(t)Q(t)T + Q̇(t)Q(t)T ]x(t) (1.4)

where

B(t) =

 a1 +b1 cos(ω1t) β

0 a2 +b2 cos(ω2t)

 , Q(t) =

 cos(ω3t) sin(ω3t)

−sin(ω3t) cos(ω3t)

 . (1.5)

Each solution x(t) of (1.4) satisfies ‖x(t)‖ ≤ K1ea1t +K2ea2t for positive constants K1 and K2. In

Figure 1.1 we show the results of a Matlab experiment of the numerical solution of (1.4) where

a1,a2 < 0 so that every exact solution of (1.4) decays exponentially fast. The solver used in the

experiment was the Matlab ode15s solver using BDF integration formulas using a maximum order
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Figure 1.1: Left: Plot of the norm of the numerical solution versus time. Right: Plot of the ap-
proximate local truncation error versus time. Numerical solutions were computed with the Matlab
solver ode15s using BDF’s with a maximum order of 1 (implicit Euler method). Absolute and
relative tolerances used in the solver was 10−6, 190368 time-steps were used, and the parameter
values a1 = −0.2, a2 = −0.3, b1 = 0.21, b2 = 0.31, ω1 = ω2 = 1, ω3 = 2, and β = 3 · 103 were
used. The initial condition used was (−1,1)T/

√
2.

of 1 which is the implicit Euler method. The plots of Figure 1.1 show that the AN-stable and

B-stable implicit Euler method produces an unstable numerical solution even while using adaptive

step-size selection so that the local truncation error is bounded by 2 ·10−3. This dissertation seeks

to provide a theoretical understanding for this anomalous instability phenomenon and provide an

efficient method for stabilizing the solver.

The remainder of this work is organized as follows. In Section 1.2 we review the background

on the standard stability theory for ODE IVP solvers. In Chapter 2 we review the necessary back-

ground on Lyapunov exponents of continuous and discrete time systems and introduce the notions

of integral separation from zero and asymptotic contraction. In Chapter 3 we prove a stability

result for one-step methods solving an asymptotically contracting, nonautonomous, scalar linear

test equation and justify characterizing the numerical stability of a one-step method solving an

asymptotically contracting, linear equation of the form (1.2) by d such test equations. In Section

4.1 we use the discrete variation of constants formula combined with the linear stability results of

Chapter 3 to prove a stability result for Runge-Kutta methods solving a class of stable nonlinear

problems whose linear part satisfies the hypotheses of the linear theory. In Section 4.2 we apply

invariant manifold theory so that the analysis of strictly stable linear multistep methods approxi-
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mating linear problems becomes a corollary of the analysis for one-step methods. In Chapter 5 we

develop and test algorithms for selecting step-size for the control of numerical stability using the

theory developed in Chapters 3-4. We present the results of some experiments that show how our

theory and algorithms can be used to explain and correct the lack of numerical stability of (1.4) and

also explore how we can use our theory to characterize the stiffness of a nonlinear problem (1.1)

on a time interval. We conclude this work in Chapter 6 with brief summary and some remarks on

future work related to the topic of this dissertation.

1.2 Background on the stability theory for time-stepping initial

value problem solvers

Time-stepping methods are numerical methods for the numerical approximation of the solution of

(1.1) that advance the numerical solution step-by-step in time. They broadly fall into two classes:

one-step and multistep methods. One-step methods advance the approximate solution using only

the approximate value of the solution from the previous step. A k-step multistep method advances

the approximate solution using the approximate values of the solution from k previous steps. The

two most important and widely used time-stepping methods are the s-stage Runge-Kutta methods

which are a one-step method that take the form

 xn+1 = xn +hn ∑
s
j=0 b̃ j f (g j

n, tn + c jhn)

gi
n = xn +hn ∑

s
j=0 ãi, j f (g j

n, tn + c jhn), i = 1, . . . ,s
(1.6)

where the step-sizes hn are chosen adaptively based on local error tolerances and, the k-step linear

multistep methods which take the form

k

∑
i=0

αixn+i = h
k

∑
i=0

βi f (xn+i, tn+i) (1.7)
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where for simplicity the step-size h > 0 is fixed. The coefficients {ãi, j}s
i, j=0, {b̃ j}s

j=0, {c j}s
j=0

in the case (1.6) and {αi}k
i=0, {βi}k

i=0 in the case of (1.7) are chosen so that the method matches

the Taylor series of the exact solution to a certain order or satisfies some other desirable qualities.

Often a Runge-Kutta method (1.6) is expressed using its so-called Butcher tableaux

c Ã

b̃T

where Ã = (ãi, j), b̃ = (b̃1, . . . , b̃s)
T , and c = (c1, . . . ,cs)

T . Both Runge-Kutta and linear multistep

methods are types of general linear methods. A k-step and s-stage general linear method with fixed

step-size h > 0 takes the form

 x(n+1)
i = ∑

k
j=1 αi, jx

(n)
j +h∑

s
j=1 βi, j f (g(n)j , tn + c jh), i = 1, . . . ,k

g(n)i = ∑
k
j=1 ãi, jx

(n)
j +h∑

s
j=1 b̃i, j f (x(n)j , tn + c jh), i = 1, . . . ,s

(1.8)

with coefficient matrices denoted by A = (αi, j), B = (βi, j), Ã = (ãi, j), and B̃ = (b̃i, j). General

linear methods provide a common framework for unifying and generalizing the standard theories

to Runge-Kutta and linear multistep methods. We do not pursue their analysis in this work, but use

them as a way of simplifying the presentation of this section.

The stability theory for numerical methods approximating the solution of (1.1) is motivated by

a simple observation common to other fields of numerical analysis which is that over time small

errors can become magnified and then subsequently corrupt an approximation. For ODE IVP

solvers there are certain problems and methods for which it is possible to construct an approximate

solution of (1.1) that initially is locally accurate, that is, it satisfies a specified local error tolerance

at each step, but over time these errors accumulate and, for instance, the numerical approximation

of a problem that has a bounded and decaying exact solution may become unbounded.

This review of the stability theory for general linear methods closely follows that found in

Hairer, E. & Wanner, G. (1991). The stability of a time-stepping method has typically been

9



characterized by determining what, if any, step-size restriction is necessary so that the method

produces an asymptotically decaying numerical solution when it is applied to certain type of test

problem. The oldest and most well known such test problem is the complex, linear, scalar, test

problem

ż(t) = λ z(t), λ ∈ C. (1.9)

The test problem (1.9) is meant to serve as a caricature of the numerical stability of a time-stepping

method solving a linear problem ẋ(t)=Ax(t) where A∈Rd×d . From the change of variables x=Pz

where P is such that J = P−1AP is the Jordan form of A, it follows that the stability of the exact

solution of ẋ = Ax is governed by the stability of d linear complex scalar problems of the form

żi(t) = λiz(t) where λi ∈C is an eigenvalue of A. Since the stability of solutions of a general linear

method (1.8) is preserved by a linear time-independent change of variables xn = Pzn, it follows

that the numerical stability of Runge-Kutta and linear multistep methods solving a linear problem

ẋ = Ax is characterized by stability of the method applied to d complex linear scalar test problems.

Classically, this observation led to the development of linear stability domains and A-stability

theory.

Definition 1. The linear stability domain of a general linear method (1.8) is the set of all z = hλ ∈

C such that if the method is applied to solve (1.9) using the step-size h > 0, then the numerical

solution {zn}∞
n=0 satisfies that zn→ 0 as n→ ∞.

Definition 2. A general linear method is A-stable if its linear stability domain contains the left half

complex plane C− := {z ∈ C : Re(z)< 0}.

Linear stability domains characterize the steps-size restriction due to stability of a general linear

method solving either autonomous linear problems or autonomous nonlinear problems with an

initial condition nearby a fixed point. For the numerical stability of nonlinear and nonautonomous

problems there have been several classes of test problems that have been proposed. One such test

problem is a d dimensional nonlinear ODE ẋ = f (x, t) where f (x, t) satisfies a one-sided Lipschitz

10



condition

〈 f (x, t)− f (y, t),x− y〉 ≤ 0. (1.10)

where 〈·〉 is some inner product that induces a norm ‖ · ‖ on Rd . If f satisfies the estimate (1.10),

then ẋ = f (x, t) is a dissipative ODE and given any two initial conditions x0 and y0 and s≤ t, then

the solutions x(·;x0) and x(·,y0) through x0 and y0 will satisfy the estimate

‖x(t;x0)− x(t;y0)‖ ≤ ‖x(s;x0)− x(s;y0)‖ (1.11)

For a symmetric, positive definite matrix G = (gi, j) in Rd×d we let the G-norm ‖ · ‖G on Rd be

defined by

‖u‖2
G :=

d

∑
i=1

d

∑
j=1

gi, j〈ui,u j〉. (1.12)

A numerical method is called G-stable if whenever f satisfies (1.10), then there exists a real sym-

metric positive definite matrix G so that the numerical solutions xn and yn of ẋ(t) = f (x(t), t) using

the initial conditions x0 and y0 respectively satisfy that for any fixed step-size h > 0 we have

‖xn+1− yn+1‖G ≤ ‖xn− yn‖G, n≥ 0.

A sufficient condition in terms of the coefficients of (1.8) for a method to be G-stable is that it is

algebraically stable, which means that there is a real symmetric positive definite matrix G and a

real, non-negative definite matrix D so that the matrix M defined as

M =

 G−A T GA ÃT D−A T GB

DÃ−BT GA DB̃+ B̃T D−BT GB


is non-negative definite. The stability of general linear methods solving problems that satisfy (1.10)

can often be characterized by a linear, nonautonomous, scalar, complex test problem

ż(t) = λ (t)z(t), λ (t) ∈ C, Re(λ (t)≤ 0. (1.13)

11



Solving (1.13) with the general linear method (1.8) produces a numerical solution {zn}∞
n=0 that

satisfies a linear difference equation

zn+1 = S(Z)zn, Z = h(λ (tn + c1h), . . . ,λ (tn + csh))T (1.14)

A general linear method (1.8) is said to be AN-stable if there exists a real, symmetric, positive

definite G so that ‖S(Z)u‖G ≤ ‖u‖G for every Z = (z1, . . . ,zs)
T ∈Cs with Re(zi)≤ 0 for i = 1, . . . ,s

and zi = z j whenever ci = c j. A method (1.8) that is AN-stable will produce a bounded and/or

decaying numerical solution to the test problem ż(t) = λ (t)z(t) where λ (t) ∈ C with Re(λ (t) ≤

0 for any step-size h > 0. To justify using the test problem (1.13) and AN-stability theory to

characterize the stability of the general linear method (1.8) applied to solve the problem (1.1)

where f satisfies the condition (1.10) we introduce the following terminology.

Definition 3. General linear methods for which there exists i and j such that ci = c j are referred

to as non-confluent. General linear methods for which there exists ξ ∈ Rk such that A ξ = ξ and

Ãξ = (1, . . . ,1)T are referred to as preconsistent.

Theorem 1. The following implications hold for all general linear methods

algebraic stability⇒ G-stability⇒ AN-stability⇒ A-stability

Furthermore, if the method (1.8) is preconsistent and non-confluent, then AN-stability, G-stability,

and algebraic stability are all equivalent.

The test problems (1.13) and ẋ = f (x, t) where f (x, t) satisfies (1.10) correspond to the case

where the exact solution is uniformly decaying. There are many classical dissipative problems,

such as the Lorenz 1963 system which first appeared in Lorenz (1963) and the Van der Pol oscil-

lator which appears in Van der Pol, B. (1927), that do not satisfy one-sided Lipschitz conditions.

For such problems, the Lyapunov stability of the exact solution is governed by a general nonau-
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tonomous linear equation ẋ(t) = A(t)x(t) and solutions may not be uniformly decaying. This work

seeks to find conditions so that the numerical stability of one-step methods and strictly stable linear

multistep methods solving such a linear problem can be characterized by an asymptotically decay-

ing scalar test problem of the form ẋ(t) = λ (t)x(t) and then find the step-size restriction under

which the method preserves asymptotic decay.
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Chapter 2

Lyapunov exponents

This chapter is a review of the background on Lyapunov exponents of continuous time and discrete

time systems necessary for the stability theory for one-step methods we develop in Chapter 3.

Additionally, we recall the concepts of integral separation from zero and asymptotic contraction

that are useful in estimating Lyapunov exponents and in quantifying asymptotic decay.

2.1 Continuous time systems

In this section we review the necessary background on Lyapunov exponents for continuous time

systems. For a detailed account of the general theory of Lyapunov exponents, see Adrianova

(1995) and for references on the continuity and numerical approximation of Lyapunov exponents

see Dieci, L. & Van Vleck, E.S. (2002, 2003, 2006, 2007). Consider a linear nonautonomous ODE

ẋ(t) = A(t)x(t), t > t0 (2.1)

where A : (t0,∞)→ Rd×d is bounded and continuous. We discuss how to compute the Lyapunov

exponents of (2.1) without constructing fundamental matrix solutions. For systems ẏ(t) = B(t)y(t)

where B(t) is upper triangular, the Lyapunov exponents generically are given in terms of the diag-

onal elements of the coefficient matrix B(t).
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Theorem 2. (Theorem 5.1 in Dieci, L. & Van Vleck, E.S. (2007)) Consider ẏ(t) = B(t)y(t) where

B : (t0,∞)→Rd×d is bounded, continuous, and upper triangular. Suppose that for every i < j one

of the two following conditions hold:

1. Bi,i and B j, j are integrally separated, that is, there exists ai, j > 0 and bi,, j ∈ R so that if

t ≥ s > t0, then ˆ t

s
Bi,i(τ)dτ−B j, j(τ)dτ ≥ ai, j(t− s)−bi, j. (2.2)

2. For every ε > 0 there exists Mi, j(ε)> 0 so that if t ≥ s > t0, then

∣∣∣∣ˆ t

s
Bi,i(τ)−B j, j(τ)dτ

∣∣∣∣≤Mi, j + ε(t− s). (2.3)

Then the Lyapunov exponents µ1, . . . ,µd of ẏ(t) = B(t)y(t) are continuous and given by the formu-

las

µi = limsup
t→∞

1
t− t0

ˆ t

t0
Bi,i(τ)dτ, i = 1, . . . ,d. (2.4)

A system ẏ(t) = B(t)y(t) satisfying the hypotheses of Theorem 2 is referred to as a system

that has an integral separation structure and the coefficient matrix B(t) is said to have an integral

separation structure. The system ẏ(t) = B(t)y(t) is integrally separated if each pair of diagonal

elements of B(t) are integrally separated. Integral separation is a generic property for systems of

the form (2.1) in the same way that generically d×d real-valued matrices M ∈Rd×d of autonomous

systems ẋ = Mx have distinct eigenvalues, see page 21 of Palmer (1979). Integrally separated

systems have distinct Lyapunov exponents that are continuous with respect to perturbations in the

entries of the coefficient matrix A(t).

For general systems (2.1) where A(t) is not upper triangular, we can construct a time-dependent

change of variables that transforms the original problem to one with an upper triangular coefficient

matrix. Consider a fundamental matrix solution X(t) of (2.1) and let X(t) =Q(t)R(t) be the unique

continuous QR factorization of X(t) where Q(t) is orthogonal and R(t) is upper triangular with

positive diagonal entries. Then x(t) = Q(t)y(t) is a Lyapunov transformation and ẏ(t) = B(t)y(t)
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where B(t) = Q(t)T A(t)Q(t)−Q(t)T Q̇(t) is upper triangular. Furthermore, it can be shown that

Q(t) satisfies the differential equation

Q̇(t) = Q(t)S(Q(t),A(t)), S(Q,A)i j =


(QT AQ)i, j, i > j

0, i = j

−(QT AQ)i, j, i < j

(2.5)

If B(t) is such that B(t) = QT (t)A(t)Q(t)−QT (t)Q̇(t) where Q(t) is orthogonal for all t and sat-

isfies (2.5) for some initial condition Q(t0), then we refer to the system ẏ(t) = B(t)y(t) as a cor-

responding upper triangular system to (2.1). Since x(t) = Q(t)y(t) is a Lyapunov transformation,

every upper triangular system corresponding to (2.1) has the same Lyapunov exponents as (2.1).

Generically, a corresponding upper triangular system to (2.1) has an integral separation struc-

ture and thus it is a natural assumption to make. Theorem 2 is useful since allows us to consider

problems that have continuous and possibly indistinct Lyapunov exponents and the Lyapunov ex-

ponents are given as formulas in terms of the coefficient matrix B(t). We use Theorem 2 and the

hypothesis that (2.1) has a corresponding upper triangular system with an integral separation struc-

ture as the basis for the main structural assumption we place on the linear problem (2.1) that we

use in our numerical stability analysis in Section 3.

2.2 Discrete time systems

In this section we review necessary background on Lyapunov exponents of discrete time systems.

Consider a nonautonomous linear difference equation of the form

xn+1 = Φ
A(tn)xn, (2.6)

where xn ∈Rd , ΦA(tn)≡ΦA(n) ∈Rd×d is a bounded sequence of invertible matrices, and {tn}∞
n=0

is a sequence such that there exists 0 < hmin ≤ hmax < ∞ so that hmin ≤ tn+1− tn ≤ hmax for all
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n ≥ 0. We refer to such a sequence {tn}∞
n=0 as a time sequence and remark that the system (2.6)

depends on time-sequence that is used. We have the following definition of integral separation

structure in discrete time analogous to that found in Badawy, M. & Van Vleck, E.S. (2012).

Definition 1. Consider yn+1 = ΦB(n)yn where ΦB(n) ∈ Rd×d is bounded and upper triangular

and suppose that the diagonal entries ΦB
i,i(n) are all positive and have uniformly bounded inverses.

Suppose that for every i < j one of the two following conditions hold:

1. ΦB
i,i(n) and ΦB

j, j(n) are discretely integrally separated, that is, there exists bi, j ∈ (0,1] and

ai, j > 0 so that if n≥ m, then

n

∏
j=m

Φ
B
i,i( j)(ΦB

i+1,i+1( j))−1 ≥ bi, jeai, j(tn−tm) (2.7)

2. ΦB
i,i(n) and ΦB

j, j(n) satisfy that for every ε > 0, there exists Mi, j > 0 and h∗ > 0 so that if

n≥ m and hmax ≤ h∗, then

|
n

∏
k=m

Φ
B
i,i(k)(Φ

B
j, j(k))

−1| ≤ eMi, j+ε(tn−tm). (2.8)

We refer to such a system as a system with an approximate discrete integral separation structure

and say that ΦB(n) has an approximate discrete integral separation structure.

The following theorem follows from the results proved in Badawy, M. & Van Vleck, E.S.

(2012); Dieci, L. & Van Vleck, E.S. (2007); Dieci & Van Vleck, E.S. (2005).

Theorem 3. If the system yn+1 = ΦB(n)yn is a system with an approximate discrete integral sep-

aration structure, then for every ε > there exists h∗ > 0 so that if hmax ≤ h∗, then the discrete

Lyapunov exponents satisfy that

|µi− limsup
n→∞

1
tn− t0

n

∑
j=0

ln(ΦB
i,i( j))|< ε, 1 = 1, . . . ,d.
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If the diagonal elements of yn+1 = ΦB(n)yn are all discretely integrally separated, then there is no

restriction on h∗ and we can take ε = 0.

We now discuss how an approximate discrete integral separation structure is preserved under

perturbations of the coefficient matrix. Consider the perturbed system

zn+1 = (ΦA(n)+Fn)zn. (2.9)

Additionally assume that both ΦA(n) and ΦA(n) +Fn are bounded and invertible for all n ≥ 0.

Fix Q0 = Q0 orthogonal and inductively construct QR factorizations ΦA(n)Qn = Qn+1RA(n) and

(ΦA(n)+Fn)Qn = Qn+1RA
(n) where Qn and Qn are orthogonal and RA(n) and RA

(n) are upper

triangular with positive diagonal entries. We shall refer to vn+1 = RA(n)vn as a corresponding

upper triangular system to (2.6).

Define En := QT
n+1FnQn and suppose that ‖Fn‖ = ‖En‖ is small for all n ≥ 0. Then we would

expect that RA(n) ≈ RA
(n) and Qn ≈ Qn for n sufficiently small. The following theorem, which

follows from the estimates in the proof Theorem 7.7 in Badawy, M. & Van Vleck, E.S. (2012)

and Theorem 4.1 in Van Vleck, E.S. (2010), says that for systems (2.6) where the corresponding

upper triangular factor RA(n) has an approximate discrete integral separation structure, that this

is indeed the case, and in fact, there are global uniform bounds on the differences Qn−Qn and

RA(n)−RA
(n)

Theorem 4. Suppose that the discrete QR process for both of the systems (2.6) and (2.9) is well-

defined and suppose that R̃A(n) has an approximate discrete integral separation structure. If F :=

supn≥0‖Fn‖ is sufficiently small, then there exists an h∗ > 0 so that if hmax ≤ h∗, then there exists

an orthogonal sequence of matrices {Q̃n}∞
n=0 and K > 0 such that

Q̃n+1RA(n) = [RA
(n)+En]Q̃n

and ‖Q̃n− I‖ ≤ K‖En‖ = K‖Fn‖. If the diagonal elements of R̃A(n) are all discretely integrally
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separated, then there is no restriction on h∗ > 0.

Using the estimate in Badawy, M. & Van Vleck, E.S. (2012) we can actually approximate how

small F > 0 must be taken for the conclusion of Theorem 4 to hold. In Section 3.2 we apply

Theorem 4 to relate the numerical stability of the numerical solution of the system (2.1) and a

corresponding upper triangular system.

2.3 Integral separation from zero and asymptotic contraction

In this section we define the notions of asymptotic contraction and integral separation from zero.

Definition 2. We say that the system ẋ(t) = λ (t)x(t) is integrally separated from zero if λ :

(t0,∞)→ R is bounded and continuous and there exists L1,L2 ∈ R and D1,D2 ∈ R with D1 ≤ D2

and L1 ≤ L2 so that if t ≥ s > t0, then

D1 +L1(t− s)≤
ˆ t

s
λ (τ)dτ ≤ D2 +L2(t− s). (2.10)

We say that the system ẋ(t) = λ (t)x(t) is asymptotically contracting if L2 < 0.

If λ (t) is integrally separated from zero and satisfies the estimate (2.10), then the Lyapunov

exponent of ẋ(t) = λ (t)x(t) lies in the interval [L1,L2] and if λ (t) is asymptotically contracting,

then the Lypaunov exponent is negative. We generalize Definition 2 to systems of the form (2.1)

as follows.

Definition 3. We say that (2.1) is integrally separated from zero if there exists a corresponding

upper triangular system ẏ(t) = B(t)y(t) has an integral separation structure and each of the d

diagonal systems ẏi(t) = Bi,i(t)yi(t) are integrally separated from zero. We say that (2.1) is asymp-

totically contracting if in addition the systems ẏi(t) =Bi,i(t)yi(t) are all asymptotically contracting.

Suppose that (2.1) is integrally separated from zero and the diagonal elements Bi,i(t) of a corre-

sponding upper triangular system ẏ(t) = B(t)y(t) satisfy that for i = 1, . . . ,d there exists Li,1 ≤ Li,2
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and Di,1 ≤ Di,2 so that if t ≥ s > t0, then

Di,1 +Li,1(t− s)≤
ˆ t

s
Bi,i(τ)dτ ≤ Di,2 +Li,2(t− s).

It follows that the Lyapunov exponents µ1, . . . ,µd of (2.1) satisfy that µi ∈ [Li,1,Li,2] for i= 1, . . . ,d

and that the Lyapunov exponents are all negative if (2.1) is asymptotically contracting and Li,2 < 0

for i = 1, . . . ,d. Asymptotic contraction gives us a way of establishing uniform estimates on the

growth and decay rates of systems with an integral separation structure.

We close this section by remarking that we can analogously define asymptotic contraction and

integral separation from zero for discrete time systems (2.6) using the same types of estimates as

in Section 2.2.
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Chapter 3

Stability of one-step methods

In this chapter we analyze the stability of one-step methods solving asymptotically contracting

linear problems of the form (2.1). One-step methods solving nonautonomous linear differen-

tial equations of the form (2.1) take the form of a nonautonomous linear difference equation

xn+1 = ΦA(tn)xn where ΦA(tn) ∈ Rd×d . The matrix sequence ΦA(tn) ≡ ΦA(tn,hn) ≡ ΦA(n) de-

pends on the current time tn and A(tn). Throughout, we let hmax := supn≥0 hn and hmin := infn≥0 hn

where hn := tn+1− tn and assume that hmin > 0 and hmax < ∞. This chapter is organized as fol-

lows. First, in Section 3.1, we find conditions on the maximum allowable step-size so that the

numerical solution of an asymptotically contracting scalar test problem is discretely asymptoti-

cally contracting. Subsequently, in Section 3.2, we determine the maximum allowable step-size

so that the numerical solution an asymptotically contracting system (2.1) using a one-step method

is discretely asymptotically contracting and then justify using d asymptotically contracting scalar

test problems to characterize the maximum allowable step-size.
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3.1 Stability analysis for an asymptotically contracting scalar

test problem

In this section we consider the numerical stability of a scalar test problem

ẋ(t) = λ (t)x(t) (3.1)

solved with a one-step method M . We assume that λ : (t0,∞)→ R is asymptotically contracting

and satisfies the estimates

D1 +L1(t− s)
ˆ t

s
λ (τ)dτ ≤ D2 +L2(t− s), t ≥ s > t0 (3.2)

where L1 ≤ L2 < 0 and D1 ≤ D2. The numerical solution of (3.1) with M using a sequence of

step-sizes {hn}∞
n=0 takes the form

xn+1 = Φ
λ (n)xn.

The test problem should be thought of as one of the problems ẏi(t) = Bi,i(t)yi(t) where Bi,i(t) is

a diagonal element of an upper triangular coefficient matrix B(t) of an upper triangular system

corresponding to (2.1). In Section 3.2 we rigorously justify this intuition when B(t) has an integral

separation structure.

We remark that test problems of the form (3.1) already appear in the literature of AN-stability

theory. Our analysis differs from that found in the literature on AN-stability in two main ways.

The first way, as we shall show in 3.2, we have a method for computing the test problem for a

given system (2.1) and our method justifies considering only the case where λ (t) is real-valued

as opposed to complex valued in AN-stability theory. The second way of analysis differs from

AN-stability theory is that we assume only that λ (t) is asymptotically contracting rather than

nonpositive for all t > t0 which allows for λ (t) such as λ (t) = cos(t)− 1/2 that take on positive

values for infinitely many t even though the solution is asymptotically contracting. This apparently
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minor difference turns out to have an substantial impact on the analysis since, as we show in the

proof of the following theorem, there are no Runge-Kutta methods that produce a bounded or

decaying solution to every problem of the form (3.1) that satisfies an estimate (3.2) without the

introduction of a step-size restriction.

Theorem 5. Given any convergent Runge-Kutta method M , any step-size h > 0, and L2 < 0 we

can find D1, D2, and L1 so that λ (t) satisfies (3.2) and the numerical solution of (3.1) using M

with fixed step-size h > 0 and initial condition x(t0) = x0 6= 0 becomes unbounded.

Proof. Let R(·) be the classical stability function of M and let h > 0. R(·) is a Padé approximation

to the exponential and therefore there exists δ > 0 so that R(x) > 1 for all x ∈ R with 0 < x < δ .

Let λ (t) = Dcos(2πt/h)+L2 where D > −L2 and h(D+L2) < δ . Then λ (t) satisfies (3.2) with

L1 = L2, D1 =−hD/π and D2 = hD/π . The numerical solution of (3.1) with the method M using

the fixed step-size h is xn+1 = R(h(D+L2))xn. Since 0 < h(D+L2)< δ implies R(h(D+L2))> 1

and x0 6= 0 it follows that |xn| → ∞ as n→ ∞.

The λ (t) constructed in Theorem 5 shows that time-dependent oscillations in the coefficient

function λ (t) may trigger instabilities in the numerical solution. Such oscillations produce an

inherent step-size restriction in any Runga-Kutta method for solving initial value problems and may

occur in the presence of "small" exponential growth and decay rates; these oscillations may not be

damped out by normal stiff integrators. Theorem 5 is the main reason that we use error estimates

for stability control since for Runge-Kutta methods there does not seem to be a straightforward

way of controlling the stability of an asymptotically contracting, nonautonomous, linear, scalar

test problem without some type of error control.

Although Theorem 5 paints a pessimistic picture for numerically preserving the asymptotic

decay of time-dependent problems, the following theorem says that the next best thing we would

hope for is true, that for all sufficiently small step-sizes we can guarantee that a one-step method

with local truncation error of order p≥ 1 is discretely asymptotically contracting when applied to

solve the problem (3.1).
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Theorem 6. Suppose that M has local truncation error of order p ≥ 1. Then there exists h∗ >

0 so that if hmax ≤ h∗, then the numerical solution xn+1 = Φλ (n)xn is discretely asymptotically

contracting.

Proof. We can write Φλ (n) = exp
(´ tn+1

tn
λ (τ)dτ

)
+En ≡ In +En so that

m

∏
j=n

Φ
λ ( j) =

m

∏
j=n

(1+E jI−1
j )

m

∏
j=n

I j, n≥ m > 0.

If there exists K > 0 so that |EnI−1
n |< Khn < 1/2 for all n≥ 0, then the estimate (3.2) implies that

if n≥ m≥ 0, then

eD1+(L1−2K)(tn−tm) ≤
m

∏
j=n

Φ
λ ( j)≤ eD2+(L2+K)(tn−tm).

To show that Φλ (n) is discretely asymptotically contracting it suffices to show that we can find

h∗ > 0 so that if hmax ≤ h∗, then there exists K > 0 so that K +L2 < 0 and |EnI−1
n | < Khn < 1/2

for all n ≥ 0. Since the method M is of order p ≥ 1, there exists h̃ > 0 so that if hmax ≤ h̃, then

for all n≥ 0 we have En = Tnhp+1
n and |Tn| ≤C for some C > 0. If hmax ≤ h̃ ,then it follows from

(3.2) that |EnI−1
n | ≤Chp+1

n e−D1−L1hn . We can then choose h∗ > 0 with h∗ ≤ h̃ so that if hmax ≤ h∗,

then Chp
ne−D1−L1hn < min{−L2,1/2}.

The term EnI−1
n that appears in the proof of Theorem 6 is the product of a stability term In,

and an accuracy term En. The term I−1
n provides a measure of stiffness for the solution of (3.1) in

the interval [tn, tn+1]. If λ (t) is negative and has a large magnitude on [tn, tn+1], then I−1
n will be

very large and the step-size must be taken much smaller to compensate for this. We explore this

intuition more in the experiments in Section 5.3.

We close this section by discussing an alternative to restricting the step-size to guarantee that

the numerical solution (3.1) is discretely asymptotically contracting. The alternative approach is to

allow the coefficients of the one-step method to vary at each time step and then selecting the values

for these coefficients in a judicious way. Such variable coefficient methods appear in the literature
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(see e.g. Lambert (1974); Wambecq (1978); Hairer (1980); Calvo, M. & Quemada, M. Mar (1982);

Verwer, J.G. & Dekeker, K. (1983)) under the names of rational Runge-Kutta formulas and arise

in the contexts of monotone and conservative methods and also in preserving the orthogonality of

Q(t) in the numerical integration of (2.5), Dieci, L. & Van Vleck, E.S. (1995). We do note pursue

the analysis of such methods in this work, but we remark that they may provide a viable alternative

to using error control to guarantee asymptotic decay of numerical solutions of (3.1).

3.2 Justification for the test problem

Fix some one-step method M with local truncation error of order p≥ 1. In this section we justify

using d asymptotically contracting, nonautonomous, linear, scalar test problems of the form ẋi(t) =

λi(t)xi(t) to characterize the numerical stability of M applied to solve (2.1). In addition we show

how to compute the coefficients λ1(t), . . . ,λd(t) of the test problems for a given (2.1). For the

remainder of this section make the following assumption on (2.1).

Assumption 1. Assume that the coefficient matrix A(t) in (2.1) is bounded and p+1 times differ-

entiable. Suppose that there is a fundamental matrix solution X(t) with QR factorization X(t) =

Q(t)R(t) so that under the change of variables x(t) = Q(t)y(t) the corresponding upper triangular

problem

ẏ(t) = B(t)y(t) (3.3)

is asymptotically contracting with the diagonal elements satisfying the estimates

D1,i +L1,i(t− s)≤
ˆ t

s
Bi,i(τ)≤ D2,i +L2,i(t− s) (3.4)

with D1,i ≤ D2,i and L1,i ≤ L2,i < 0 for i = 1, . . . ,d and an integral separation structure defined by

the following estimates. For i < j we either have Bi,i and B j, j are integrally separated with

ˆ t

s
Bi,i(τ)dτ−B j, j(τ)dτ ≥ ai, j(t− s)−bi, j (3.5)
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for all t ≥ s > t0 where ai, j > 0 and bi, j ∈R or if Bi,i and B j, j are not integrally separated, then for

every ε > 0, there exists Mi, j(ε)> 0 so that if t ≥ s > t0, then

∣∣∣∣ˆ t

s
Bi,i(τ)−B j, j(τ)dτ

∣∣∣∣≤Mi, j(ε)+ ε(t− s). (3.6)

Assumption 1 implies that the Lyapunov exponents of (2.1) are all negative and can be com-

puted from formula (2.4). We remark that in all this section we assume that A(t) and B(t) are

known exactly. In practice, A(t) and Q(t) are approximated simultaneously from an approximate

nonlinear trajectory and then used to form an approximate B(t). The additional issues that arise

from this are studied in more detail in Dieci & Van Vleck, E.S. (2005).

Let xn+1 = ΦA(n)xn denote the numerical solution of (2.1) using the method M with the time

sequence {tn}∞
n=0 and let yn+1 = ΦB(n)yn denote numerical solution of (3.3) using the method M

with the same time sequence and x0 = Q(t0)y0. We shall assume that each hmax > 0 is always so

small that ΦA(n) and ΦB(n) are both bounded and invertible for all n ≥ 0. The matrices ΦB(n)

are upper triangular since B(t) is upper triangular and each diagonal entry ΦB
j, j(n) is such that

y j
n+1 = ΦB

j, j(n)y
j
n is the numerical solution of the scalar problem ẏ j(t) = B j, j(t)y j(t) using M with

the same time-sequence.

Since ΦA(n) is invertible we can inductively construct unique QR factorizations of ΦA(n)Qn

as ΦA(n)Qn = Qn+1RA(n) where each Qn is orthogonal, Q0 = Q(t0), and RA(n) is upper triangular

with positive diagonal entries. The stability of the zero solution of xn+1 = ΦA(n)xn is equivalent to

the the stability of the zero solution of the upper triangular system zn+1 = RA(n)zn since xn = Qnzn

and Qn is orthogonal and therefore defines a discrete Lyapunov transformation. The essence of our

theory is to determine conditions on the maximum allowable step-size so that RA(n) is discretely

asymptotically contracting by estimating the difference between the diagonal entries of RA(n) and

ΦB(n).

We factor the fundamental matrix solutions X(t) of (2.1) and R(t) of (3.3) from Assumption

1 on the time sequence {tn}∞
n=0 to establish a relation between these factorizations and the local
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approximation properties of ΦA(n) and ΦB(n). Consider the sequence of matrix IVPs:

 Ψ̇(t) = A(t)Ψ(t), t > tn

Ψ(tn) = Id×d

(3.7)

and let X(t, tn) be the unique solution of (3.7) for all n≥ 0. Then

X(tn) = X(tn, tn−1) · . . . ·X(t1, t0)X(t0).

Similarly for corresponding upper triangular system ẏ(t) = B(t)y(t) consider the sequence of ma-

trix IVPs:  Φ̇(t) = B(t)Φ(t), t > tn

Φ(tn) = Id

(3.8)

with the unique exact solution R(t, tn). We can express R(tn) as

R(tn) = R(tn, tn−1) · . . . ·R(t1, t0)R(t0).

Notice that we have X(t, tn) = Q(t)R(t, tn)Q(tn)T for n≥ 0. Consider the local error expressions

Φ
A(n) = X(tn+1, tn)+EA

n , Φ
B(n) = R(tn+1, tn)+EB

n . (3.9)

Combining (??) with the relation X(t, tn) = Q(tn+1)R(t, tn)Q(tn)T implies that

Φ
B(n) = Q(tn+1)

T (ΦA
n +Fn)Q(tn) (3.10)

where Fn = −EA
n +Q(tn+1)EB

n Q(tn)T . So, if the diagonal entries of ΦB(n) are all positive, then it

is the unique upper triangular factor of the discrete QR process applied to the unperturbed system

yn+1 = Φ̃
A(n)yn (3.11)
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where Φ̃A(n) := ΦA(n)+Fn with the orthogonal factor given by Q(tn) and the corresponding per-

turbed system

xn+1 = (Φ̃A(n)+ F̃n)xn (3.12)

where F̃n := ΦA(n)− Φ̃A(n) = −Fn. Before we can apply Theorem 4 to estimate the difference

RA(n)−ΦB(n) we show that we can always choose hmax > 0 so that ΦB
n has an approximate discrete

integral separation structure.

Lemma 1. The system yn+1 = ΦB(n)yn has an approximate discrete integral separation structure.

Proof. Express ΦB
i,i(n) in the form

Φ
B
i,i(n) = exp

(ˆ tn+1

tn
Bi,i(τ)dτ

)
+E i

n ≡ Ii
n +E i

n, i = 1, . . . ,d

If n≥ m, then for i < j we have

n

∏
k=m

Φ
B
i,i(k)(Φ

B
j, j(k))

−1 =

[
n

∏
k=m

Ii
k(I

j
k )
−1

][
n

∏
k=m

1+E i
k(I

i
k)
−1

1+E j
k (I

j
k )
−1

]

= e
´ tn

tm Bi,i(τ)−B j, j(τ)dτ

[
n

∏
k=m

1+E i
k(I

i
k)
−1

1+E j
k (I

j
k )
−1

]
.

For l = 1, . . . ,d suppose that there exists Kl > 0 so that |E l
n(I

l
n)
−1| < Klhn < 1/2. Then for i < j

we have

e−(2Ki+K j)hn ≤ 1+E i
n(I

i
n)
−1

1+E j
n(I

j
n)−1

≤ e(Ki+2K j)hn.

Suppose that Bi,i(t) and B j, j(t) are integrally separated and satisfy the estimate (3.5). Then

n

∏
k=m

Φ
B
i,i(k)(Φ

B
j, j(k))

−1 ≥ e(ai, j−2Ki−K j)(tn−tm)−bi, j .

So ΦB
i,i(n) and ΦB

j, j(n) will be discretely integrally separated if ai, j− 2Ki−K j > 0. On the other

hand if Bi,i(t) and B j, j(t) are not integrally separated, but instead satisfy the estimate (3.6). Then,
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given ε > 0 we can choose Mi, j(ε) so that

n

∏
k=m
|ΦB

i,i(k)(Φ
B
j, j(k))

−1| ≤ eMi, j(ε)+
ε

2 (tn−tm)+∑
n
k=m(Ki+2K j)hk .

So, in particular, if Ki +2K j ≤ ε

2 , then ∑
n
k=m(Ki +2K j)hk ≤ ε

2(tn− tm) so that ΦB
i,i(n) and ΦB

j, j(n)

will satisfy an estimate of the form (2.8). The final condition for ΦB(n) to have an approximate

discrete integral separation structure is that ΦB
i,i(n) = Ii

n +E i
n > 0 for i = 1, . . . ,d and n≥ 0 which

follows from the relation that |E i
n(I

i
n)
−1|< 1/2.

The diagonal elements ΦB
i,i(n) are the numerical solutions of the scalar problems ẏi(t)=Bi,i(t)yi(t)

using M with the same sequence of step-sizes {hn}∞
n=0. Therefore, since the method M has local

truncation error of order p≥ 1 and A(t) (and therefore Q(t) and B(t)) is p+1 times differentiable,

we can choose h̃ > 0 so that if hmax ≤ h̃ and i = 1, . . . ,d we have E i
n = T i

nhp+1
n where |T i

n| ≤Ci for

some Ci > 0. Because B(t) is bounded we can choose Mi
B > 0 so that |Bi,i(t)| ≤Mi

B for all t > t0.

So, if hmax ≤ h̃, then for i = 1, . . . ,d we have |E i
n(I

i
n)
−1| ≤Cih

p+1
n ehnMi

B .

For l = 1, . . . ,d let Kl = Kl(n) = Clh
p
neMl

Bhn > 0. For i < j and each ε > 0, let hi, j ∈ (0,1) be

so small that if hmax ≤ hi, j, then Clh
p+1
n eMl

Bhn < 1/2 for l = 1, . . . ,d and so that if Bi,i and B j, j are

integrally separated, then

2Ki +K j = 2Cihp
neMi

Bhn +C jhp
neM j

Bhn < ai, j

and if Bi,i and B j, j are not integrally separated

Ki +2K j =Cihp
neMi

Bhn +2C jhp
neM j

Bhn < ε/2.

If h∗ > 0 is such that h∗ = min{{hi, j : i < j}, h̃} then it follows that the diagonal entries of ΦB(n)

are positive, have uniformly bounded inverses, and satisfy either (2.7) or (2.8). It follows that

ΦB(n) has an approximate discrete integral separation structure.

The size that h∗ > 0 must be taken in Lemma 1 depends on the strength of the integral sepa-

29



ration. Stronger integral separation between diagonal elements of B(t) implies a milder step-size

restriction to preserve integral separation of ΦB(n) at the discrete level. As discussed in Section

3.1, an alternative to restricting the step-size to guarantee that our method has an approximate dis-

crete integral separation structure would be to allow the coefficients of the method to vary between

time-steps.

There is an interesting connection between Lemma 1 and the conditioning of boundary value

problems (BVPs) of ODEs. A classic result in Ascher, U. et al. (1988) states that BVPs for lin-

ear nonautonomous ODEs are well-conditioned if and only if there is a dichotomy. The integral

separation structure of B(t) gives us a way of quantifying an exponential dichotomy of the zero

solution of (2.1) and the matrix Q(t) may be used to define the related projections, see Dieci, L.

et al. (2010). Our result (1) can be interpreted as saying that if the system has a stronger dichotomy,

then there is a weaker step-size restriction due to stability.

Under additional constraints on hmax > 0, we can use Theorem 4 to obtain bounds on the

difference of the diagonal elements of RA(n) and ΦB(n).

Lemma 2. There exists h∗ > 0 so that hmax ≤ h∗, then Gn := RA(n)−ΦB
n satisfies that ‖Gn‖ =

CGhp+1
n for some CG > 0.

Proof. By Lemma 1 and the definition of local truncation error, we have that ΦB(n) has an approxi-

mate discrete integral separation structure and for i= 1, . . . ,d we have ΦB
i,i(n)= exp

(´ tn+1
tn

Bi,i(τ)dτ

)
+

E i
n where E i

n = T i
nhp+1

n where |T i
n| ≤Ci for some Ci > 0.

Consider the unperturbed system yn+1 = Φ̃A(n)yn and the perturbed system xn+1 = (Φ̃A(n)+

F̃n)xn where Φ̃A(n) and F̃n are as defined in (3.11) and (3.12). Using the definition of local trun-

cation error and the fact that A(t) and B(t) are bounded and p+1 times differentiable, there exists

h > 0 so that if hmax ≤ h, then EA
n and EB

n from (3.9) satisfy that EA
n =CA

n hp+1
n and EB

n =CB
n hp+1

n

where ‖CA
n ‖ ≤CA and ‖CB

n ‖ ≤CB for constants CA,CB > 0. Therefore we can choose 0 < h∗ < h

so that if hmax ≤ h∗, then we can bound the sequence F̃n = EA
n −Q(tn+1)EB

n Q(tn)T as F̃n =CF
n hp+1

n

where ‖CF
n ‖ ≤ (CA +CB)hp+1

max and the conclusion of Theorem 4 holds: there exists a sequence

{Q̃n}∞
n=0 with each Q̃n a real orthogonal d× d matrix such that Q̃n+1ΦB(n) = (RA(n) +En)Q̃n
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where En = −Q(tn+1)F̃nQ(tn)T and ‖Q̃n− I‖ ≤ K‖F̃n‖ for some K > 0. From this it follows that

there exists C > 0 so that ‖Gn‖ = ‖RA(n)−ΦB(n)‖ ≤C‖F̃n‖ whenever hmax ≤ h∗ and it follows

that if hmax ≤ h∗, then ‖Gn‖ ≤CGhp+1
n for some CG > 0.

We are now ready to prove our two main theorems showing that we can always select an hmax >

0 so that RA(n) has an approximate discrete integral separation structure and is asymptotically

contracting.

Theorem 7. RA(n) has an approximate discrete integral separation structure.

Proof. By Lemma 2 and Lemma 1, there exists h̃ > 0 so small that if hmax ≤ h̃, then for i = 1, . . . ,d

we have

RA
i,i(n) = Φ

B
i,i(n)+(Gn)i,i

where Gn is such that |Gn| ≤CGhp+1
n for some CG > 0 and

Φ
B
i,i(n) = exp

(ˆ tn+1

tn
Bi,i(τ)dτ

)
+T i

nhp+1
n

where T i
n is such that ‖T i

n‖ ≤ Ti for some Ti > 0. If hmax ≤ h̃ we have for i = 1, . . . ,d that

RA
i,i(n) = exp

(ˆ tn+1

tn
Bi,i(τ)dτ

)
+(Gn)i,i +T i

nhp+1
n

where ‖(Gn)i,i +E i
nhp+1

n ‖ ≤ (CG +Ci)h
p+1
n . By repeating the argument in Lemma 1 we can show

that there exists h∗ > 0 with h∗ ≤ h̃ so that if hmax ≤ h∗, then the diagonal entries of RA(n) are

positive, have bounded inverses, and satisfy an estimate of the form (2.7) or (2.8). It follows that

RA(n) has an approximate discrete integral separation structure.

The following corollary follows from Lemma 1, Theorem 3, and Theorem 7 and their proofs.

Corollary 1. Let µA
1 , . . . ,µ

A
d denote the Lyapunov exponents of xn+1 = ΦA(n)xn and µB

1 , . . . ,µ
A
d

denote the Lyapunov exponents of yn+1 = ΦB(n)yn and µ1, . . . ,µd denote the Lyapunov exponents
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of (2.1). There exists h∗ > 0 so that if hmax ≤ h∗ and i = 1, . . . ,d, then

µ
A
i = limsup

n→∞

1
tn− t0

n

∑
j=0

ln(RA
i,i( j))+O(hp

max), µ
B
i = limsup

n→∞

1
tn− t0

n

∑
j=0

ln(ΦB
i,i( j))+O(hp

max)

(3.13)

and µA
i = µB

i +O(hp
max) = µ j +O(hp

max). If the diagonal elements of B(t) are all integrally sepa-

rated, then we can omit the O(hp
max) in (3.13).

The next theorem states that for sufficiently small step-sizes the numerical solution xn+1 =

ΦA(n)xn inherits the asymptotic contraction of the diagonal of B(t).

Theorem 8. There exists h∗ > 0 so that if hmax ≤ h∗, then xn+1 = ΦA
n xn is discretely asymptotically

contracting.

Proof. Use the estimates of Lemma 2 and those in the proof Theorem 7 together with (3.4).

Under Assumption 1 on the problem (2.1) we may characterize the numerical stability of M

applied to solve (2.1) as follows. Theorem 7 implies that for all sufficiently small hmax > 0 the

diagonal entries of RA(n) differ from the diagonal entries of ΦB(n) by a term of the same order

as the local truncation error of the method. Therefore, if the step-sizes are sufficiently small,

each diagonal entry RA
i,i(n) of RA(n) corresponds to a single step in the numerical solution of the

real-valued nonautonomous, linear, scalar test problem ẏ j(t) = B j, j(t)y j(t) by a one-step method

with local error of the same order as the the method M . Theorem 8 then implies that for all

sufficiently small hmax > 0 the system vn+1 = RA(n)vn is discretely asymptotically contracting

whenever the problems ẏ j(t) = B j, j(t)y j(t) are each asymptotically contracting. It follows that

xn+1 = ΦA(n)xn is discretely asymptotically contracting. Whenever the local error of a method

is sufficiently small the numerical stability of the one-step method M applied to solve a problem

(2.1) that satisfies Assumption 1 is characterized by the numerical stability of a one-step method of

the same order solving the d real-valued, asymptotically contracting, nonautonomous, scalar test

problems ẏi(t) = Bi,i(t)yi(t). The coefficients Bi,i(t) can be approximated by computing Q(t) as
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the solution of (2.5) and then forming B(t) := QT (t)A(t)Q(t)−QT (t)Q̇(t) or by running a discrete

QR iteration directly on the numerical solution xn+1 = ΦA(n)xn

Remark 1. Generically, systems of the form (2.1) are integrally separated if the coefficient ma-

trix A(t) is bounded and continuous. Therefore, if A(t) is smooth and bounded, then generically

any corresponding upper triangular system has an integral separation structure. The proofs of

Lemma 1, Theorem 1, and Theorem 7 only use the assumption that B(t) has an integral separation

structure and therefore their conclusions hold under the generic assumption that (2.1) has a corre-

sponding upper triangular system that is integrally separated. Then as shown above, its numerical

stability is characterized by the numerical stability of d real-valued scalar test problems. However,

without the additional hypothesis of asymptotic contraction, the stability of these test problems be-

comes more difficult to characterize. In subsequent work we hope to determine whether or not the

asymptotic contraction is a generic hypothesis for systems (2.1) that have all negative Lyapunov

exponents.
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Chapter 4

Stability of nonlinear problems and linear

multistep methods

In this chapter we analyze the stability of Runge-Kutta methods solving a class of nonlinear prob-

lems and linear multistep methods solving a linear problem (2.1) that has an integral separation

structure.

4.1 Nonlinear Problems

In this section we use the linear numerical stability theory to prove a numerical stability result for

Runge-Kutta methods solving a class of nonlinear problems. Similar nonlinear stability results for

other linear one-step methods can be shown using similar arguments as long as the structure of the

method is known.

Consider the nonlinear initial value problem (1.1) and without loss of generality we can assume

that x0 = 0. We let A(t) := D f (x(t;0), t) and rewrite f (x, t) as

f (x, t) = A(t)x+N(x, t)

where N(x, t) = f (x, t)−A(t)x. In light of the hypotheses placed on f (x, t) in Section 1.1 and the
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assumption that x(t;x0) is Lypaunov stable, we make the following assumption for the remainder

of the section:

Assumption 2. The function N(x, t) is of the form N(x, t) = n1(x, t) + n2(t) where ‖n1(x, t)‖ ≤

K‖x‖2 and ‖n2(t)‖ ≤ K for some positive constant K > 0.

Consider the following ODE

ẋ(t) = f (x(t), t)≡ A(t)x(t)+N(x(t), t), t > t0 (4.1)

and let x(t;y0) be the solution of (4.1) with the initial condition x(t0) = y0. Consider a Runge-Kutta

method with Butcher tableaux
c Ã

bT .
(4.2)

The numerical solution {yn}∞
n=0 of (4.1) using the method (4.2) with any initial condition y0 with

the sequence of step-sizes {hn}∞
n=0 takes the form

 yn+1 = yn +hn ∑
s
j=1 b j(An, jgn, j +N(gn, j, tn + c jhn)), n≥ 0

gn,i = yn +hn ∑
s
j=1 ãi, j(An, jgn, j +N(gn, j, tn + c jhn)), i = 1, . . .s

(4.3)

The numerical solution of u̇(t) = A(t)u(t) using the method (4.2) with the same initial condition

y0 and the same sequence of step-sizes {hn}∞
n=0 is of the form un+1 = ΦA(n)un. Assumption 2

together with the implicit function theorem imply that there exists h∗ > 0 so that if hmax ≤ h∗, then

the numerical solution yn satisfies the difference equation

yn+1 = Φ
A(n)yn +hnÑ(yn, tn) (4.4)

where Ñ(xn, tn) is of the form Ñ = ñ1 + ñ2 where ‖n1(yn, tn)‖ ≤ K̃‖yn‖2 and ‖n2(yn, tn)‖ ≤ K̃ for

some K̃ > 0. We now have the following theorem that shows that the numerical solution of (4.1)

with the initial condition x0 is Lyapunov stable.
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Theorem 9. Let {xn}∞
n=0 ≡ 0 and {yn}∞

n=0 denote the numerical solutions obtained from solving

(4.1) with the method (4.2) using the sequence of step-sizes {hn}∞
n=0 with initial conditions x0 = 0

and y0 respectively. Then, given ε > 0, there exists δ > 0 and h∗ > 0 so that if y0 is such that

|y0| < δ and hmax ≤ h∗, then the numerical solutions satisfy that ‖yn‖ = ‖xn− yn‖ < ε for all

n≥ 0. In other words, the numerical solution {xn}∞
n=0 is Lyapunov stable.

Proof. Let {zn}∞
n=0 denote the numerical solution of (4.1) using the method (4.3). By the above

work and Theorem 8, there exists h̃z0 > 0 so that if hmax ≤ h̃z0 , then

zn+1 = Φ
A(n)zn +hnÑ(zn, tn)

and additionally the linear system un+1 = ΦA(n)un is discretely asymptotically contracting. Thus

if hmax ≤ h̃z0 , then there exists CA > 0 and L > 0 so that ‖∏
m
j=n ΦA

j ‖ ≤CAe−L(tn−tm) for all n≥ m.

By the discrete variation of constants formula, for n > 0 we have:

zn =

[
0

∏
j=n−1

Φ
A( j)

]
z0 +

n−1

∑
i=0

[
i+1

∏
j=n−1

Φ
A( j)

]
hiN(zi, ti).

where the product ∏
i+1
j=n−1 ΦA( j) is taken be 1 when i≥ n−1. It follows that

‖zn‖ ≤CAe−L(tn−1−t0)‖z0‖+CA

n−1

∑
i=0

e−L(tn−1−ti+1)hiK̃(‖zi‖2 +1). (4.5)

where sum ∑
n−1
i=0 e−L(tn−1−ti+1) is convergent and satisfies that ∑

n−1
i=0 e−L(tn−1−ti+1) ≤ C̃A where C̃A >

0.

Let ε > 0 be given. Let δz0 > 0 be so small that δz0 < min{ε/4CA,ε/2} and let 0 < h∗z <

min{h̃z0,εCAC̃AK̃/8}. Suppose that ‖z0‖< δz0 and consider the set Nz = {n : ‖zn‖ ≥ ε}. Suppose

for contradiction that Nz is nonempty. Then there is a minimal element N∗z of Nz and N∗z > 0 since

‖z0‖< δz0 . By (4.5) and the definition of N∗z we have

ε/2≤ ‖yN∗z ‖ ≤CA‖z0‖+hnCAC̃AK̃(σ2 +1)≤CAδz0 +2h∗zCAC̃AK̃ < ε/2
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which is a contradiction. It follows that ‖zn‖< ε/2 for all n≥ 0. From this work it follows that if

y0 is so small that ‖y0‖ < δ where δ := δy0 > 0 and hmax ≤ min{h∗0,h∗y0
}, then ‖yn− xn‖ < ε for

all n≥ 0.

Determining the step-size h∗ > 0 so that the conclusion of Theorem 9 holds depends on know-

ing A(t) exactly or equivalently knowing the exact solution. The point of this result is to abstractly

show that for small enough step-sizes the global error in the approximation of a Lyapunov stable

trajectory whose linear variational equation satisfies Assumption 1 is bounded for a large class of

nonlinearities. Typically what is done in practice is to linearize around the numerical solution at

each time step and form Cn := D f (xn, tn) so that in the numerical solution of (4.1) instead of form-

ing ΦA(n) we are forming ΦC(n) where C(t) is some matrix with C(tn) = Cn. Using shadowing-

type arguments and an assumption of ergodicity (see e.g. Dieci & Van Vleck, E.S. (2005)) it can be

shown that the two systems xn+1 = ΦA(n)xn and vn+1 = ΦC(n)vn have Lyapunov exponents whose

differences are bounded in terms of the local error.

4.2 Linear multistep methods

In this section we study the numerical stability of a linear multistep method of the form (1.7)

solving the nonautonomous linear problem (2.1). Without loss of generality we assume that αk = 1.

The linear multistep method (1.7) applied to solve (2.1) is given as

k

∑
i=0

(αiId−hβiAn+i)xn+i = 0 (4.6)

where An := A(tn) for all n≥ 0. The numerical stability analysis for linear multistep methods turns

out to be more challenging than for one-step methods since, as written in the form (4.6), linear

multistep methods do not define discrete time dynamical systems. There are two main strategies

that have been used to get past this hurdle. The first strategy is to use the structure of the equation

(4.6) to express the multistep method as nonautonomous, linear, difference equation in a higher
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dimensional space. The second strategy is to use invariant manifold theory for maps to associate

to each strictly stable method (1.7) a one-step method that governs the long-term dynamics. A

strictly stable linear multistep method (1.7) is a method for which the zeros of the polynomial

ρ(z) := ∑
k
i=0 αizi all have modulus less than or equal to 1 and the only zero of modulus 1 is z = 1

and it is a simple root. We pursue the second strategy since then the numerical stability theory for

stictly stable linear multistep methods solving time-dependent problems follows a corollary to the

one-step theory we developed in Section 3.

The invariant manifold theory for linear multistep methods was pioneered in Kirchgraber

(1986) Eirola , T. & Nevanlinna, O. (1988). This theory allows us to associate to each strictly

stable linear multistep method a one-step method with local truncation error of the same order,

called the underlying one-step method, that governs the stability of the linear multistep method.

Using a one-step method to characterize the stability of a strictly stable method (1.7) allows us to

apply the theory developed in Section 3, although an additional restriction on the step-size h > 0

may be incurred to guarantee the existence of the underlying one-step method. In the remainder of

this section we prove the existence of an underlying one-step method for a linear multistep method

(1.7) approximating (2.1) with fixed step-size h > 0 and show how to determine this additional

step-size restriction.

We first rewrite the nonautonomous linear equation (2.1) of dimension d as an equivalent sys-

tem autonomous system of dimension d + 1 using the standard trick of using ṫ(τ) = 1 as the

differential equation for time:  ẋ(τ) = A(τ)x(τ)

ṫ(τ) = 1
(4.7)

The method (1.7) applied to the system (4.7) produces a numerical solution of the form (xT
n , tn)

T .

If (1.7) is a consistent multistep method, then ṫ(τ) = 1 is integrated exactly and therefore tn =

t(τn) = t0 +nh.

We assume that the method (1.7) is strictly stable and also assume that the method is of order
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p, that is, for every (p+1)-times differentiable function v(t) and h > 0 sufficiently small we have

k

∑
i=0

αiv(tn + ih)−h
k

∑
i=0

βiv′(tn + ih) = O(hp+1)

Consider an autonomous vector field ẋ(t) = f (x) and let {xn}∞
n=0 be its solution by the method

(1.7) using starting values x0, . . . ,xk−1 and fixed step-size h > 0. Let Xn := (xT
n , . . . ,x

T
n+k−1)

T so

that we can express the method (1.7) as

Xn+1 = (L⊗ I)Xn +hR̃(Xn,Xn+1, tn) (4.8)

where ⊗ denotes the Kronecker matrix product and

L =



0 1 0
. . . . . . ...

0 1 0

0 1

−α0 . . . . . . −αk−2 −αk−1


, R̃(Xn,Xn+1) =



0
...

0

∑
k
i=0 βi f (xn+i)


.

Suppose that we apply (1.7) to the autonomous problem (4.7) using the fixed step-size h > 0 and

let A(tn) = An. Then, assuming that h > 0 is so small that (I− hβkAn+k) is always invertible, we

may then solve (4.8) for Xn+1 as

Xn+1 = (L⊗ I)Xn +R(Xn) (4.9)
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where in this setting Xn := (xT
n , tn, . . . ,x

T
n+k−1, tn+k−1)

T and

R(Xn)=



0
...

0

∑
k−1
i=0

 αi(I− (I−hβkAn+k)
−1)+hβiAn+i 0

0 hβi


 xT

n+i

1




≡



0
...

0

∑
k−1
i=0 rn,i

 xT
n+i

1




Notice that

R(Xn)−R(Yn)=



0 . . . 0
... . . . ...

0 0

rn,0 . . . rn,k−1


(Xn−Yn), rn,i =

 h(βiAn+i−αi(I−hβkAn+k)
−1βkAn+k) 0

0 0

 .

Since A(t) is bounded, it follows that R is Lipschitz with constant hP where P > 0 depends on A,

the coefficients of (1.7), and the norm ‖ · ‖.

To apply invariant manifold theory to prove the existence of an underlying one-step method we

construct a change of variables that puts the matrix L into a special linearly decoupled form. Our

approach closely follows that of Chapter 4 in Humphries, A.R. & Stuart, A.M. (1998). Because

(1.7) is strictly stable, z = 1 is a zero of the polynomial ρ(z) = ∑
k
i=0 αizi and so we can write

ρ(z) = (z−1)p(z) where the zeros of p(z) = ∑
k−1
i=0 aizi all have modulus strictly less than 1. Define

the matrices

D =



−1 1 0
. . . . . . ...

−1 1 0

−1 1

a0 . . . . . . ak−2 ak−1


, C =



0 1 0
. . . . . . ...

0 1
...

a0 . . . . . . ak−2 0

0 . . . . . . 0 1


=

 C1

1


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We have the following Lemma that can be proved by direct computation with D, L, and C and by

using the fact that the method (1.7) is strictly stable.

Lemma 3. The matrix D is invertible, DL =CD, and the spectrum of C1 lies in (0,1).

Under the change of variables Un = (D⊗ I)Xn, we obtain

Un+1 = (C⊗ I)Un +(D⊗ I)R
(
(D−1⊗ I)Un

)
(4.10)

If we let Un =(V T
n ,W T

n )T where Vn ∈R(d+1)(k−1) and Wn ∈Rd+1 this leads to the following linearly

decoupled system:  Vn+1 = (C1⊗ Ik−1)Vn +N1(Vn,Wn)

Wn+1 =Wn +N2(Vn,Wn)
(4.11)

where N = (NT
1 ,N

T
2 )

T is defined as N(Un) := R((D−1⊗ I)Un). It follows that N has Lipschitz

constant bounded above by hP‖D−1⊗ I‖ := hK. The stability properties of the systems (4.11) and

the original system (4.8) are identical since Un = (D⊗ I)Xn and therefore we focus on analyzing

the stability of (4.11). Hence, it suffices to show that there exists ϕ so that Vn = ϕ(Wn) for all n

and that the one-step method defined by Wn+1 =Wn +N2(ϕ(Wn),Wn) has local truncation error of

order O(hp+1).

We now state a general theorem on invariant manifolds for maps that appears in Stoffer (1993)

that we use to show the existence function ϕ such that Vn = ϕ(Wn) that is invariant under the map

defined by (4.11). For a proof see Stoffer, D. & Nipp, K. (1992).

Theorem 10. Consider the map F : Rm×Rn→ Rm×Rn defined by (x̃, ỹ) = F(x,y) where

 x̃ = Ax+ f̃ (x,y)

ỹ = g(x,y)
(4.12)

Let ‖ · ‖ be a norm on Rn+m and assume that A, f̃ , and g satisfy the following:

41



1. The matrix A is invertible and ‖A−1‖ ≤ α .

2. The functions f̃ and g are k time differentiable and their derivatives are bounded.

3. The functions f̃ and g satisfy the following Lipschitz conditions

‖ f̃ (x,y)− f̃ (u,v)‖ ≤ L11|x−u|+L12|y− v|

‖g(x,y)−g(u,v)‖ ≤ L21|x−u|+L22|y− v|.

4. The constants α and Li j where i, j = 1,2 satisfy the following estimate

L11 +L22 +2
√

L12L21 < α
−1

and

L22 +
2L12L21

α−1−L11−L22
< min

{
1,
(

α
−1−L11−

2L12L21

α−1−L11−L22

)}
.

Then there exists a function ϕ : Rm→ Rn for which the following holds:

1. The manifold defined by the graph of ϕ is invariant under the map F.

2. The function ϕ is k times differentiable and the derivatives are bounded.

3. The graph of ϕ is exponentially attractive with constant ξ given by

ξ = L22 +
2L12L21

α−1−L11−L22
< 1

4. All points in the phase space are attracted to the manifold at an exponential rate: There

exists c > 0 so that for any (x0,y0) ∈Rm×Rn there exists (x̃0, ỹ0) ∈Rm×n with ỹ0 = s(x̃0) so

that

‖xk− x̃k‖ ≤ cξ k‖y0− s(x0)‖

‖yk− ỹk‖ ≤ ξ k‖y0− s(x0)‖

42



where (xk,yk) is the kth iterate of the map F applied to (x0,y0) and (x̃n, ỹn) is the nth iterate

of the map F applied to (x̃0, ỹ0)

Corollary 1. Suppose that (1.7) is strictly stable and has local truncation error of order p ≥ 1.

Then there exists h∗ > 0 so small that if 0 < h < h∗, then there exists a function ϕ : Rd+1 →

R(d+1)(k−1) so that

1. The graph of ϕ is invariant under the map (4.11)

2. The function ϕ is a smooth map

3. All points (Vn,Wn) ∈ Rk×R(d−1)k are attracted to the graph of ϕ at an exponential rate.

4. The one-step method defined by Wn+1 = Wn +N2(ϕ(Wn),Wn) has local truncation error of

order p

Proof. The map defined by (4.11) is of the form (4.12) where Wn = x, Vn = y, A = Id+1, α = 1

and where L11 = L12 = L21 = hK and L22 = ρ + hK where ρ := ‖(C1⊗ Ik−1‖. By Lemma 3, the

spectrum of C1 lies in (0,1) and it follows that there exists ρ ∈ (0,1) such that ‖C1⊗ Ik−1‖ ≤ ρ .

Suppose that h0 is so small that 2h0K < 1 and so that

h0 <
(1−ρ)

4K
, hK

(
1+

2hK
1−2hK

)
<

1−ρ

2
.

Then, if 0 < h ≤ h0, Theorem 10 implies the existence of a function ϕ : Rk→ R(d−1)k satisfying

1-3. The conclusion 4. follows by substituting a continuous function v(t) on the graph of ϕ into

the map (4.11) and noting the the method (1.7) is of order p≥ 1.

Notice that by definition of D× I, since the method is consistent, we can write Wn in the form

Wn = (W̃ T
n , t0 + nh)T . Then, corollary (1) implies that if h is so small that hK +

√
hK(1+hK) <

1/2, then the stability of the system (4.11), and equivalently, the stability of (1.7) applied to solve
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(2.1), is characterized by the one-step method defined by

W̃n+1 = W̃n +N2(ϕ(W̃n, tn),W̃n, tn)≡ θ(W̃n, tn) (4.13)

which has local truncation error of order O(hp+1) and tn = t0+nh. From the definition of truncation

error, it follows that we can write (4.13) in the form

W̃n = Φ
A(n)W̃n (4.14)

Once in this form we can apply the one-step theory developed in Chapter 3 to find additional

restrictions on the step-size h so that (4.14) is discretely asymptotically contracting.

A significant drawback to using underlying one-step methods to analyze the stability of linear

multistep methods solving (2.1) is that it is unclear how to directly extend the linear theory to the

nonlinear case was done in Section 4.1 for Runge-Kutta methods. To apply Theorem 10 to the case

where the method (1.7) is approximating a nonlinear problem we must assume that the derivatives

of the nonlinearity are bounded, which it was not necessary to do in Theorem 9. Additionally,

Theorem 4.1 only applies to Runge-Kutta methods and since the underlying one-step method is

not necessarily a Runge-Kutta method (indeed, it can be ’quite exotic’ Eirola , T. & Nevanlinna,

O. (1988)), it is unclear how to extend such a theorem to an underlying one-step method. We hope

to address this issue in subsequent work.
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Chapter 5

Numerical methods and experiments

In this chapter we use the theory from Chapter 3 to develop two novel stability based methods

for step-size selection. We present the results of several numerical experiments that highlight the

utility these methods. The chapter is concluded with an exploratory section on how our theory

might be useful as a way of characterizing stiffness in the numerical solution of time-dependent

nonlinear problems.

5.1 Two-dimensional linear example

Standard initial value problem solvers select step-size based on the local accuracy of the numerical

solution. For the numerical solution of (2.1), this means that the solver exerts no direct control

over the local accuracy of Q(t) and the diagonal of B(t) and hence there is no direct control over

in the error in the Lyapunov exponents. In this section we describe an efficient step-size selection

procedure that gives a solver control over its discrete Lyapunov exponents and demonstrate the

efficacy of this procedure by showing that it is able to produce a decaying numerical solution in a

situation where standard step-size selection fails to do so.

When using QR methods for the computation of Lyapunov exponents of continuous or discrete

time dynamical systems of dimension d, typically the first p ≤ d diagonal entries of the upper

triangular matrices in the QR decomposition correspond to the p largest Lyapunov exponents, see
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e.g. Dieci, L. & Van Vleck, E.S. (1995). In the notation of Section 3.1, this implies that typically

the largest Lyapunov exponent ẏ(t) = B(t)y(t) is the Lyapunov exponent of the scalar equation

ẏ1(t) = B1,1(t)y1(t) which is approximately the discrete Lyapunov exponent of y1
n+1 = ΦB

1,1(n)y
1
n.

Similarly, the largest discrete Lyapunov exponent of the numerical solution of (2.1) is typically the

discrete Lyapunov exponent of vn+1 =RA
1,1(n)vn. Therefore the size of |RA

1,1(n)−ΦB
1,1(n)| provides

a way to measure how accurately a one-step method solving (2.1) is resolving the stability of the

differential equation.

Both RA
1,1(n) and ΦB

1,1(n) can be computed efficiently by using only the first column in the

orthogonal factor of a discrete and continuous QR process respectively. To form ΦB
1,1(n) we must

compute the numerical solution of ẏ1(t) = B1,1(t)y1(t). This requires that we have an approxima-

tion to B1,1(t) which satisfies the equation B1,1(t) = Q1(t)T A(t)Q1(t)−Q1(t)T Q̇1(t) where Q1(t)

is the first column of Q(t). It can be shown (see Dieci & Van Vleck, E.S. (1999)) that Q1(t)

satisfies the differential equation Q̇1(t) = A(t)Q1(t)−Q1(t)(Q1(t)T A(t)Q1(t)−S(Q1(t),A(t)) :=

S1(Q1,A), where S(Q,A) is defined as in (2.5), we can approximate ΦB
1,1(n) by solving ẏ1 =

B1,1(t)y1(t) and Q̇1(t) = S1(Q(t),A(t)) simultaneously. We can form RA
1,1(n) by letting Q1

n =

Q1(t0) ∈ Rd×1 and then inductively forming partial QR factorization ΦA(n)Q1
n = Q1

n+1RA
1,1(n)

where Q1
n+1 ∈ Rd×1 is orthogonal and RA

1,1(n) is a scalar.

Consider the extended system


ẋ(t) = A(t)x(t)

Q̇(t) = A(t)Q(t)−Q(t)(Q(t)T A(t)Q(t)−S(Q(t),A(t))

ẏ1(t) = (Q(t)T A(t)Q(t)−QT (t)Q̇(t))y1(t)

. (5.1)

Our procedure for selecting step-size based only on the accuracy of the numerical solution

of (2.1) is as follows. Solve the extended system (5.1) with the initial conditions x(t0) = x0,

Q1(t0) = Q1(t0) and y1(t0) = Q1(t0)T x(t0) where Q1(t0) is a random orthogonal vector. Then

at each candidate time-step we form approximations to RA
1,1(n) and ΦB

1,1(n) as described in the

previous paragraph and let εn := |RA
1,1(n)−ΦB

1,1n)|. If εn is below a specified tolerance TOLQR,
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then we continue. If not, then the step-size is reduced and a new smaller candidate step-size is

selected. We refer to this procedure as QR error control.

Although solving the equation (5.1) to find the solution of (1.4) requires solving a 2d + 1 di-

mensional system as opposed to a d dimensional linear system, it may be advantageous to do so,

especially since a result in Dieci & Van Vleck, E.S. (2009) proves that the global error in the ap-

proximation of the Q-equation Q̇(t) = A(t)Q(t)−Q(t)(Q(t)T A(t)Q(t)−S(Q(t),A(t)) is bounded

in terms of the local error. To ensure the orthogonality of our approximation to Q(t) we modify

ode15s to be a step-and-project type method where after the integrator forms an approximation of

Q(tn) we project this value by forming its QR factorization and taking this orthogonal factor as

the orthogonal approximation to Q(tn). The results in Dieci, L. & Van Vleck, E.S. (2002) show

that this step and project type procedure does not affect the order of the local error and hence the

standard error control algorithms will still work in the same way .

Consider the two-dimensional nonautonomous linear problem (1.4) with B(t) and Q(t) as de-

fined in (1.5) and with the parameter values as listed in Figure 1.1. Under the change of variables

x(t) = Q(t)y(t), the system (1.4) is transformed to the corresponding upper triangular system

ẏ(t) = B(t)y(t). (5.2)

From this it follows that the system is is integrally separated and asymptotically contracting and

satisfies the hypotheses of Assumption 1. For our experiments we fix the initial conditions Q1(0) =

(1,0)T and x(0) = (1,0)T and y(0) = (1,0)T . Let R(t) be an upper triangular fundamental matrix

solution of (5.2) and factor R(t) as

R(tn) = R(tn, tn−1) · . . . ·R(t1, t0)R(0)

where R(t, tn−1) is the solution of (5.2) with initial condition R(tn−1, tn−1) = I. If Q1(0) = (1,0)T
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and the first column R1 of R satisfies R1(0) = (1,0), then we can express R(tn, tn−1) exactly as

R(tn, tn−1) = exp(−.20hn + .21(sin(tn)− sin(tn−1))) , hn = tn− tn−1.

We use the quantity R(tn, tn−1) as a way of measuring the accuracy of RA
1,1(n).

In Table 5.1 we present the results of a Matlab experiment. The approximate discrete Lyapunov

exponent was found by taking the maximum value of the quantity µn := ln(RA
1,1(n))/T (n) for

values of n such that T (n) > 50. In all the tested cases, µn > 0 corresponded to a numerical

solution of (1.4) with norm growing at an exponential rate and, conversely, µn < 0 corresponded

to a numerical solution of (1.4) with norm decaying at an exponential rate. Therefore, the values

of the approximate discrete Lyapunov exponents are indicative of the stability or instability of the

numerical solution of (1.4).

The results indicate that QR error control is an efficient method for preserving the numerical

stability of the numerical solution of (1.4) using ode15s with a maximum BDF order of 1. The

standard, unmodified ode15s solver fails to produce a decaying numerical solution for tested values

of TOL less that 10−7. When ode15s is modified to use QR error control it produces a decaying

numerical solution for all tested values of TOL at the expense of using many more time-steps

at lower tolerances. This extra expense is justified since by using QR error control the modified

ode15s solver is able to produce a numerical solution that correctly preserves asymptotic decay

using fewer time-steps than the unmodified ode15s solver.

We can explain the superior performance of the modified ode15s solver as follows. In Table 5.1,

one can see that while the local error, measured by LTE(max) and LTE(mean), of the numerical

solution of (1.4) is approximately the same for both the modified and unmodified solvers. For

values of TOL less than 10−7 the modified solver produces a much more accurate approximation to

RA
1,1(n), with values of LTEB(max) and LTEB(mean) an order of magnitude or more smaller than

those of the unmodified solver. This indicates that the local accuracy of the numerical solution

itself is not the only quantity one should be monitoring for the preservation of stability. It runs
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counter to the heuristic that a loss of stability in a numerical method will manifest itself as a spike

in the value of the local truncation error. Numerical instabilities can accumulate in slow and subtle

ways for time-dependent problems.

Problem TOL LTE(max) LTE(mean) LTEB(max) LTEB(mean) Appr. DLE Nsteps

Solution of (1.4)

1E−3 3.02E−1 1.65E−2 2.79E−3 1.37E−3 7.61E−3 1.52E4
1E−4 1.52E−1 3.60E−2 2.70E−3 1.22E−3 1.15E−2 1.74E4
1E−5 8.02E−3 3.24E−3 8.00E−4 3.63E−4 2.61E−3 5.60E4
1E−6 1.95E−3 7.67E−4 2.30E−4 1.09E−4 6.85E−3 1.90E5
1E−7 1.63E−4 3.10E−5 6.98E−5 2.64E−5 −3.52E−2 6.23E5

Solution of (5.1)

1E−3 3.02E−1 1.49E−4 9.41E−3 8.72E−5 −3.68E−2 1.89E5
1E−4 5.07E−2 8.39E−5 1.76E−3 5.8632E−5 −4.25E−2 2.70E5
1E−5 6.63E−3 8.76E−5 5.98E−4 5.8639E−5 −3.89E−2 2.75E5
1E−6 1.04E−3 7.27E−5 2.05E−4 5.07E−5 −2.75E−2 3.42E5
1E−7 1.58E−4 2.15E−5 4.50E−5 2.3E−5 −4.44E−2 6.84E5

Table 5.1: Table of values for various error tolerances (TOL) of the maximum (LTE(max)) and
mean (LTE(mean)) local truncation error of the solution of (1.4), the maximum (LTEB(max)) and
mean (LTEB(mean)) of the error of εn := |RA

1,1(n)−R1,1(tn+1, tn)|, the approximate value of the
largest discrete Lyapunov exponent of the numerical method xn+1 = ΦA(n)xn, and the number of
time steps taken (Nsteps). TOL is the absolute and relative error tolerance of the integrator and and
the solution interval was [0,100]. The integrator used to solve (1.4) was the Matlab solver ode15s
using BDFs with a maximum order of 1. The integrator used to solve (2.5) was a modified version
Matlab’s ode15s using BDFs with a maximum order of 1 where the modifications were to project
the candidate Q1(tn) at each time-step to ensure its orthogonality and to control the step-size so
that εn satisfies a tolerance of TOLQR = 3E−5.

5.2 Stability based step-size control for asymptotically contract-

ing scalar test problems

There have been many methods proposed for selecting the step-size for initial value problem

solvers. Most step-size selection strategies for solving the ODE initial value problem rely on some

guess for the step-size followed by refinement based upon accuracy or stability consideration, see

Gustafsson et al. (1988); Hall (1985, 1986). For nonautonomous problems, selecting step-size

based upon stability considerations is difficult as there does not seem to be a good time-dependent

characterization of the stability region. In this section we briefly review a classical algorithm for
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selecting step-size based upon local accuracy and then devise a new algorithm that selects step-size

by monitoring Lyapunov exponent of the numerical method.

One of the most well known algorithms for selecting the step-size for a numerical initial value

problem solver is known as Milne’s method which briefly review. Suppose that we simultaneously

use two different solvers, one with local error of order p and the other with local error of order

p̃ > p. The solution generated using the higher order method is treated as a proxy for the exact

solution. If xn is the solution obtained at time-step n using the lower order solver and yn is the

solution obtained at time-step n using the higher order solver, then the difference εn = xn− yn is

used as an estimate of the local error of xn at time-step n. The step-size can then be adjusted based

upon whether or not εn satisfies a given tolerance. An implementation of Milne’s method is given

in Algorithm 1.

Algorithm 1 Milne’s Device
Input: x0, h0, TOL, t0, T , hmin, hmax

Set n = 1, x0 = y0
while t < T do

if hn < hmin then
hn = hmin

end if
if hn > hmax then

hn = hmax
end if
Compute approximate solution xn with local error of order p and approximate solution yn with
local error of order at least p+1
Set κ to be measure of the error using xn and yn
if κ > TOL and hn ≥ 2hmin then

hn = hn/2
else if κ < TOL/10 and hn ≤ hmax/10 then

hn = 10hn
else

hn = 0.9hn−1(TOL/κ)1/(p+1)

n = n+1
tn = tn−1 +hn−1

end if
end while
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Consider the scalar test problem

ẋ(t) = λ (t)x(t) (5.3)

where λ (t) is asymptotically contracting. The importance of preserving the sign of a scalar test

problem is highlighted in Section 5.1 where we devised a procedure for stabilizing an unstable

numerical solution by comparing the first entry of the upper triangular factor of its QR iteration to

the numerical solution of a scalar test problem. We now develop an algorithm based off of Milne’s

method that selects step-size in a way that numerically preserves the stability of (5.3)

Recall Theorem 6 from that estimates the discrete Lyapunov exponent µ of a one-step method

solving an asymptotically contracting scalar test problem of the form (5.3). For all sufficiently

small step-sizes we can estimate µ as

µ ≤ limsup
n→∞

1
n+1

n

∑
j=0

(ˆ t j+1

t j

λ (τ)dτ +C jh
p+1
j

)
.

The stability of the test problem is determined by the sign of µ which is determined by what sign

the expression

Sn =
n

∑
j=0

(ˆ t j+1

t j

λ (τ)dτ +C jh
p+1
j

)

assumes for large values of n. If p≥ 1, we assume that the term C jh
p+1
j is negligible and estimate

Sn ≈
n

∑
j=0

h jλ (t j) =: sn.

Fix some tolerances stol > 0 and λtol > 0. If sn < −stol and |λ (tn)| ≥ λtol, then we can solve

the above equation to determine an approximate hn+1 > 0 so that sn+1 < 0. If sn ≥ −stol or

|λ (tn)|< λtol, then we can select step-size based using Milne’s device. This leads us to the follow-

ing algorithm for selecting step-size based upon accuracy and Lyapunov stability.

Algorithm 2 functions as follows. If the approximate Lyapunov exponent is not less than

−sTOL, then we select step-size based upon accuracy in the same way as Algorithm 1. If the ap-

proximate Lyapunov exponent is less than −sTOL, then we select step-size based upon the stability
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Algorithm 2 Algorithm for selecting step-size based upon Lyapunov exponent stability
Input: x0, h0, TOL, t0, T , hmin, hmax, stol, λtol

Set s0 = 0 and n = 1
while t < T do

Compute xn and yn
if sn−1 ≥−stol and |λ (tn−1)|< λtol then

if hn < hmin then
hn = hmin

end if
if hn > hmax then

hn = hmax
end if
Set κ to be measure of the error using xn and yn
if κ > TOL then

hn = hn/2
else if κ < TOL/10 then

hn = 10hn
else

hn = 0.9hn−1(TOL/κ)1/(p+1)

tn = tn−1 +hn−1
n = n+1

end if
else

Set hn =−sn−1/|λ (tn−1)|
sn = sn−1 +hn−1λ (tn−1)
tn = tn−1 +hn−1
n = n+1

end if
end while

considerations outlined above.

We present and discuss the numerical results of several experiments using Algorithm 2. We use

the method of Bogacki and Shampine derived in Bogacki, P. & Shampine, L. (1989) that computes

the numerical approximation to solution using a Runge-Kutta method of order 2 and estimates

the local error by comparing this to the output of Runge-Kutta method of order 3. We use an

implementation of Algorithm 1 to compare with an implementation of Algorithm 2. Matlab’s ODE

solver ode23 which is a more advanced implementation of the method of Bogacki and Shampine

than the implementation we used for Algorithm 1 and Algorithm 2. At the end of this section we

compare the number of steps taken by Algorithms 1 and 2 with the number of steps taken by ode23
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to give some insight into how Algorithm 2 performs against a commercial ODE solver.
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Figure 5.1: Experiment 1: ẋ(t) = (−cos(t)− 0.1)x(t). The left column has the results for Algo-
rithm 1 and the right for Algorithm 2. The error κ was measured by the absolute error. The algo-
rithm inputs we used were x0 = 1, TOL= 1E−5, hmin = 1E−4, hmax = 1E−1, h0 =

√
hmaxhmin,

t0 = 0, T = 20. Algorithm 1 took 246 steps while Algorithm 2 took 222 steps.

We now make a few remarks on the results in Figures 1-6. First of all, it is clear that Algorithm

1 will generally produce a more accurate solution and only when the numerical solutions decay

to be very close to 0 can the accuracy of the numerical solution produced by Algorithm 2 recover

the same order of accuracy. In Figures 5.1 and 5.2 where λ (t) has lower amplitude and lower

frequency oscillations, Algorithm 2 produces a less accurate solution than Algorithm 1 with only a
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Figure 5.2: Experiment 2: ẋ(t) = (cos(t)−0.1)x(t). The left column has the results for Algorithm
1 and the right for Algorithm 2. The error κ was measured by the absolute error. The algorithm
inputs we used were x0 = 1, TOL= 1E−5, hmin = 1E−4, hmax = 1E−1, h0 =

√
hmaxhmin, t0 = 0,

T = 20. The Milne method took 260 steps while Algorithm 2 took 244 steps.

slight decrease in the number of steps required. In Figure 5.3, when λ (t) has has faster oscillations

and in Figure 5.4 where λ (t) has larger amplitude and higher frequency oscillations, Algorithm 2

has a large gain in efficiency, getting away with a much larger stepsize, although the accuracy still

declines by a factor of 10. Thus Algorithm 2 is more advisable for use in the presence of a solu-

tion with high frequency or large amplitude oscillations where preserving stability using accuracy,

which is a local property, will be much harder than preserving stability using Lyapunov exponents
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Figure 5.3: Experiment 3: ẋ(t) = (cos(2t)−0.1)x(t). The left column has the results for Algorithm
1 and the right for Algorithm 2. The error κ was measured by the absolute error. The algorithm
inputs we used were x0 = 1, TOL= 1E−5, hmin = 1E−4, hmax = 1E−1, h0 =

√
hmaxhmin, t0 = 0,

T = 20. Algorithm 1 took 338 steps while Algorithm 2 took 240 steps.

which are global quantities.

Figures 5.5 and 5.6 are meant to demonstrate performance of the algorithms under various er-

ror tolerances. Matlab’s ode23 is used for comparison, as ode23 implements the same embedded

Runge-Kutta method of Bogacki-Shampine we used in Algorithms 1 and 2. For lower error tol-

erances Algorithm 2 requires about the same number of steps as Algorithm 1 and Matlab’s ode23
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Figure 5.4: Experiment 4: ẋ(t) = (4cos(6t)− 0.1)x(t). The left column has the results for Algo-
rithm 1 and the right for Algorithm 2. The error κ was measured by the absolute error. The algo-
rithm inputs we used were x0 = 1, TOL= 1E−5, hmin = 1E−4, hmax = 1E−1, h0 =

√
hmaxhmin,

t0 = 0, T = 20. Algorithm 1 took 1242 steps while Algorithm 2 took 287 steps.

requires the fewest steps. However, when high tolerances are used, Algorithm 2 outperforms the

other two algorithms. So, if preserving the stability and asymptotic properties of a numerical solu-

tion are more important than accuracy, then using Algorithm 2 may be a more efficient choice than

using the standard algorithms with a high error tolerance.
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Table 1
Method\Tol 1E-4 1E-5 1E-6
Algorithm 2 204 222 266
Algorithm 1 202 308 633

ode23 110 228 486

Table 2
Method\Tol 1E-4 1E-5 1E-6
Algorithm 2 204 244 326
Algorithm 1 202 310 645

ode23 111 233 492

Figure 5.5: Table 1 corresponds to the equation ẋ(t) = (−cos(t)−0.1)x(t) and Table 2 corresponds
to ẋ(t) = (cos(t)− 0.1)x(t). The tables record the number of steps taken by Algorithms 2 and 1
and Matlab’s ode23 for comparison for various values of TOL where TOL is the relative and
absolute error tolerance. The algorithm inputs we used were x0 = 1, hmin = 1E−4, hmax = 1E−1,
h0 =

√
hmaxhmin, t0 = 0, T = 20.

Table 3
Method\Tol 1E-4 1E-5 1E-6
Algorithm 2 209 240 291
Algorithm 1 216 445 869

ode23 153 312 652

Table 4
Method\Tol 1E-4 1E-5 1E-6
Algorithm 2 255 285 361
Algorithm 1 838 1581 2997

ode23 513 1065 2254

Figure 5.6: Table 1 corresponds to the equation ẋ(t) = (cos(2t)−0.1)x(t) and Table 2 corresponds
to ẋ(t) = (4cos(6t)− 0.1)x(t). The tables record the number of steps taken by Algorithms 2 and
1 and Matlab’s ode23 for comparison for various values of TOL where TOL is the relative and
absolute error tolerance. The algorithm inputs we used were x0 = 1, hmin = 1E−4, hmax = 1E−1,
h0 =

√
hmaxhmin, t0 = 0, T = 20.

5.3 Forced Van der Pol Equation

Consider the forced Van der Pol oscillator from Van der Pol, B. (1927):

ẍ(t)−µ(1− x(t)2)ẋ(t)+ x(t)−F sin(ωt) = 0 (5.4)

where µ , F , and ω are real constants. By introducing the relation y(t) = ẋ(t) the equation (5.4)

can be expressed as the equivalent two-dimensional system

 ẋ(t) = y(t)

ẏ(t) = µ(1− x(t)2)y(t)− x(t)+F sin(ωt).
(5.5)

For large values of µ and F = 0, the system (5.5) is a classically stiff nonlinear equation; the ratio

of real parts of the smallest and largest eigenvalues of the system linearized at the equilibrium
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(0,0)T is large when F = 0 and µ is large. When µ is small the system is not stiff in the classical

sense, although the step-sizes may need to be taken quite small along certain time intervals..

In Figure 5.5 we present the results of a Matlab experiment where, using both the nonstiff

solver ode45 and the stiff solver ode23s, we solve (5.5) coupled the the Q-equation (2.5) so that

we are able to form approximations to B(t). The results show that periodically both the stiff

and the nonstiff solver must reduce the step-size from approximately 10−2 to either 10−4 or 10−3

respectively. Contrary to what might be expected, this step-size restriction is most severe where the

solution is flat relatively flat and occurs between, but not during, intervals over which rapid growth

or decay happen. A better indicator of when the step-size restriction occurs is the magnitude of

the diagonal elements of B(t). This is consistent with the theoretical results of Section 3.1, where

the local error in addition to the inverse of the quantities Ii
n :=

´ tn+1
tn

B(τ)dτ must be controlled

to control the numerical stability. This suggests the efficiency of integrators can be improved by

designing methods that can handle spikes in the values of Ii
n.
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(c) ode45: Plot of the diagonal elements of B(t)
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(d) ode23s: Plot of the diagonal elements of B(t)
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(e) ode45: Plot of the components of the numer-
ical solution vs n
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(f) ode23s: Plot of the components of the numer-
ical solution vs n

Figure 5.7: Results of a Matlab experiment of the solution of (5.5) coupled with (2.5) using ode45
and ode23s with absolute and relative error tolerances of 10−6 and the parameter values of µ = 10,
F = 1, and ω = 2π . Figures vs n where n denotes the nth time-step of the numerical solution.
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Chapter 6

Conclusion

In this work we have developed a stability theory for one-step and linear multistep methods approx-

imating the solution of time-dependent ODE IVPs using Lyapunov exponents theory. The majority

of our effort was spent on the stability analysis of one-step methods approximating nonautonomous

linear problems. Analogous stability theories for linear multistep methods and for numerical meth-

ods solving nonlinear problems were also developed. Our theory explains how a solver with

a standard step-size selection strategy can fail to produce a decaying numerical solution to an

asymptotically contracting, time-dependent, linear problem that falls outside the previously exist-

ing framework for numerical stability. We are able to apply the theory we developed to devise an

efficient method for selecting step-size that stabilizes a solver in this context.

There are still many open avenues of investigation in the stability theory for numerical meth-

ods solving time-dependent IVPs. The natural continuation of this work would be to analyze the

preservation of the exponential dichotomy or Sacker-Sell spectrum by one-step and linear multistep

methods. As mentioned in Section 3.2 there are interesting similarities between the conditioning

of BVP solvers and the step-size restriction due to strength of the integral separation in IVP solvers

and it would be an interesting research project to investigate this connection. Another natural con-

tinuation of this work would be to investigate the stability of numerical methods for the solution

of PDE IVPs. Such a theory would undoubtedly make heavy use of the QR perturbation theory on
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infinite dimensional Hilbert spaces developed in Badawy, M. & Van Vleck, E.S. (2012) and would

involve making restrictions on the spatial discretization as well as the size of the time-steps. We

would also like to investigate the theory for asymptotically contracting linear systems more deeply

and determine whether or not asymptotic contraction holds generically for linear systems whose

Lyapunov exponents are all negative.

The analysis of linear multistep methods in this work is essentially treated as a corollary of the

one-step theory. It follows from the application of invariant manifold theory and relies on an O(h)

Lipschitz estimate even when the method has local truncation error of order p > 1. It would be

desirable to develop a time-dependent theory for linear multistep methods that does not resort to

treating them as one-step methods or use O(h) estimates. This would relax the additional step-size

restriction and also provide a way of analyzing the stability of linear mulitistep methods approx-

imating nonlinear problems. A way forward along these lines may be as follows. In classical

time-independent stability theory for linear multistep methods the Kreiss Matrix Theorem and its

corollaries are used to bound products of companion matrices that are formed from linear multi-

step methods applied to time-independent scalar test problems. It should be possible to apply tech-

niques from QR perturbation theory to develop a time-dependent theory for bounding the products

of companion matrices that result from solving a time-dependent scalar test problem. This would

facilitate the analysis of the stability of linear multistep methods solving time-dependent problems

without making use of invariant manifold theory and underlying one-step methods.
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