
Identification, Representation, and Analysis of 

Convective Storms 

 

 

By 

Weibo Liu 

 

Submitted to the graduate degree program in Geography and Atmospheric Science and the 

Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the 

degree of Doctor of Philosophy. 

 

________________________________        

    Chairperson Dr. Xingong Li       

________________________________        

Dr. Stephen L. Egbert 

________________________________        

Dr. David A. Rahn 

________________________________        

Dr. Johannes J. Feddema 

________________________________  

Dr. James R. Miller 

  

Date Defended: July 15, 2016 

  



ii 

 

The Dissertation Committee for Weibo Liu 

certifies that this is the approved version of the following dissertation: 

 

 

 

Identification, Representation, and Analysis of 

Convective Storms 

 

 

 

 

 

 

      ________________________________ 

 Chairperson Dr. Xingong Li 

 

 

       

Date approved: September 2, 2016 

 

  



iii 

 

Abstract 

 

Large amount of time series of spatial snapshot data have been collected or generated for the 

monitoring and modeling of environmental systems. Those data provide an opportunity to study 

the movement and dynamics of natural phenomena. While the snapshot organization is 

conceptually simple and straightforward, it does not directly capture or represent the dynamic 

characteristics of the phenomena. This study presents computational methods to identify 

dynamic events from time series of spatial snapshots. Events are represented as directed 

spatiotemporal graphs to characterize their initiation, development, movement, and cessation. 

Graph-based algorithms are then used to analyze the dynamics of the events.  

The method is demonstrated using the time series radar reflectivity images during one of the 

deadliest storm outbreaks that impacted 15 states of southeastern U.S. between April 23 and 29, 

2011.  As shown in this case study, convective storm events identified using our methods are 

consistent with previous studies and our analysis indicates that the left split/merger occurs more 

than right split/merger in those convective storm events, which confirms theory, numerical 

simulations, and other observed case studies.  

This study also examines the spatial and temporal characteristics of thunderstorm life cycles 

in central United States mainly covering Kansas, Oklahoma, and northern Texas during the 

warm seasons from 2010 to 2014. Radar reflectivity and cloud-to-ground lightning data were 

used to identify thunderstorms. The thunderstorms were stored in a GIS database with a number 

of additional thunderstorm attributes. The spatial and temporal characteristics of thunderstorm 

occurrence, duration, initiation time, termination time, movement speed, and direction were 

analyzed. Results revealed that thunderstorms were most frequent in the eastern part of the study 
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area, especially at the borders among Kansas, Missouri, Oklahoma, and Arkansas. We also 

linked thunderstorm features to land cover types and compared thunderstorm characteristics 

between urban and surrounding rural areas. Our results indicated that thunderstorms favor forests 

and urban areas. This research demonstrates that advanced GIS representations and analyses for 

spatiotemporal events provide insights in thunderstorm climatology study. 
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1 Introduction 

 

1.1 Problem statement 
 

Analysis of distributions, spatial relationships, and other characteristics, such as shape and 

pattern from maps and charts, allows geographers to infer information about the processes that 

shape geographical phenomena. Recent technological improvements provide data rich 

environments for investigating various geographical phenomena. Especially, increasing 

availability of spatiotemporal data collected from satellite imagery and other remote sensors 

offers opportunities for advanced analysis of dynamic geographical phenomena (McIntosh and 

Yuan 2005a). 

The objects or fields extracted from different sources of images are static. However, in many 

application domains, there is a growing body of work showing that studying the dynamic aspects 

of geographical phenomena such as infectious diseases, precipitation, hurricanes and wildfires is 

also essential and useful for explanatory and predictive models (Yuan 2001) that answer 

different geographical questions. One important characteristic of those time series of snapshot 

data is the constant change of variables in space and time, implying dynamic system behaviors. 

As a consequence, spatiotemporal fields and objects have added additional temporal attributes in 

object-oriented modeling. In order to fully represent dynamic geographical phenomena, the 

whole lifecycle of those geographical phenomena need be modeled including the initiation, 

development, movement, and decay. Nevertheless, traditional GIS data models have not yet 
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achieved this goal, and they can only represent the information at one slice in time for the area of 

interest. Many studies argue that the next real breakthrough in computer modeling of 

geographical phenomena comes when we move from an object-oriented view to an event-

oriented view of the world (Peuquet and Duan 1995, Yuan 2001, Worboys 2005). Worboys 

(2005) also summarized the recent history of dynamic geographical data models into three stages: 

static GIS (stage zero), temporal snapshots (stage one), object change (stage two). He also 

pointed out that the future stage in this evolution is a complete treatment of change, in terms of 

events (stage three). 

Nowadays, there are urgent needs to explore and understand how events evolve with 2- or 3D 

time series snapshots in many fields such as meteorology, hydrology, and transportation. 

Nevertheless, geographers are challenged on how to effectively identify events because of large 

data volume and limitations of conventional data models. Data organization and tools available 

in current GIS are based largely on the map metaphor and provide limited support for querying 

and exploring events (Goodchild et al. 2007). As a consequence, intensive human intervention is 

typically required when searching spatiotemporal datasets for events or processes. For many 

spatiotemporal data, the volume produced will quickly exceed the ability for analysts to 

manually explore all of the available data (MacEachren et al. 1999). Thus, there is a great need to 

develop automated processing methods to explore spatiotemporal data efficiently. McIntosh and 

Yuan (2005b) pointed out that the power and usefulness of GIS technology can be significantly 

enhanced by representing geographical events in GIS data models and providing functions to 

explore the characteristics of geographical events. 

Recognizing the need for automatic methods to extract and represent dynamic geographical 

phenomena from large spatiotemporal datasets, this research is a continuing effort that develops 
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innovative and computationally efficient methods and tools for the identification, representation, 

and exploration of events within GIScience field. Although this dissertation chose convective 

storm events as a case study, the proposed methods and tools can be extended to other fields such 

as temperature, wildfire, and land use/land cover. 

 

1.2 Research goals and objectives 
 

In this research, the goal is to develop automatic approaches to facilitating the analysis of 

spatiotemporal datasets through the event perspective. We follow the idea that an event can be 

systematically delineated with an origin, a development stage, a movement stage and a potential 

senescence or dissolution phase. Convective storm events are chosen as an example of studying 

dynamic geographical phenomena. Like wildfire, precipitation varies within a rainstorm and is 

typically represented as a rain field, but individual rainstorms may be isolated as events that 

occur, evolve, and disappear in a space-time frame (Niemczynowicz 1987). My research 

objectives include: 

a) Develop a general conceptual framework and computational methods to identify and 

represent events from time series of snapshot datasets and test the methods using 

convective storms as an example; 

b) Analyze the spatial and temporal characteristics of thunderstorms in central United States, 

and explore the relationships between thunderstorm occurrences and land cover types. 

The degree to which GIS can support spatiotemporal queries and analyses depends upon its 

embedded data models and representations. As discussed above, existing data models and 

representations in most GISs don’t fully support dynamic geographical phenomena. The first 

research objective of this dissertation is to devise data models and representations which 
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incorporate the event concept and have the ability to represent both field and object 

characteristics of dynamic geographical phenomena in space and time. In this research, a 

directed spatiotemporal graph model is used to represent storm events, and graph-based 

algorithms are explored to further analyze the events. 

The second objective is to use the storm events extracted from time series of images to answer 

some geographical questions. First, climatology or spatiotemporal characteristics of storm events 

are analyzed, which include inter-annual and intra-seasonal variations of event occurrence, 

duration, size, geographical location, and other characteristics such as split and merger, direction 

and magnitude of movement, and triggering and dissipation time. Previous studies (Pielke 2001, 

Matyas and Carleton 2010, Degu et al. 2011) have suggested that spatial heterogeneities in 

vegetation cover, water body, and other land use/land cover (LULC) alter the development of 

convective rainfall. The most dramatic anthropogenic LULC modification of natural 

environment is arguably urban development. As a consequence, in the second part, we test the 

hypothesis that urbans alter the occurrence of storms using the event database. 

 

1.3 Organization of the dissertation 
 

Chapter 2 and 3 are formatted as journal articles. Chapter 2 introduces an event tracking 

algorithm, sensitivity analysis of the tracking algorithm, directed spatiotemporal graph 

representation, graph-based algorithms for analyzing events, and a case study on convective 

storms. Chapter 3 covers the spatial and temporal characteristics of warm-season thunderstorm 

life cycles in the central United States from 2010 to 2014. It also examines the relationships 

between thunderstorm occurrences and land cover types. The proposed methods on assessing 
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similarities of convective storm events and preliminary experiments are presented in Chapter 4. 

A summary on this dissertation and future research are introduced in Chapter 5. 
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2 Storm event representation and analysis based on a 

directed spatiotemporal graph model 
 

2.1 Introduction 
 

 

Environmental monitoring systems collect vast amounts of data and the time series of spatial 

snapshot data may be used to observe and investigate a diverse array of natural phenomena. The 

common characteristic of snapshot data is the constant change of variables in space and time that 

implies a dynamic system behavior. While organizing data as snapshots is conceptually simple 

and straightforward, it does not directly capture or represent the dynamic characteristics of 

geographic phenomena. Many scholars argue that the next real breakthrough in the modeling of 

geographic phenomena will come when we move from an object-oriented view to an event-

oriented view (Peuquet and Duan 1995, Yuan 2001, Worboys 2005).  

Many definitions on events exist in the literature. The general consensus is that events are 

associated with localized processes in space and time that change the attribute or state of an 

object or a field. Zacks and Taversky (2001) investigated the nature of events in human 

perception and conception and defined events as a segment of time at a given location that was 

conceived by an observer with a beginning and an end. In this context, when only the change of 

position is relevant, those objects are commonly referred to as moving objects. The trajectories 

of those objects can be visualized by their space-time paths (Shaw et al. 2008) and events can be 

identified by location-change (e.g., go-to-work and have-lunch). For this type of events, the 

existence and endurance of object identities are the key premise for event identification and 
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analysis. Similar to moving objects, naturally occurring phenomena such as convective storms 

are also dynamic entities with identifiable spatial and temporal variations within them. In 

contrast to moving objects that have pre-defined identities, the changing and clustering of 

attributes in space and time actually define the identities. At a more fundamental level, this type 

of event originates from the plenum view in the philosophy of science and particularly in modern 

physics where ‘the spatiotemporal clusters of known attributes are the things’ (Couclelis 1992). 

An event is defined here as an individual occurrence or episode that has a definite start and end. 

There is a pressing need to explore and understand how events evolve with 2- or 3D time 

series of snapshots in many different fields. Nevertheless, geographers are challenged to 

effectively identify and depict events due to the large volume of data, the complexity of 

identifying events, and the limitations of conventional GIS data models. Data organization and 

analysis tools that are available in current GIS are largely based on the map metaphor and 

provide limited support for querying and exploring events. As a consequence, intensive human 

intervention is typically required when searching spatiotemporal datasets for specific events or 

processes. For many types of spatiotemporal data, the volume produced will quickly exceed the 

ability for analysts to manually explore all of the available data. Thus, there is a great need to 

develop automated processing methods and representation models to explore spatiotemporal data 

efficiently. As McIntosh and Yuan (2005) pointed out, the power and usefulness of GIS 

technology could be significantly enhanced by representing geographic events in GIS data 

models and providing functions to explore the characteristics of geographic events. 

Langran and Chrisman (1988) are among the first who proposed the modeling concepts for 

temporal GIS. Galton (1995, 2000) used an instant-based model of time to describe the 

movement of events. Yuan and Hornsby (2007) summarized six types of spatiotemporal models 
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(time-stamped, change-based, event-based, movement-based, activity-based, and process-based) 

and emphasized that the temporal dimension should first be integrated into these models in order 

to capture the dynamic features of geographic phenomena. There have been many attempts to 

extend spatiotemporal GIS data models based on the event perspective. Peuquet and Duan (1995) 

proposed an event-based spatiotemporal data model (ESTDM) where an event was a change in 

state. The sequence of events through time, which represents the spatiotemporal manifestation of 

some processes, is noted via a time-line called an ‘event list’. However, this model cannot 

directly reveal the relations between geographic entities such as a split, merger, combinatorial 

situation, or the filiation relations of geographic entities that belong to the same family (Thibaud 

et al. 2013). Claramunt and Thériault (1995) stated that events connect the geographic entities 

distributed across land to form independent networks. They proposed a theoretical structure that 

distinguishing between spatial, temporal, and thematic domains. However, the theoretical model 

does not directly describe the whole lifecycle of geographic events, and it mainly focuses on the 

changes between different time steps. Yuan (2001) made one of the first attempts at extracting 

states, processes, and events out of time series snapshots of precipitation data and stated that an 

event was a spatiotemporal aggregate of a process and that a process was a sequential change of 

state over space and time. McIntosh and Yuan (2005) followed Yuan’s (2001) approach to 

organize snapshots of distributed geographic phenomena into zones, sequences, processes, and 

events using rainfall as an example. Although the approach was innovative, more efficient 

computational representations are needed to advance the extraction, exploration, and analysis of 

the identified events. Event representation is important not only for understanding the 

composition of events, but also for storing and analyzing the events. 
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Recognizing the need for an automated methodology to extract and represent dynamic 

geographic phenomena from large spatiotemporal datasets, the goal of this work is to develop 

event-based computational approaches to facilitate the identification, representation, and analysis 

of geographic events in space and time. The underlying idea is that an event can be 

systematically delineated with an origin, a development stage, a movement stage, and a potential 

cessation or dissolution phase. A directed spatiotemporal graph model is proposed to represent 

the dynamic characteristics of events, and graph algorithms are explored to generalize and 

analyze the events. The directed spatiotemporal graph model is not entirely new and it has been 

used to study geographic dynamics (Guo et al. 2010, Del Mondo et al. 2010, Stell et al. 2011, 

Thibaud et al. 2013). Del Mondo et al. (2010) used the spatiotemporal graph model to represent 

the spatial, spatiotemporal and filiation relations, and Thibaud et al. (2013) applied the model for 

marine dune dynamics analysis and representation. However, previous studies mainly focused on 

the visualization of dynamic geographic phenomena using the graph model. There is still a gap in 

applying graph algorithms to analyze the dynamics of geographic phenomena.  

The method developed here will be applied to storm events inferred from weather radar 

reflectivity images (1 km spatial resolution, and 5-minute temporal resolution). Precipitation 

occurs over a large range of spatial and temporal scales, from a convective air mass thunderstorm 

that persists for one hour to frontal precipitation stretching across many states that can persist for 

days. Atmospheric conditions ultimately control the precipitation. While it is possible to use this 

method for any type of precipitation, our work will apply the method to a multiday convective 

storm outbreak. There are several reasons for this choice. Many discrete storms (events) occur 

during a single severe weather outbreak. Convective storms undergo many changes over their 

lifetime including splits and mergers. A theoretical framework exists for how these storms 
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behave under given atmospheric conditions. Finally, severe convective storm events are a public 

safety concern since they generate heavy rain, hail, and lightning strikes, which can potentially 

cause damage to lives and property (Han et al. 2008). Being able to objectively extract relevant 

information from vast amounts of radar data during severe storm outbreaks is an important step 

forward in constructing a better climatology of convective storms by better quantifying their 

lifecycles and movement characteristics (i.e., initiation, development, splitting, merging, and 

dissipation).  

This study intends to illustrate how the graph model can be used to represent and analyze 

dynamic geographic phenomena since the methods and data model can be extended to other 

dynamic environmental events. Approaches for automatically identifying and tracking 

convective storm events are described in Section 2.2. Sensitivity analysis of the tracking 

algorithm to the reflectivity, area, and overlap threshold is discussed in Section 2.3. The directed 

spatiotemporal graph model for representing, storing, and analyzing storm event lifecycles is 

presented in Sections 2.4 and 2.5. A case study illustrates the capability of the proposed methods 

in Section 2.6. A summary of the research and possible future work is provided in Section 2.7. 

 

2.2 Tracking storm events 
 

2.2.1 Detection of storm objects 
 

Geographic phenomena in space and time are usually identified as a field, an object, or a field-

object (Goodchild et al. 2007). Different criteria such as scale, boundary, attributes, and 

processes (Bian 2007) were used to extract objects of interest from different data sources. Many 

distributed dynamic geographic phenomena like rainfall have properties that vary across space 

and time. The existence and delineation of these objects depend on the thresholds used to define 
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them (McIntosh and Yuan 2005). For a storm object that is remotely sensed by a precipitation 

radar, the object is a contiguous region of high radar reflectivity separated from other areas of 

high reflectivity (Lakshmanan et al. 2009). 

The first step is the identification of storm objects on each radar image. A widely used 

approach is to extract a set of connected pixels that is above an intensity threshold (Dixon and 

Wiener 1993, Feidas and Cartalis 2001, McIntosh and Yuan 2005, Tucker and Li 2009). The 

connected pixels are delineated through an approach known as component labeling in digital 

image processing (Haralick and Shapiro 1992) and region group in raster GIS software packages. 

Using a single, fixed intensity threshold often works well for intense storm objects, but for 

initiating storm objects there may only be several pixels over the threshold (Lakshmanan et al. 

2009). To help mitigate this problem, different thresholds can be applied to distinguish different 

types of storm objects. For example, Johnson et al. (1998) extracted storm objects using seven 

thresholds from 30 dBZ to 60 dBZ. The lowest 30 dBZ was used to identify storm objects and 

then the threshold was increased to extract more intense storm objects. Because of seasonal, 

regional, and climatological variability, a more general and advanced algorithm, the watershed 

transform algorithm, was also used in many studies (Lakshmanan et al. 2009, Zahraei et al. 

2012). The lack of predefined thresholds is the biggest advantage of the watershed transform 

method because it tests all possible thresholds (Lakshmanan et al. 2009). 

Storm object identification is simplified in this study by choosing the single threshold 

technique so that the focus is on the representation and analysis of the dynamic geographic 

phenomena. A storm object is defined as a contiguous region where the reflectivity and area are 

both above certain thresholds. A component-labeling algorithm with 4-connected radar 

reflectivity pixels was applied to extract storm objects. Since we are not interested in weak 
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events and focus on convective storm events, the reflectivity values should be between 30 and 40 

dBZ (Dixon and Wiener 1993), and the reflectivity threshold was set to 35 dBZ in our study. The 

area threshold is 20 km
2
 to remove noise and ground clutter and is similar to other studies (Dixon 

and Wiener 1993, Lakshmanan et al. 2009). We, however, investigate the sensitivity of our 

tracking algorithm to those two thresholds, where reflectivity was set to 30, 35, and 40 dBZ, and 

area was set to 20, 25, and 30 km
2
. The results are discussed in Section 2.3. 

 

2.2.2  Tracking of storm events 
 

A critical component of a storm-tracking algorithm is to link the storm objects in one snapshot to 

the storm objects in the previous snapshot (Lakshmanan and Smith 2010). This linkage builds 

storm objects’ correspondence/matching over time into an event. A large body of literature exists 

on tracking storms using satellite or radar data. A prominent storm matching algorithm used 

throughout the world is the Thunderstorm Identification, Tracking, Analysis, and Nowcasting 

(TITAN) (Dixon and Wiener 1993). In TITAN, spatial overlap and combinatorial optimization 

matching are combined. A storm object at ti gets the same trajectory of the storm object at ti - 1 

that has significant spatial overlap. If there is no significant overlap of the storm objects at 

successive snapshots, the Hungarian algorithm would be performed, which is an optimization 

algorithm that considers similar characteristics (size, shape, etc.) and moving distance among the 

matching storm objects. Johnson et al. (1998) employed a different method that calculated the 

centroid distance of storm objects within a specified search radius to determine if the storm 

objects belong to the same trajectory. 

These two major tracking methods are both centroid-based methods that first extract the 

separate storm objects from individual radar or satellite image and then track the storm objects 
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over consecutive images. These methods track individual storm objects efficiently and calculate 

the properties of storm objects at each temporal instant (Johnson et al. 1998). Another type of 

tracking method is the cross-correlation algorithm, which calculates the motion vector field and 

forecasts the movement of storm objects (Li et al. 1995). There are also studies using the optical 

flow technique to infer the velocity pattern of moving objects (Horn and Schunck 1981). In 

meteorological study, for example, Bowler et al. (2004, 2006) used the optical flow constraint for 

an improved radar echo tracking algorithm. The strength of the cross-correlation and optical flow 

approach is determining the direction and velocity of storm objects. However, they cannot 

identify and track single storm objects (Johnson et al. 1998). 

We also developed a refined centroid-based algorithm that simultaneously considers the 

topology/spatial overlap, centroid distance of storm objects, and movement direction. Any 

tracking method that uses spatial overlap is ultimately dependent on the temporal sampling 

frequency of the dataset. There must be a high enough sampling rate to detect spatial overlap 

(Turdukulov et al. 2007). The radar data used in this research samples every 5 minutes. Typical 

convective storm motion is around 16 m/s / 58 km/h (Mohee and Miller 2010), so an average 

storm moves ~4.5 km between samples. Given the area threshold of 20 km
2
, the temporal 

resolution is more than sufficient. 

To outline the method, three consecutive snapshots at different time (t1, t2, and t3) are used as 

an example (Figure 2.1). There are a total of five storm objects (a1, b1, c1, d1, e1) at t1. The 

locations of the storm objects at t2 are predicted from t1 and recorded as t2’. Because the storm 

objects at t1 were at the beginning of their trajectories, their velocities are initialized as zero. As a 

consequence, the storm objects at t2’ keep the same locations as they are at t1. Based on the storm 
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movement speed and temporal resolution of the radar data, a centroid distance threshold of 10 

km is used to search possible candidates that match objects at t2  (a2, b2, c2, d2, e2) with the 

 

Figure 2.1 Storm event tracking examples during three time steps. 

 

objects at t1. For example, objects a2, b2, and c2 within the red dashed circle at t2 are matching 

candidates for a1 at t1. If the centroid of a storm object at t2 was more than 10 km from the 

centroid of its nearest storm object at t2, then this storm object is not matched with any storm 

objects at t2. This indicates that the storm has dissipated and the event has ended, e.g., d1 and e1. 

Among all the matching candidates that satisfy the centroid distance threshold, a spatial overlap 
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function F (Equation 1) is then calculated to determine whether the candidates belong to the 

same trajectory of the storm objects at t1. In this equation, 𝐴(𝑂) is the overlap area between two 

storm objects at the two time steps, and 𝐴(𝑆1) and 𝐴(𝑆2) are the area of the storm objects at the 

first and second time step, respectively. Based on the equation, an exact spatial overlap between 

two storm objects results in a value of 2 for F. No spatial overlap results in a value of 0 for F. If 

the value of F is above a certain threshold, the two storm objects are considered in the same 

trajectory, and therefore belong to the same event. In this research, the threshold of F is set to 0.6 

based on the TITAN algorithm (Dixon and Wiener 1993). The sensitivity of the tracking 

algorithm to F is discussed in Section 2.3. 

 

F =  
𝐴(𝑂)

𝐴(𝑆1)
+  

𝐴(𝑂)

𝐴(𝑆2)
  (1) 

 

 

After calculating the above spatial overlap function, a situation that two or more objects 

satisfy the threshold may arise. In our example, a1 and b1 both satisfy the F threshold with a2, and 

b1 could also match with b2. The four storm objects belong to the same trajectory/event. Storm 

object c2 could match with c1. Storm objects d2 and e2 do not match with any objects at t1, so they 

are the initial storm objects of new events which start at t2. Storm objects at t2 are then matched 

with the storm objects at t3 using the same method. Since the initial storm velocity at t2 is no 

longer zero, the predicted velocity of storm objects at t2 is calculated as follows: 

 

𝐕(𝑆) =  
1

2 ∑ 𝐴(𝑆𝑖)
𝑛
𝑖=1

 [
1

∆𝑡
∑(𝐴(𝑆𝑖) × 𝑺𝒊𝑺) +

𝑛

𝑖=1

∑(𝐴(𝑆𝑖) × 𝑽(𝑆𝑖))

𝑛

𝑖=1

]  (2) 

 

where 𝐕(𝑆) is the velocity of a storm object S at t2. 𝑆𝑖 represents the storm objects at t1 that have 

the same trajectory as S. For example, if S is a2 at t2, 𝑆𝑖 represents a1 and b1 at t1. 𝐴(𝑆𝑖) is the area 
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of the corresponding storm object at t1, 𝑺𝒊𝑺 is the movement vector between the centroids of 

mass of 𝑆𝑖 and S, and 𝑽(𝑆𝑖) is the velocity of 𝑆𝑖. If S is a newly generated storm object at t2, its 

velocity is the same as its nearest storm object. However, if the centroid distance of the two 

storm objects is more than 10 km, then 𝐕(𝑆) is considered to be zero (Morel and Senesi 2002). 

The area of storm objects at t1 is used as a weighting factor to better predict the velocity of storm 

objects at t2. The centroid distance and spatial overlap thresholds are also performed to match 

storm objects at t2 and t3. 

When the size of a storm rapidly expands or contracts, its centroid could change significantly 

between consecutive snapshots. This may produce unrealistic storm movement. To include only 

realistic storm movement, the change of movement direction is also checked when deciding 

whether two storm objects belong to the same event. The angle 𝜃 between the predicted 

movement direction of a storm object at t2 and the direction from its centroid to the centroid of a 

matching storm object at t3 is calculated. Only the matching storm objects with an angle less than 

90 degrees are considered in the same event.  

With our extraction algorithm, there are six filiation relationships: generation, continuity, 

split, merger, combinatorial, and dissipation (Zahraei et al. 2012) between storm objects in an 

event. In Figure 2.1, five storm events are extracted (shown with different colors in Figure 2.1) 

from three consecutive snapshots. Storm object d2 is newly generated because it is not associated 

with any storm objects in the previous time step. Storm object c2 is a continuation of storm object 

c1 from t1 to t2. Split means a storm object at time ti -1 is associated with two or more storm 

objects at time ti (Morel and Senesi 2002). In Figure 2.1, storm object a2 splits into a3 and b3. 

When a merger occurs, two or more storm objects at time ti -1 can be linked to a storm object at 

time ti. For example, d2 and e2 merged into d3 from t2 to t3. Split and merger occur 
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simultaneously in the combinatorial situation. For example, one part splitting from b1 merges 

with a1 to form a2, and the other part that splits from b1 contributes to the initiation of b2. 

Dissipation occurs when a storm object is not matched with any objects at the next snapshot such 

as storm object b2 at t2 that disappears at t3. 

Previous studies (Dixon and Wiener 1993, Morel and Senesi 2002, Han et al. 2009, Zahraei et 

al. 2012) dealt with merging and splitting cases by extending a maximum of one trajectory and 

terminating the remainder for a merger case or by extending a maximum of one trajectory and 

generating new trajectories to the remainder for a split case. This method is comparatively easy, 

but it cannot capture the complete lifecycle and the interactions among storm objects. In contrast, 

our method records the filiation relationships among all the storm objects in the time series 

snapshots which satisfy the matching criteria (overlapping area, centroid distance, and movement 

direction). 

 

2.3 Sensitivity analysis 
 

One of the key aspects of any method that uses thresholds is how sensitive the results are to 

changes in the threshold value. There are three values that must be set in this method: the 

minimum reflectivity, area, and overlap. The choice of any particular threshold is dictated by the 

application. For instance, the focus of this application is identifying and tracking convective 

storm events that are at least of moderate strength, so the minimum reflectivity is set to 35 dBZ, 

the minimum area is set to 20 km
2
, and the overlap is 0.6. It is important to understand how 

sensitive the results are to the choice of threshold, especially if the ultimate goal of this method is 

to construct a climatology. Sensitivity is obtained by varying the reflectivity to 30, 35, and 40 

dBZ, the area to 20, 25, and 30 km
2
, and the overlap was incremented by 0.2 from 0 to 2. 
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Varying all of these leads to 90 combinations. To save computational time, the test area is chosen 

32.5°N-40.5°N and 93.5°W-103.5°W (the blue dashed boundary in Figure 2.6), and to the storm 

outbreak occurred 23-29 April 2011. 

If the thresholds are more restrictive (e.g., higher minimum reflectivity threshold or minimum 

area), then there will of course be a fewer number of total storms. A more useful metric for 

sensitivity would be changes to physical parameters such as movement speed. There is some 

information on climate statistics of storm motion, but these studies tend to be spatially and 

temporally very limited. For example, a simple climatology of storms that does not include any 

information on storm splitting or merging was created for a five year period over just North 

Dakota (Mohee and Miller, 2010). They found an average movement speed of 16.4 m/s (59 

km/h). Even though this is not the same study area, it at least provides some benchmark that can 

be used to compare results from the more sophisticated method developed here. 

Box plots in Figure 2.2 demonstrate the sensitivity of movement speed to changes in the three 

thresholds. In Figure 2.2a, there are nine combinations of reflectivity and area threshold for each 

overlap threshold. It is easily to see that the movement speed is very sensitive to the overlap 

threshold, and the overall movement speed decreases with the increase of overlap threshold. The 

explanation is that the lower the storm events’ speed, the more overlap between two consecutive 

images. Using 59 km/h as an expected value, the movement speed is likely greatly 

underestimated when overlap threshold is greater than 1.4. Using thresholds of 0.4, 0.6, and 0.8 

are much closer to the expected value and are a more appropriate choice. Sensitivity of 

movement to the reflectivity and area thresholds is much less, which is expected since movement 

of any developing storm, regardless of size or intensity, depends primarily on the steering wind. 

Figure 2.2b suggests that an increase of reflectivity is weakly correlated to an increase in the 
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movement speed. This may actually not be an artifact of the methodology, but a real 

phenomenon. Particularly intense storms develop their own internal structure (pressure 

perturbations) that accelerates the movement of the storm complex. Of course, these findings 

will have to be examined in more rigor and detail and is the next step after developing this 

method. 

Finally, Figure 2.2c suggests that the movement speed is not sensitive to the area threshold. 

The above analysis reveals that the storm tracks are relatively insensitive to the reflectivity and 

area thresholds in the storm identification step, but the storm tracks are the most sensitive to the 

overlap threshold. We stress that proper choice of thresholds depends on the research question, 

and this method allows for easy sensitivity analysis by simply changing thresholds in the storm 

identification step. For our analysis, we choose 35 dBZ, 20 km
2
, and 0.6 overlap. We are not 

recommending that these are the correct or only thresholds for convective storms research. 

Researchers could adjust these thresholds based on the sensitivity analysis and their own needs. 
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Figure 2.2 (a) Overlap vs Movement speed. (b) Reflectivity vs Movement speed. (c) Area vs 

Movement speed. 

 

2.4 A directed spatiotemporal graph model 
 

It is natural to use a directed spatiotemporal graph model (Figure 2.3a) to depict the evolution, 

change, and interaction of storm events. The nodes in the graph, V (G), represent the spatially 

contiguous storm objects at each time step. The directed edges in the graph, E (G), denote the 

spatial and temporal linkages (i.e., filiation relations) among storm objects at two adjacent 

snapshots where direction indicates the time sequence. As a result, this graph model contains 

spatial, temporal, and filiation relations. The vector polygonal footprint represents the geometric 

shape of a single storm object. The approximate ellipse in Figure 2.3a is used as a simplified 

representation of the storm object geometry, which works fairly well for distinct storm objects. 

Figure 2.3a is the three-dimension view (x, y, t) of the directed spatiotemporal graph derived 

from Figure 2.1. To facilitate the analysis of the storm events, the spatiotemporal graph is also 

projected in two dimensions (x, y) in Figure 2.3b. The nodes are further simplified using the 

reflectivity-weighted centroid of a storm object to capture the core of the most intense 

precipitation. This graph model describes the evolution of a storm event at three consecutive 
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snapshots over the entire lifespan of the storm and includes the generation, continuity, split, 

merger, combinatorial, and dissipation filiation relationships.  

 

Figure 2.3 (a) The storm events and their directed spatiotemporal graph models identified from 

Figure 2.1. (b) The projection of the first storm graph on the x-y plane. 

 

A number of node-level, edge-level, and event-level spatial and non-spatial attributes are 

stored in a graph database to represent the storm events (Figure 2.4). A node object stores the 

information of a single storm object, and an edge object describes the filiation relationships 

among storm objects. An event graph object describes different features of a storm event, such as 

the number of nodes and edges, duration, movement speed and direction, and other attributes. All 

the nodes and edges within the same storm event are linked to the event graph with a many-to-

one relationship. As a consequence, the GraphID is used as a foreign key in the node and edge 

object.  
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Figure 2.4 Components and their primary properties of the directed graph model for storm events. 

 

2.5 Graph-based storm event analysis 
 

 

The full advantage of our graph model is realized when the graph properties of storm events are 

investigated. The remainder of this section will concentrate on how to use graph 

theory/algorithms to generalize and assess storm events’ interactions. 

2.5.1 Generalization of Storm Events 
 

Complex or detailed geographic phenomena often require simplification or generalization to 

understand (Guo et al. 2010). Any generalization must capture the key properties of the original 

geographic phenomena. The structures and relationships of storm objects on consecutive images 

can be quite complicated. As a consequence, the graph representation could be too detailed and 

complex, especially when the storm events have many small storm objects. The distribution of 

reflectivity/precipitation is one of the most important characteristics of storm events. A 
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generalization of an event, i.e., the skeleton of the event, can be achieved by using the maximum 

reflectivity path between the starting and ending storm objects of the event (Figure 2.5). The 

maximum reflectivity path can be found by first calculating the reverse reflectivity of the 𝑖𝑡ℎ 

node as: 

𝑊𝑖 = max(𝑅) − 𝑅𝑖 + min (𝑅)                               (3) 

 

where max(R) and min(R) are the maximum and minimum reflectivity of all the storm nodes in a 

graph, and 𝑅𝑖 is the reflectivity of the 𝑖𝑡ℎ node. The reverse reflectivity of the 𝑖𝑡ℎ node is used as 

the weight of all the in-edges of the  𝑖𝑡ℎ node in the directed graph. The lesser 𝑊𝑖 as weight for a 

node, the higher reflectivity. The maximum reflectivity path can then be obtained using the 

classic Dijkstra’s shortest path algorithm on the graph. Specifically, the maximum reflectivity 

paths between each starting and ending storm nodes are first calculated and the maximum 

reflectivity path is then identified for the storm event. The generalization method can be applied 

recursively to any branches that are connected to the generalized event path. 

2.5.2 Interaction among storm objects 
 

It is common for storm objects to interact over consecutive images. In a storm event, two 

independent storm objects may merge into one object or one object may split into several smaller 

objects. These interactions can be depicted as the in-degree/out-degree of a node in a directed 

graph. The in-degree of a node is the number of edges directed into that node. The out-degree of 

a node is the number of edges directed out of that node. The number of in-degree/out-degree 

could reveal the interactions or filiation relationships among storm objects (Table 2.1). In our 

case study, we will further examine the split and merger that occur on the left and right side 

along the main movement direction of an event (Figure 2.5).  
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Figure 2.5 A storm event graph showing the maximum accumulative reflectivity path (red line), 

left split (purple line), right split (black line), left merger (blue line) and right merger (green line) 

along its movement direction. 

 

Table 2.1 The relationship between node in-degree/out-degree number and storm object filiations. 

 

2.6 A Case Study 
 

A convective storm outbreak that occurred 23-29 April 2011 is used to illustrate both how 

the directed spatiotemporal graph model is constructed and also what kind of information can be 

obtained about the spatiotemporal characteristics of storm events (Figure 2.6). The storm 

outbreak contained many discrete cells and there were 355 tornados confirmed by the National 

Number of in-

degree 

Filiation Relation Number of out-

degree 

Filiation Relation 

0 Start 0 End 

1 Continuation 1 Continuation 

>= 2 Merge >= 2 Split 
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Weather Service. This was a high impact event that caused substantial property damage and 

fatalities. 

 

Figure 2.6 Case study area which covers 15 states (red) and an example radar image showing the 

reflectivity values at 8:00, 24 April 2011 UTC. 

 

The data used in this case study are the final reflectivity product (N0R) provided by Iowa 

Environmental Mesonet (IEM). The United States National Weather Service operates the 

NEXRAD (Next Generation Radar) program that monitors precipitation over almost all of the 

country. This is a network of S-band (10 cm) Weather Surveillance 1988 Doppler radars (WSR-

88D, Choi et al. 2009), which has been recently upgraded to dual-polarization radar. The IEM 

receives, processes, and archives the NEXRAD level III products with a 5-minute temporal 

resolution (http://mesonet.agron.iastate.edu/docs/nexrad_composites/). The radar reflectivity 

http://mesonet.agron.iastate.edu/docs/nexrad_composites/
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images are stored in the PNG format with a WGS84 spatial reference system (EPSG: 4326) that 

has a spatial resolution of equivalent to 1 km. 

Convection can be classified into several archetypes including squall lines, multicellular, 

bow echoes, derechos, super cells, disorganized, and other subcategories (Smith et al. 2012). The 

specific dynamics of an individual storm depends on many factors including wind shear, 

magnitude of instability, interaction with neighboring cells, and so on. One of the most studied 

type of storm is the supercell. Theory, numerical simulations, and observed case studies have 

shown that if a supercell splits when there is a veering wind profile, then the right-moving cell is 

likely to strengthen while the left-moving cell is likely to weaken. Conversely, if there is a 

backing wind profile than the left-moving cell is likely to strengthen while the right-moving cell 

is likely to weaken. Veering wind profiles are far more common than backing wind profiles so 

that any climatology of supercells that split should reveal a preference for right-moving cells 

while the left-movers would dissipate. The distinct advantage of this method over past 

techniques is the inclusion of the splitting and merger information that can be used to create a 

preliminary climatology of the behavior of convective precipitation. 

While we recognize that convection in this case study is not all strictly one mode (e.g., 

supercells), we examine all convection as a single group when identifying the characteristics of 

this particular outbreak. Separating convective mode is not a trivial task and often requires 

subjective methods (e.g., Smith et al. 2012). The primary goal of this work is to begin to 

objectively construct and apply a directed spatiotemporal graph model to identify, store, 

represent, link, and track storm objects. This initial step must also efficiently deal with 

spatiotemporal data management because of the high volume of radar data. Work is already 

underway to refine storm classification and interaction, but that is beyond the scope of this paper. 
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The method developed here is meant to be the foundation for continued study of these complex 

systems. 

 

2.6.1 Implementation 
 

A prototype system was developed using MATLAB to process the reflectivity data, delineate 

storm objects, track storm events, visualize, verify, and analyze the events. There are four 

primary components in the work flow (Figure 2.7): the spatiotemporal database generation from 

raw NEXRAD snapshots, storm object identification, storm event tracking and event graph 

generation, and storm event visualization and analyses based on graph theory/algorithms. 

 

Figure 2.7 The general workflow of storm event identification and analysis developed using 

MATLAB. 

 

Raw radar snapshots of PNG files are converted into the MATLAB file format (.mat files) to 

build a spatiotemporal database that is used as the input for the next step. After applying the 

threshold to a radar image, a component labeling algorithm delineates spatially contiguous storm 

objects and their properties are calculated and saved with the objects (component 2 in Figure 2.7). 
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The tracking process outlined in section 2.2 is then applied to track the storm events based on the 

storm objects delineated on two consecutive images. During the tracking process, the lineage or 

filiation relations are recorded to build event graphs. When all the nodes in an event graph at ti 

cannot find any matching storm objects at ti + 1, the complete event graph (i.e., the whole 

lifecycle) of the storm event has been identified. The event graph, including its nodes, edges, and 

attributes at node/edge/graph levels are saved and the event is deleted from memory. The above 

process is applied sequentially to all the images to identify the events in the database (component 

3 in Figure 2.7). The last component takes the event graphs as input and provides functions for 

event visualization, animation, generalization, and interaction assessment. The visualization and 

animation interface, shown in Figure 2.8, could be used to browse event graph attributes, the 

maximum reflectivity path, and the visualization and animation of event graphs. In Figure 2.8, a 

storm event is shown with the red skeleton and one right split with black line. 

2.6.2 Characteristics of storm events 
 

The program was run on a UNIX server machine with 2 six-core AMD Opteron 2435 processors 

at 2.6 GHz with 64 GB of RAM, and the total running time is about ten hours. In the study area 

there were a total of 7,297 storm events that have a duration of at least 15 minutes, meaning they 

span at least three consecutive radar images. Figure 2.9 shows the distribution and tracks of the 

storm events with their maximum reflectivity paths. The storm events are mainly concentrated in 

a broad swath from Texas to Ohio. Figure 2.10a shows that the bulk of storm paths (86.9%) are 

to the northeast. This movement is consistent with the mid-level steering wind during the event. 

The histogram of the storm event movement speed (Figure 2.10b) depicts a positively skewed 

Gaussian distribution. The average and median movement speeds of the storm events are 61 

km/h and 63 km/h, respectively. This is around the same value found in the climatology analysis 
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done by Mohee and Miller (2010). The histogram of the storm event duration (Figure 2.10c) 

depicts an exponential decay distribution similar to Novo et al. (2013). The mean duration of the 

storm events is 36.5 minutes and 1,141 out of 7,297 storm events lasted more than one hour 

(15.6%). Most of storm events (44.4%) had a duration from 15 to 20 minutes. 

 

 

Figure 2.8 The user interface for event visualization and animation. 
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Figure 2.9 Map of generalized tracks of the storm events identified from the radar data between 

04/23/2011 and 04/29/2011 in the study area. 

 

Among the 7,297 storm events, just over a quarter of storm events (1,928) have either splits or 

mergers (meansplit = 0.17, meanmerger = 0.38). There are 863 storm events that split and most of 

them (796) have one or two splits during their lifespans. There are 1,529 storm events that 

merged and most of them (1,274) have only one or two mergers during their lifespans. 

One advantage of our method is the inclusion of additional details such as storm object split 

and merger. In this case study, the ambient vertical wind profile was strongly veering. Thus, a 

reasonable hypothesis would be that given all of the convection occurring, there should be a 
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Figure 2.10 Characteristics of the storm events: (a) rose diagram of event velocity; (b) histogram 

of event speed; (c) histogram of event duration. 
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preference for right-splitting storms to survive while left-splitting storms dissipate. Again, we do 

not discriminate between storm modes, but the group as a whole should still show this. 

 The splitting and merging within the storm objects are separated into whether they are on the 

left or right side of the primary storm track as defined by the maximum radar reflectivity path. 

Examples of these splits and mergers are given in Figure 2.5. For these events, the locations of 

left and right split/merger are shown in Figure 2.11 and Figure 2.12. Table 2.2 gives the 

distribution of the left and right splits and mergers of the storm events. Among the storm events 

that have splits or mergers, these splits and mergers only occur once or twice during their 

lifespans. There are only 29 (12) events that have more than two left (right) splits. There are 

typically more mergers that occur during a storm event than storm splitting. There are 104 (87) 

storm events that have three or more left (right) mergers. It is rare for a storm event to have more 

than six splits or mergers. 

The difference between the number of left and right splits and mergers are shown in Figure 

2.11and Figure 2.12, respectively. The left split and merger appear more than the right split and 

merger. To test whether there is a preference for the side of splitting or merging, a t-test is 

performed on the mean of the difference between the number of left and right splitting and 

merging. The null hypothesis is that the mean is equal to 0, which implies that the chances of 

having a left or right split or merger is the same for the events. The results in Table 2.3 show that 

p values for both split and mergers are less than 0.05 so that the null hypothesis is rejected. We 

should accept that the left split/merger appear more than right split/merger. This is consistent 

with what would be expected under conditions with a veering wind profile. Again, this should 

really be refined by storm mode, but this is a promising result that stresses the potential of using 

this objective technique to better quantify the properties of convective storms. 
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Table 2.2 The summary of split and merger appeared per storm event. LS and RS represent left 

split and right split. LM and RM represent left merger and right merger. 

Total 

number 

of LS per 

storm 

event 

Number 

of storm 

events 

Total 

number 

of RS per 

storm 

event 

Number 

of storm 

events 

Total 

number 

of LM 

per 

storm 

event 

Number 

of storm 

events 

Total 

number 

of RM 

per 

storm 

event 

Number 

of 

storm 

events 

1 427 1 367 1 740 1 600 

2 76 2 55 2 191 2 128 

3 14 3 7 3 60 3 40 

4 7 4 3 4 22 4 20 

5 6 5 1 5 12 5 13 

6 1 6 1 6 6 6 8 

8 1   7 2 7 2 

    8 2 8 1 

      9 1 

      10 1 

      13 1 

 

 

 

 

 

Table 2.3 The t-test result for mean of difference between left split/merger and right split/merger. 

Level of significance p-value for split p-value for merger 

0.05 3.768 * 10
-6

 1.4726 * 10
-7
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Figure 2.11 (a) The sides (left or right relative to storm movement direction) of the splits 

occurred in storm events, and the difference between the number of left splits and right splits. (b) 

A detailed view in the dashed box in (a). 
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Figure 2.12 (a) The sides (left or right relative to storm event movement directions) of the 

mergers occurred in storm events, and the difference between the number of left mergers and 

right mergers. (b) A detailed view in the dashed box in (a). 
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2.7 Conclusions 
 

This work presented the event tracking method and graph model to identify, represent, and 

analyze dynamic spatiotemporal phenomena from time series of snapshot data. Storm events 

were chosen in this research in part because of the multiple interactions among storm objects 

during an event’s lifespan. A directed spatiotemporal graph model was used to represent the 

evolution and the filiation relationships among storm objects within an event. In the model, 

storm objects identified from radar reflectivity images were denoted as graph nodes. The 

interactions among storm objects were tracked using improved algorithms, and these 

relationships were denoted as graph edges. General event characteristics and side preference of 

split and merger in the storm events were analyzed based on graph algorithms.    

The 23-29 April 2011 storm event outbreak spanning in a wide swath from Texas to Ohio was 

utilized to demonstrate the development and application of our event tracking method and the 

directed graph model. The tracking algorithm identified all the storm objects belonging to the 

same storm event. Various attributes at the node, edge, and event/graph level were calculated and 

stored. Storm events were generalized using the shortest-path graph algorithm where the cost at a 

graph node is radar reflectivity. Several basic properties of the convection storms that occurred 

during this outbreak were obtained and were characteristically consistent with previous studies. 

As a check on the physical consistency of this representation of the storms, the side of the split 

and merger was also examined. Given that the vertical wind shear was veering, it was expected 

that if a storm split, then the cell that moves to the right would be stronger and last longer than 

the cell that moves to the left. Even though the data was not separated into storm mode, there 

was a significant preference for the left splitting storms to be weaker and dissipate while the right 

splitting storms were stronger and lasted longer. 
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Our research demonstrated that the event approach provided an extension to GIS to represent 

and analyze dynamic behaviors existing in time series of spatial snapshot data. As the amount of  

spatiotemporal data have been constantly collected or generated with better spatial and temporal 

resolutions, science has entered into an era where discovery of new knowledge can be obtained 

through the analysis and mining of ‘big data’. The event approach represents a transformation of 

heterogeneous spatiotemporal data into events that could be compared and integrated across time 

and location to support the study of the interactions and dynamic behavior of environmental 

systems. In the future, we plan to study the spatiotemporal characteristics of storm events in the 

central U.S. using long term radar reflectivity data. We are also interested in modifying and 

using the graph edit distance, a graph matching algorithm, to assess the similarities in geometry 

and movement dynamics of storm events, which may provide useful information for storm 

forecasting. In addition, the spatiotemporal graph model will be further validated in other 

application domains, such as ocean eddies, wildfire, and urban heat islands. 
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3 Life cycle characteristics of warm-season thunderstorms 

in central United States from 2010 to 2014 
 

 

3.1 Introduction 
 

 

Meteorologists have great interests on the climatology of thunderstorms across the world because 

severe thunderstorms could cause heavy rain, large hail, lightning strikes, and strong winds, 

which can potentially create damage to lives and property (Han et al. 2008, Hocker et al. 2008a). 

Weather monitoring systems, such as the Doppler radar, collect data with increasing spatial and 

temporal resolutions and provide great opportunities for researchers to study convective weather 

events (Feidas and Cartalis 2005, Hocker and Basara 2008b). For example, a number of 

researchers have studied the life cycle characteristics of mesoscale convective systems (MCS) 

using meteorological satellite products. Machado et al. (1998) used GOES-7 ISCCP-B3 satellite 

data to track the life cycle of deep convective systems (CS) across the United States at both 

tropical and middle latitudes during 1987 - 88. They mainly used areal overlap to extract the 

evolution of CS using images of 3-h temporal resolution. Mathon and Laurent (2001) provided 

an eight-year (June - September, 1989 - 98) climatology of Sahelian MCS using the 

METEOSAT infrared images with 0.5-h temporal resolution and 5 km spatial resolution. They 

used both forward and backward areal overlapping on consecutive images to construct whole life 

cycles of MCS. Moreover, they illustrated dynamic changes and interactions among the life 

cycles including generation, development, dissipation, merger, split, and combinatorial (merger 
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and split occurring simultaneously). Morel and Senesi (2002a, 2002b) studied the climatology of 

MCS life cycles in western European using an automatic cloud-tracking algorithm considering 

three factors: temperature, area, and size of areal overlap. In the tracking algorithm, they 

estimated the velocity of cloud systems in order to detect clouds with the size of 1,000 km
2
 

efficiently. Their algorithm has some advantages over previous tracking algorithms, which only 

use areal overlapping on consecutive images and are difficult to capture small or fast moving 

clouds because of low temporal sampling frequency without velocity prediction.  

The above climatology studies are all based on meteorological satellite images where the 

systems are on the scale of more than 5,000 km
2
. To track the mesoscale (down to ~20 km

2
) life 

cycle of storm scale, the data must have a much higher spatial and temporal resolution than the 

above studies, as well as an improved tracking algorithm. As a consequence, a number of 

researchers have utilized radar-based algorithms to extract, represent, analyze, and predict the 

life cycles of storm events. 

The critical component of a storm tracking algorithm is how to associate the storm cells that 

are identified over consecutive radar images (Lakshmanan and Smith 2010). There are two major 

categories of storm tracking algorithms: centroid-based tracking algorithms (Dixon and Wiener 

1993, Johnson et al. 1998, Meyer et al. 2013, Zahraei et al. 2013, Liu et al. 2016) and cross-

correlation tracking algorithms (Tuttle and Foote 1990, Li et al. 1995). Both tracking algorithms 

have advantages and disadvantages. While centroid-based tracking algorithms delineate and 

track single storm cells and provide attributes of storm cells, cross-correlation tracking 

algorithms can provide more accurate movement speed and direction (Johnson et al. 1998, 

Wilson et al. 1998, Wilson et al. 2004).  
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Among the existing centroid-based tracking algorithms, the Thunderstorm Identification, 

Tracking, Analysis, and Nowcasting (TITAN) (Dixon and Wiener 1993) system developed at the 

National Center for Atmospheric Research (NCAR) is widely used throughout the world. The 

TITAN algorithm firstly delineated a single storm cell as a contiguous region where the 

reflectivity and volume both exceed certain thresholds. Spatial overlap and the Hungarian 

optimization algorithm were combined to determine whether the storm cells on consecutive 

images belong to the same storm. However, the previous studies only allow one trajectory when 

they deal with merger and split situations. In the TITAN algorithm (Dixon and Wiener 1993), 

when two or more storm cells merge into a single storm cell, only one trajectory is kept and the 

remainder would be ended. When a single storm cell splits into two or more small storm cells, 

only one trajectory is kept and the rest would be new storms. While the above treatment of 

merger and split is relatively easy, it does not represent the complete life cycle and interactions 

among storm cells (Liu et al. 2016) since it does not include storms that split or merge. 

A number of studies have been done on the spatiotemporal characteristics of thunderstorms 

across the central United States (Changnon 1988a, Changnon 1988b, Tucker and Li 2009). 

However, very few have focused on the whole life cycle of storm events. The analyses of spatial 

and temporal characteristics of storm events through the United States are mainly from the 

National Weather Service (NWS) storm reports contained in the storm data of National Oceanic 

and Atmospheric Administration (NOAA). However, the data are point features which do not 

fully represent storm initiation, development, termination, and geographic extent. 

Recognizing the need for an automated methodology to extract thunderstorms from large 

spatiotemporal datasets and analyzing their spatiotemporal characteristics, the goals of this work 

are to identify thunderstorm life cycles over central United States, reveal seasonal, diurnal, and 
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spatial patterns of thunderstorms, and test the association between land cover properties and 

thunderstorm features especially in urban and rural areas. Geographic Information Systems (GIS) 

has been widely applied to meteorological research (Yuan 2001, McIntosh and Yuan 2005, Liu 

et al. 2016). Because of the spatial focus of this study, GIS is used to identify, represent, query, 

and analyze thunderstorm life cycles. The first task is to develop a thunderstorm GIS database 

storing their whole life cycles where directed graph representation and algorithms are explored to 

characterize the thunderstorms. The second task is to quantify the spatiotemporal patterns of the 

thunderstorms using GIS query, spatial analyses, and spatial statistics. 

This study intends to illustrate how innovative GIS representations and analyses can be used 

to characterize the spatial and temporal patterns of thunderstorm life cycles. The three major 

datasets, methodologies, and GIS representations are described in Section 3.2. A number of 

spatial and temporal analyses on thunderstorm life cycles are presented in Section 3.3. Summary 

of the research and possible future work are provided in Section 3.4. 

 

3.2 Data and methodology 
 

3.2.1 Radar reflectivity data 
 

The United States NWS maintains the Next Generation Radar (NEXRAD) program covering 

almost the whole country to monitor precipitation and other meteorological and hydrological 

phenomena (Tucker and Li 2009). This is a network of S-band (10 cm) Weather Surveillance 

1988 Doppler radars (Choi et al. 2009), which has been recently upgraded to dual-polarization 

radar. The radar data used in this study are the final reflectivity product (N0R) from Iowa 

Environmental Mesonet (IEM). The IEM interpolates the base reflectivity to a 1 km grid every 5 

minutes, and the archived datasets could be accessed via the IEM Geographic Information 
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System (GIS) data service (http://mesonet.agron.iastate.edu/docs/nexrad_composites/) in PNG or 

GeoTIFF format. Precipitation can be estimated from radar returns based on a Z-R relationship, 

and the radar reflectivity data have been applied to a number of different applications including 

storm identification and nowcasting (Dixon and Wiener 1993, Johnson et al. 1998, Han et al. 

2008, Han et al. 2009), climatology (Chen et al. 2012, Lock and Houston 2015), and 

urbanization impacts on precipitation (Ashley et al. 2012, Perryman and Dixon 2013). 

3.2.2 Lightning data 
 

The second dataset used in this study is cloud-to-ground lightning data from the United States 

National Lightning Detection Network (NLDN, Cummins and Murphy 2009), which is produced 

by the Vaisala Corporation (http://www.vaisala.com). Cloud-to-ground lightning point data are 

used to determine whether the precipitation is associated with a thunderstorm. The precipitation 

cluster is considered a thunderstorm if at least a lightning strike occurs during its life cycle. 

The radar reflectivity data and cloud-to-ground lightning data used in this research cover 

32.5°N – 40.5°N and 93.5°W – 103.5°W (the red dashed boundary in Figure 3.1). The study 

domain mainly covers the states of Kansas, Oklahoma, and northern Texas. The data span a 

period of five years from April 1, 2010 to September 30, 2014, and only include warm seasons 

(April – September) each year. Severe thunderstorms are common features in the study area, so 

understanding their life cycle characteristics is significant for weather forecasting, disaster 

management, and hydrological management (Whitehall et al. 2015). 
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Figure 3.1 The study area (highlighted in red dashed rectangle) mainly covers the state of Kansas, 

Oklahoma, and northern Texas. A radar reflectivity image at 8:00, 24 April 2011 UTC is shown 

as an example. 

 

3.2.3 Land cover data 
 

The latest 2011 version of the National Land Cover Dataset (NLCD) is used to study the 

relationship between land cover types and thunderstorm occurrence. NLCD 2011 is primarily 

based on the unsupervised classification of 2011 Landsat satellite data, which provides 

information on water bodies, vegetation, and developed lands at a spatial resolution of 30 meters. 

To link thunderstorm occurrence to the main land cover types in the study area, the original 

NLCD land cover classes are generalized and reclassified into seven major types including water 

(1.2%), barren (0.2%), grasses (42.4%), wetlands (1.0%), urban areas (3.2%), forests (11.5%), 
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and crops (40.4%) (Figure 3.2). The study area is mainly covered by grasses, crops, and forests. 

The NLCD data is reprojected to the same coordinate system (GCS_North_American_1983 

spatial reference system) as the radar reflectivity data, and is resampled to 1 km spatial resolution 

using a majority resampling method to match the radar data. 

 

Figure 3.2 The land cover types in the study area after reclassifying 2011 NLCD into seven main 

types. 

 

3.2.4 Extraction of thunderstorm life cycles 
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First, a storm cell in a radar image is delineated as a contiguous region where both the 

reflectivity and area are greater than or equal to certain thresholds. Based on the sensitivity 

analysis in Liu et al. (2016), the reflectivity range should be between 30 and 40 dBZ, and the 

area range should be between 20 and 30 km
2
 for convective storms. Because the focus is on 

substantial thunderstorms, the reflectivity and area thresholds were chosen as 35 dBZ and 20 km
2
,
 

respectively. A component-labeling algorithm (Haralock and Shapiro 1991) was used to extract 

storm cells from individual radar images. 

After extracting storm cells in each radar image, the critical and challenging step is to 

associate the storm cells on consecutive radar images to extract the whole life cycle of a storm. 

In this study, storm life cycle extraction used an improved centroid-based storm tracking 

algorithm developed by Liu et al. (2016) which considered the spatial overlap, centroid distance, 

and movement direction of storm cells simultaneously. A storm centroid is the reflectivity-

weighted mean position of the radar pixels in the storm cell. If a storm cell on the current image 

and a storm cell on the next image have sufficient spatial overlap and are within a reasonable 

distance and movement direction, the two storm cells are considered in the same storm trajectory. 

The sensitivity analysis (Liu et al. 2016) on spatial overlap indicates a reasonable range of spatial 

overlap is between 0.4 and 0.8. In this study, we set 0.6 as the threshold of spatial overlap. Based 

on the average storm movement speed and sampling frequency of the radar images, the threshold 

for centroid distance was set to 10 km. Finally, the angle between the predicted movement 

direction of a storm cell and the direction from the centroid of the storm cell on the current radar 

image to the centroid of a possible matching storm cell on the next radar image should be less 

than 90° in order to keep only realistic storm movement (Liu et al. 2016).  
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Cloud-to-ground lightning data determines whether extracted storms are thunderstorms. The 

lightning point data were overlaid with storm cell polygons. If lightning occurs in any storm cells 

of a storm, the storm is counted as a thunderstorm. This method, however, may omit some 

thunderstorms because not all thunderstorms generate cloud-to-ground lightning (Lock and 

Houston 2015). 

An application developed via MATLAB was utilized to process, extract, represent, and 

analyze the thunderstorms. A flow chart illustrating the key steps is shown in Figure 3.2. The 

radar reflectivity images are preprocessed by creating a subset of radar data over the study area 

and converting the data format. Afterwards, three most important tasks are carried out and 

include storm cell delineation, storm life cycle extraction, and thunderstorm identification. A 

number of properties are calculated for the thunderstorms at both cell level and life cycle level. 

At the cell level, we calculated the total reflectivity and area. Thunderstorm cells are 

approximated by ellipses, so we also calculated the orientation, major and minor axis of the 

ellipses. At the life cycle level, we calculated the duration, mean movement speed and direction 

during the life span of a thunderstorm.  For the thunderstorm climatology, we also calculate 

statistics of these properties. 

3.2.5 Directed graph representation of thunderstorms in GIS 
 

A directed spatiotemporal graph model (Figure 3.4) is used to represent the life cycle of a 

thunderstorm including its initiation, development, interactions among storm cells, and 

termination. Nodes and directed edges are the two basic components of our directed graph model. 

Reflectivity-weighted centroid, which captures the most intense precipitation in a storm cell, is 

used as a node to represent the cell. Edges in the graph model represent the linkages among 

thunderstorm cells at two consecutive radar images and direction denotes time sequence. 



51 

 

Figure 3.4 shows an example of a thunderstorm extracted from five radar images from time t1 

to t5 with a duration of 20 minutes. We could see there are a total of eight thunderstorm cells in 

its life cycle. There are five filiation relationships (initiation, continuity, split, merger, and 

termination) in the figure. The thunderstorm initiates from thunderstorm cell a at time t1, then 

develops into cell b at time t2. Cell b and c merge into cell d at time t3. At time t4, cell d splits 

into three cells e, f, and g, and finally this thunderstorm terminates at time t5 as cell h. Using the 

directed spatiotemporal graph model, the initiation, termination, split, and mergers can be 

quantified, which will be discussed in Section 3.3. 

Many details are contained in the directed graph representation. To begin with the simple 

storm statistics such as storm duration and the mean speed and direction of storm movement, the 

maximum reflectivity path (Liu et al. 2016), which is based on the classic Dijkstra graph shortest 

path algorithm, is applied to the database to produce a polyline (the red line in Figure 3.4). When 

the density of thunderstorm trajectories is calculated, the maximum reflectivity path is extracted 

to calculate the density using the polylines. Compared to previous studies (Dixon and Wiener 

1993, Johnson et al. 1998, Lakshmanan and Smith 2010, Zahraei et al. 2013), our approaches 

study both the interactions among thunderstorm cells within its life cycle (the directed graph 

representation) and generalized trajectory from a simplified life cycle (the polyline 

representation). 



52 

 

 

Figure 3.3 The workflow of identifying, representing, and analyzing thunderstorms. 
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Figure 3.4 A graph representation showing the life cycle of a thunderstorm. The red polyline is 

the simplification of the graph representation using the maximum reflectivity path. 

3.3 Results and discussion 
 

The results of the thunderstorm climatology highlight a number of different spatial and temporal 

characteristics found during the warm seasons from 2010 to 2014. An important emphasis is to 

illustrate how GIS representations and analyses can be used for climatological research in 

meteorological communities. 

3.3.1 Temporal characteristics 
 

A total of 130,097 thunderstorms were identified across the study area during the five-year time 

period. Annual and monthly numbers of thunderstorms are shown in Figure 3.5a and Figure 3.5b. 

On average there are 26,019 per year and the annual number of thunderstorms does not vary 

much with a coefficient of variation of 5.4% (Figure 3.5a). While 2010 has the most number of 

thunderstorms (27,824) during the study period, 2011 is the most inactive year (23,942). 2010 is 

16% higher than the number in 2011. The number of thunderstorms in 2012 (26,164), 2013  
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Figure 3.5 (a) Annual and (b) monthly thunderstorm occurrences in the study area during warm 

seasons (April to September) from 2010 to 2014. 

(26,518), 2014 (25,649) does not have a great difference, which is around the mean number of 

thunderstorms (26,019). 

Figure 3.5b shows dramatic variation in monthly numbers of thunderstorms. The number of 

thunderstorms increases dramatically from April (22,209) to the peak in May (27,528), a 23% 

increase. Then thunderstorms decrease quickly from June to September. May to July accounts 

for approximately 59.2% of the total thunderstorms during the warm seasons, and they are the 

three most active thunderstorm months. 

The histogram of thunderstorm durations (Figure 3.6a) shows an exponential decay 

distribution consistent with Hocker and Basara (2008b) and Novo et al. (2013). The average 

duration of the thunderstorms is 23.1 mins, and 65.8% of the thunderstorms have a duration 

between 5 and 20 minutes. 8,914 out of 130,097 thunderstorms (6.9%) lasts more than one hour. 

  
 

 

(a) (b) 
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If a thunderstorm extends outside of the study area, its duration time would be shortened. As a 

result, thunderstorm durations are underestimated for those that end outside of the domain. 

Figure 3.6b shows the average thunderstorm durations by month (April: 21.5 mins, May: 23.4 

mins, June: 22.1 mins, July: 23.7 mins, August: 24.4 mins, September: 24.6 mins). Moreover, 

very long lived thunderstorms, which last over 3 hours, are more frequent between July and 

September than in other months. Robinson and Easterling (1988) pointed out that thunderstorms 

had a longer lifespan in summer than in spring in central United States. In our study area, the 

average duration in summer (June to August) is 23.2 mins, while the average duration in spring 

months (April and May) is 22.7 mins, which verifies that long lived thunderstorms do favor 

summer months though long lived thunderstorms consist of only a small portion of total 

thunderstorms (Figure 3.6a). 

Figure 3.7 demonstrates the histograms of thunderstorm initiation and termination time. The 

most frequent time for thunderstorm initiation occurs from 2100 to 0000 UTC which is in the 

early evening at local time and favors single cell and multicellular thunderstorms (Tucker and Li 

2009). Thunderstorm termination is most common from 2100 to 0300 UTC. 

Figure 3.8 shows the monthly rose diagrams of thunderstorm movement speed and direction. 

The monthly average movement speeds are 63.2 km/h (April), 53.8 km/h (May), 48.1 km/h 

(June), 38.1 km/h (July), 42.5 km/h (August), and 47 km/h (September), which are similar to the 

climatological analysis in North Dakota in Mohee and Miller (2010). For movement direction, 

thunderstorms are most common between 45 and 90 degrees with an average thunderstorm 

vector from the southwest to northeast during the warm seasons from 2010 to 2014. 
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(a) 

(b) 

Figure 3.6 (a) Histogram of thunderstorm durations; (b) average duration of thunderstorms by 

month. 
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Figure 3.7 Histogram of thunderstorm initiation (blue) and termination (red) time during a day. 

 

  

(a) (b) 
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Figure 3.8 Rose diagrams of thunderstorm movement distributions for (a) April through (f) 

September. 

 

3.3.2 Spatial characteristics 
 

Using maximum reflectivity path, a density raster grid of thunderstorm trajectories with a cell 

size of 0.01 degrees (~1 km) was generated with a search radius of 0.5 degrees. The 

thunderstorms were divided into cumulative month periods to quantify the spatial and temporal 

variability of thunderstorm track from 2010 to 2014 (Figure 3.9). The spatial frequency analyses 

could highlight a number of hot spots across the study area during the limited 5-year period. 

(c) (d) 

(e) (f) 
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Figure 3.9 shows thunderstorm density in each month from April to September, and all the 

months during the five-year period.  

In April (Figure 3.9a), thunderstorm hot spots are mainly located in the east 1/3 of the study 

area, from central Kansas and Oklahoma to the east boundary. May has the peak of thunderstorm 

occurrences and the thunderstorms mainly concentrate on the east half of the study area, in 

southeastern Kansas, north-central Oklahoma and northeast Texas (Figure 3.9b). In June, there is 

a pronounced density decrease in thunderstorm occurrence (Figure 3.9c). Thunderstorms mainly 

occur in the western and northern quarters of the study area, which is different from those in 

April and May. 

Thunderstorm occurrence further decreases gradually through July, August, and September 

(Figure 3.9d-f). In July, thunderstorm hot spots are scattered throughout the study area with some 

concentration in the state of Kansas and Oklahoma. In August, thunderstorms concentrate in the 

middle 1/3 of the study area covering southern Kansas, northern Oklahoma, and the most 

northern part of Texas. Thunderstorms concentrate along the border region between Kansas and 

Missouri and central Oklahoma in September. 
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Figure 3.9 Thunderstorm track density (km/km
2
) from April (a) to September (f), and all the 

months (g). 
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Cumulative density in the six months (Figure 3.9g) shows that major thunderstorm activity 

occurs in the east half of the study area, especially centered at the border among Kansas, 

Missouri, Oklahoma, and Arkansas. For the three major states (Kansas, Oklahoma, and northern 

Texas) in the study area, the thunderstorm activities are mainly in Kansas (central to the most 

east) and Oklahoma (north-central, northeastern and southeastern). Based on the land cover types 

in Figure 3.2, the land cover type of highest thunderstorm density is forest covering from central 

Oklahoma to the state of Arkansas in the study area. The second land cover type with active 

thunderstorms is crops, which are the main land cover stretching from central Kansas to the east 

boundary of the study area. The area in and around Oklahoma City is a hot spot for thunderstorm 

activity. The relationship between thunderstorm track and land cover types is discussed in 

Section 3.3.4, and a comparison between thunderstorm track in urban and rural areas is provided 

in Section 3.3.5. 

For the locations of thunderstorm initiation and termination, we used the starting and ending 

points of a thunderstorm’s trajectory, i.e. the maximum reflectivity path. The initiation and 

termination point density maps are shown in Figure 3.10 for the 5-year thunderstorms to quantify 

active areas of thunderstorm occurrences. Figure 3.10 demonstrates the kernel point density 

analyses determining the concentration of points within a search radius of 0.5 degrees of each 

initiation and termination point. The spatial distributions of initiation (Figure 3.10a) and 

termination density (Figure 3.10b) are quite similar with the greatest density on both maps found 

along the border between Oklahoma and Arkansas, and in south part of the border between 

Kansas and Missouri. In Kansas, initiation and termination hot spots are mainly located in the 

southeast corner of Kansas. In Oklahoma, thunderstorm initiations and terminations are most 

concentrated in the east half of Oklahoma. In Texas, initiations and terminations are concentrated 
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mainly in northern Texas and at the border between northern Texas and New Mexico. By 

overlaying the initiation and termination density maps with the land cover map (Figure 3.2), we 

find that forest and crop land cover types contain most initiation and termination hot spots 

located in the border among Kansas, Missouri, Oklahoma, and Arkansas. Urban areas also have 

higher initiation and termination density. 

3.3.3 Thunderstorm cell split and merger 
 

Thunderstorm cells interact with each other in the process of storm development and the 

interaction is a significant factor influencing storm evolution (Lee et al. 2006a, Lee et al. 2006b). 

For example, two or more small thunderstorm cells may merge into a large thunderstorm cell, 

and a large thunderstorm cell may split into a number of small thunderstorm cells. The directed 

graph representation of thunderstorm life cycles provides an opportunity to study their split and 

merger characteristics. In a directed graph, if the number of in-degree of a node (a thunderstorm 

cell) is greater than 1, a merger occurs to the thunderstorm cell. For example, the in-degree of 

thunderstorm cell d is 2, because cell b and c merge into cell d (Figure 3.4). If the number of 

out-degree of a node is greater than 1, then a split occurs to the thunderstorm cell. For example, 

the out-degree of thunderstorm cell d is 3, because it splits into cell f, g, and e (Figure 3.4). 

Based on the in-degree and out-degree calculated at each thunderstorm cell, the split and merger 

density maps (a raster grid of cell size of 0.01 degrees) with a search distance of 0.5 degrees are 

shown in Figure 3.11.  
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Figure 3.10 Thunderstorms initiation (a) and termination (b) density (count/km
2
) maps. 
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Figure 3.11 Thunderstorm cell split (a) and merger (b) density (count/km
2
) maps. 
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Among all the thunderstorms (130,097), about 13% (17,295) of the thunderstorms have splits, 

and 22% (29,837) of the thunderstorms have mergers in their life cycles. Compared to splits, 

there are more mergers existing in the life spans of thunderstorm events. For splits, most of 

thunderstorm cells only split into two or three smaller thunderstorm cells. The largest split 

density is around 400 count/km
2
, but the greatest merger density reaches around 600 count/km

2
. 

Most thunderstorm cells have only two or three thunderstorm cells merge into a large 

thunderstorm cell. The average size of thunderstorm cells with splits is 226 km
2
, and the average 

size of thunderstorm cells after mergers is 247 km
2
. 

As for the spatial distribution of splits and mergers (Figure 3.11), their hot spots have some 

similarities. They are mainly located along the border between Oklahoma and Arkansas and the 

border between Kansas and Missouri, in central Oklahoma, and northern Texas. When 

comparing Figure 3.10 and Figure 3.11, the biggest difference is in the panhandle area in 

northern Texas. There are not many initiation and termination hot spots in the area. But splits and 

mergers occur a lot in the region. This means the thunderstorms do not initiate or terminate often 

in the northern Texas compared to other states in the study area. However, there are also a lot of 

splits and mergers occurring in Texas during the thunderstorm life cycles. In Kansas and 

Oklahoma, split and merger hot spots have similar spatial patterns seen in initiation and 

termination in the eastern part of the study area. 

For land cover types (Figure 3.2), we see that splits and mergers mainly occur in forest areas 

where they have the highest density. This is the case in the states of Oklahoma, Arkansas, and 

Missouri. For Texas and Kansas, splits and mergers mainly occur in crop and grass areas. 

Overall, thunderstorm initiation, termination, split, and merger favor the forest and crop land 
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cover types in the study area. In the next section, we present a statistical analysis on the 

relationship between thunderstorm tracks and land cover types. 

3.3.4 Relationship between thunderstorm occurrences and land cover types 
 

Many factors could affect the locations of thunderstorms’ initiation, termination, split, and 

merger such as the dry line from western Oklahoma northward through western Kansas over the 

Great Plains in this study area (Owen 1966) and topographic effects (Chen et al. 2012, Wang et 

al. 2014). In this study, the relationships between thunderstorm track, initiation, termination, split, 

merger density and seven major land cover types is examined quantitatively (Table 3.1). The 

densities were obtained by dividing the results in Figure 3.9g, Figure 3.10, and Figure 3.11 by 

the area of each land cover type. From Table 3.1, thunderstorm track, initiation, and termination 

have the same rankings over the seven major land cover types in the study area. Forests, urban 

areas, and crops are the top three land cover types favoring thunderstorm events, and grasses 

have the lowest ranking. The highest thunderstorm tracks in forest land cover may be because 

dense forests have greater ability to store and release moisture, which is likely to increase 

aerodynamic roughness values (Gambill and Mecikalski 2011, Wang et al. 2014). Most of the 

dense forests are in the mountainous areas of the Ozark National Forest and Ouachita National 

Forest in the study area. Meanwhile, there are also thunderstorm hot spots in Wichita Mountains 

and Ouachita Mountains located in Oklahoma. Tucker and Li (2009) also found that 

mountainous areas had more storms than flatter areas. For urban areas, a strong urban heat island 

can influence vertical mixing, raise planetary boundary layer height, and weaken the capped 

inversion intensity, which are conductive to the development of convection (Shepherd et al. 2002, 

Shepherd 2005, Ashley et al. 2012). Niyogi et al. (2011) also used the radar data to verify that 
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urban areas alter the initiation and intensity of thunderstorms due to land surface heterogeneity 

which favors the convective initiation or preconvection (Holt et al. 2006). 

The split and merger densities have different ranking over the seven major land cover types. 

Forests, crops, and grasses are the favorite land cover types triggering splits and mergers during 

thunderstorm life cycles. The split and merger densities in urban areas are not very high.   

Table 3.1 The densities of thunderstorm track (km/km
2
), initiation (count/km

2
), termination 

(count/km
2
), split (count/km

2
), and merger (count/km

2
) over seven major land cover types. 

Land cover Track Initiation  Termination  Split Merger  

Forests 303 1,867 1,904 242 404 

Urban 282 1,679 1,689 208 350 

Crops 271 1,634 1,629 228 390 

Water 266 1,624 1,622 215 358 

Barren 264 1,603 1,610 201 342 

Wetlands 259 1,549 1,553 202 356 

Grass 250 1,504 1,478 220 368 

 

3.3.5 Comparison of thunderstorm occurrences between urban and rural 

areas 
 

A number of studies indicated that urban areas could change local climate because of higher heat 

content, increased surface roughness, and boundary layer instability associated with urbans 

(Chase et al. 2000, Feddema et al. 2005, Shepherd 2005). In this section, our research examines 

whether urban areas augment warm-season thunderstorm activities by comparing thunderstorm 

tracks between urban and rural areas. Three big cities, Kansas City, Oklahoma City, and Dallas 

(Figure 3.2) are in the study area were chosen. We identified urban areas that contain four NLCD 

land cover classifications including Developed, Open Space (21), Developed, Low Intensity (22), 

Developed, Medium Intensity (23), and Developed, High Intensity (24). This produces large 

urban polygons for each of the metropolitan areas. Those urban polygons also include some non-

urban land cover types such as grasses and water due to their containment in the larger urban 
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polygon. After delineating the three urban polygons, rural areas were delineated as the buffers of 

10 km (Kansas City), 10 km (Oklahoma City), and 20 km (Dallas) surrounding the urban 

polygons. Table 3.2 shows the statistical significance for the mean differences of thunderstorm 

tracks (Figure 3.9g) and initiations (Figure 3.10a) between the urban and rural areas around the 

three cities using the t-test at a 5% significance level.  

From Table 3.2, we see that Kansas City and Oklahoma City have statistically significant 

increases in warm-season thunderstorm occurrences and initiations in comparison to their rural 

counterparts because the p value is less than 0.05 and t value is positive. However, Dallas urban 

and rural areas have no significant differences (p value is greater than 0.05) in both thunderstorm 

tracks and initiations indicating that the Dallas urban area may not favor thunderstorms or it is 

masked by other circulations and convergence mechanisms induced by non-urban LULC. 

Table 3.2 T-test on difference of means for thunderstorm tracks (km) and initiation (count) 

between urban and rural areas at three cities. No significance is shaded gray. 

 Track 

t  

Occurrence 

p  

Track 

t  

Initiation 

p  

Kansas City 11.79 0.000 26.47 0.000 

Oklahoma City 17.21 0.000 32.51 0.000 

Dallas -6.5 1.000 -0.51 0.547 

 

3.4 Conclusions 
 

This research studies spatial and temporal characteristics of thunderstorm life cycles in central 

United States mainly covering Kansas, Oklahoma, and northern Texas during the warm seasons 

from 2010 to 2014. An improved centroid-based thunderstorm tracking algorithm was utilized to 

identify thunderstorm life cycles from radar reflectivity data and cloud-to-ground lightning data. 

The recorded life cycle of a thunderstorm includes initiation, development, termination, merger, 

and split. A directed graph model was used to represent the life cycles and to study the 



69 

 

interactions of thunderstorm cells (split and merger), and the maximum reflectivity path as a 

polyline was used to generalize the life cycle of a thunderstorm. Thunderstorm life cycles and 

their attributes were stored in a GIS database and GIS was used to visualize, query, and analyze 

thunderstorm life cycles. 

Our climatological analyses indicate a strong peak of thunderstorm occurrences in May. Most 

of thunderstorms (65.8%) have a duration from 5 to 20 minutes. Thunderstorm initiation is most 

frequent from 2100 to 0000 UTC, and the thunderstorm termination is most common from 2100 

to 0300 UTC. 

Major thunderstorm activities are in the eastern part of the study area, especially at the border 

among Kansas, Missouri, Oklahoma, and Arkansas. We found initiation and termination hot 

spots along the border between Oklahoma and Arkansas and the south end at the border between 

Missouri and Kansas. Based on the directed graph representation, we found that splits and 

mergers are mainly located along the border between Oklahoma and Arkansas and the border 

between Kansas and Missouri, in central Oklahoma, and in central and northern part of Texas. 

We also linked thunderstorms to land cover types, and found that thunderstorms favor forests 

and urban areas. Forests, crops, and grasses may trigger splits and mergers during the life cycle 

of a thunderstorm. Statistical analyses demonstrated that the urban areas in Kansas City and 

Oklahoma City had statistically significant thunderstorm occurrences than the surrounding rural 

areas, though the Dallas urban area did not show this feature. 

The methods and analyses presented in this work demonstrate how to apply GIS 

representations and spatial analyses to meteorological study. Atmospheric science has many 

potentials to incorporate GIS due to spatiotemporal nature in atmospheric systems. For example, 

it is also interesting to represent and analyze other meteorological phenomena such as hurricanes 
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and heat wave. We would also like to enlarge the spatiotemporal coverage of the radar and 

lightning data to study thunderstorm characteristics for the entire United States, and explore the 

relationships between thunderstorms and other factors such as terrain in the future. 
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4 Storm event similarity analysis 
 

4.1 Introduction 
 

Modeling movement patterns is an important research topic in GIS. A number of researchers 

(McIntosh and Yuan 2005, Xia et al. 2011, Dodge et al. 2012, Yuan and Raubal 2014) have 

studied inter-event similarity which supports event clustering, generalization, and pattern 

recognition (Dodge et al. 2009, Miller 2012, Buchin et al. 2014). 

Similarity analysis answers the question: ‘How similar are the movement paths of two or 

more events?’ (Buchin et al. 2014). In GIS, similarity measure is quantified as the cost or 

distance transforming one event to another (Faloutsos et al. 1997, Dodge et al. 2012). There are 

two basic similarity analyses: spatial similarity which only considers event geometric shape and 

spatiotemporal similarity which considers the spatial and temporal characteristics of events 

(Tiakas et al. 2009, Abraham and Lal 2012, Dodge et al. 2012, Buchin et al. 2014). A number of 

distance measurements such as Euclidean distance, edit distance, Hausdorff distance, and 

dynamic time warping (Ding et al. 2008, Alt 2009, Yuan and Raubal 2014) are used to assess 

event similarity. Ranacher and Tzavella (2014) reviewed physical movement similarity measures 

from spatial, temporal, and spatiotemporal perspectives. 

McIntosh and Yuan (2005) assessed storm similarity using six indices to capture static and 

dynamic features of storms such as elongation, orientation, distribution, growth, granularity of 

change, and relative movement. They then applied the dynamic time warping method to the 

sequences of the indices to determine the similarity among storm events. However, they did not 
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consider specific types of storm cells such as single storm cell, multi-cell clusters, and supercells. 

Dodge et al. (2012) compared the similarity among hurricane trajectories via three major steps. 

The first one is to decompose a trajectory into a number of segments with homogeneous 

characteristics such as speed, acceleration, or direction. Then the trajectory was transformed into 

a sequence of labels/letters. Finally, normalized weighted edit distance was used to assess the 

similarities among different letter sequences. The advantage of this method is to convert complex 

trajectories to sequences of letters and apply the string edit distance (Levenshtein 1966, Wagner 

and Fischer 1974) to measure similarity. However, they only applied one movement parameter 

such as speed or direction to segment trajectories and did not deal with split or merger 

interactions. Yuan and Raubal (2014) developed spatiotemporal edit distance to determine the 

similarity among people trajectories using phone detailed records. They improved traditional 

string edit distance algorithm by considering both spatial and temporal information in their cost 

functions. 

In our research, the major objective is to assess the similarity among storm events. Convective 

storm events are represented using a spatiotemporal directed graph model. The advantage of 

graph-based data model is that there are a number of graph algorithms we could explore and 

extend. Since graph edit distance (GED) measures the similarity among graphs (Conte et al. 2004, 

Gao et al. 2010, Ferrer and Bunke 2012, Cheung et al. 2015) we would like to use the GED to 

assess the similarities of convective storm events. If we use the maximum reflectivity path to 

generalize storm events as single trajectories, we could also use the string edit distance algorithm 

to assess their similarity. The data and methodologies are introduced in Section 4.2, and 

preliminary experiments are presented in Section 4.3. 

4.2 Data and methodology 
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The data used in this study is the 5-years’ (2010 - 2014) warm season thunderstorm events 

identified in Chapter 3. The primary methods for measuring event similarity include string edit 

distance and graph edit distance. 

4.2.1 Classification of single storm cells 
 

Graph nodes, representing people and vehicles, could find the exact identities between the two 

graphs. However, there are no clear identities for convective storms, and we used reflectivity and 

area thresholds to delineate convective storm cells (Section 2.2.1). As a consequence, we firstly 

used attributes, such as area, geometric shape, and intensity, to differentiate convective storm 

cells as single cell, multi-cell clusters, and supercells (Figure 4.1a). In this study, there are a total 

of twenty classes for single storm cells based on previous studies (Johnson 2004, Gallus et al. 

2008, Smith et al. 2012). Then we manually classified about 600 storm events which have about 

3,000 single storm cells (Table 4.1) in 2014. These storm cells are on the maximum reflectivity 

paths. We used the first twenty letters (A through T) to represent the storm cell classes and 

transformed the sequence of storm cells into a string. We could then use string edit distance 

algorithm (Section 4.2.2) to assess the similarity among storm events. Figure 4.1b is the string 

representations for the ten example storm events in Table 4.1. For example, storm #2 has three 

storm cells, and their types are isolated thunderstorm (I), cluster (Q), and cluster (Q) respectively. 

We cannot manually classify all the single storm cells because of the high volume, so we will 

do some regression models to automatically relate the types of storm cells with their attributes 

including area and geometric shape. After classifying all the storm cells in the whole graph, the 

graph edit distance algorithm (Section 4.2.3) could be applied to assess the similarity among 

storm event graphs. 
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Figure 4.1 (a) Classes of single storm cells; (b) String representations for the ten storm events in 

Table 4.1. 

 

Table 4.1 Properties and single storm cell types of ten example storm events.  

ID # of 

Cells 

Total 

Precip 

Footprint 

Size 

Footprint 

CV 

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 

1 416 5806 333 0.35453 I N    

2 392 5309 283 0.41642 I Q Q   

3 106 1403 87 0.33764 L L    

4 1095 15256 620 0.43553 D D F   

5 1061 14528 524 0.46996 Q I Q N N 

6 531 7358 209 0.48902 H H H H H 

7 209 2805 126 0.44599 L L I L  

(b) (a) 
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8 3629 51979 1411 0.52396 F F F C C 

9 672 9611 373 0.45253 C D D   

10 599 8181 397 0.44988 H H H   

 

4.2.2 String edit distance 
 

Wagner and Fischer (1974) proposed edit distance, which quantifies how similar two strings are 

using the minimum number of operations required to transform one string to another. There are 

three edit operations including insertion, deletion, and substitution. For example, the edit 

distance between IN and IQQ is 2. IN to IQ (substitution of Q for N), and IQ to IQQ (insertion of 

Q at the end). The edit distance between IN and LL is also 2. IN to LN (substitution of L for I), 

and LN to LL (substitution of L for N). However, there are no the same storm cell types between 

the two storm events, so there should be no similarity between the two storm events. 

4.2.3 Graph edit distance 
 

Graph edit distance (GED) is a metric using the minimum number of editing nodes and edges 

including insertion, deletion, and substitution (Riesen and Bunke 2009, Cheung et al. 2015, 

Fischer et al. 2015) when changing a graph into another. An example GED between graph G1 

and G2 is shown in Figure 4.2. When graph G1 is transformed into G2, the following six 

operations are needed: removal of node C, removal of edge CB, addition of node E, addition of 

edge BE, addition of node F, and addition of edge DF. If the above six operations have equal 

cost/distance, such as 1, the final edit distance between the two graphs is 6. The smaller the edit 

distance is, the more similar the two graphs are. Two graphs are the most similar if they have the 

smallest GED. 
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After classifying all the storm cells using the regression model based on the manual 

classifications, GED algorithm will be used to assess the similarity among different storm graphs. 

A graph matching tool (Figure 4.3) developed by Riesen et al. (2013) will be explored. From 

component ② in Figure 4.3, there are several different GED algorithms we could use. After 

assessing the similarities of convective storm events, we will evaluate the similarity algorithm in 

storm event clustering. 

B D 
A 

C 

B 

Figure 4.2. Two graphs for an example GED. 

G1 G2 E 

F 
D 

A 
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Figure 4.3 The main window of graph matching tool. Adopted from Riesen et al. (2013). 

4.3 Preliminary results 
 

We calculated string edit distance on the storm events that we have manually classified their 

single storm cells. The edit distance matrix for the ten storm events in Table 4.1 is shown in  

Table 4.2. Based on the edit distance, we could identify the most similar storm event for any 

storm events in the table. However, even if the edit distance is the smallest, two storm events 

may not have any similarity. In this case, we assign a big number such as 1000 to the edit 

distance to indicate no similarity if there are no the same storm cell types between two storm 

events. In the future, we will explore the graph edit distance introduced in previous section. 
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Table 4.2 Edit distance matrix for ten example storm events in Table 4.1. Yellow color indicates 

the most similar storm event for the storm event in a column. 

 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

S1  2 2 3 3 5 3 5 3 3 

S2   3 3 3 5 4 5 3 3 

S3    3 5 5 2 5 3 3 

S4     5 5 4 4 2 3 

S5      5 5 5 5 5 

S6       5 5 5 2 

S7        5 4 4 

S8         5 5 

S9          3 

S10           
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5 Conclusions and Future Research  
 

5.1 Summary of findings and contributions 
 

Large amounts of spatiotemporal data have been collected or generated for the monitoring and 

modeling of environmental systems. Those time series of data also provide the opportunity to 

study the movements and dynamics of many different natural phenomena. While the snapshot 

organization is simple and straightforward, it does not directly capture or represent the dynamic 

characteristics of geographic phenomena. By defining the clusters of attributes and their changes 

in space and time as spatiotemporal events and by making the events explicit from 

spatiotemporal snapshot data, we develop innovative and computational efficient methods and 

tools for the identification, representation, and characterization of events based on a directed 

spatiotemporal graph model using convective storm events as an example. 

Chapter 2 of this dissertation addresses how to identify the life cycle of convective storm 

events from consecutive radar images, how to use a directed spatiotemporal graph model to 

represent the convective storms, and how to use graph algorithms to analyze the storm events. 

The major findings and contributions can be listed as follows: 

1) An event-based theory was applied to dynamic geographical phenomena, which can be 

systematically delineated with an origin, a development stage, a movement stage, and a 

potential cessation or dissolution phase. 
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2) An improved centroid-based storm tracking algorithm was developed, which 

simultaneously considers the topology/spatial overlap, centroid distance of storm objects, 

and movement direction. 

3) Sensitivity analysis was implemented to test the accuracy of the storm tracking algorithm 

to three thresholds including area, reflectivity, and area overlap. 

4) A directed spatiotemporal graph model was proposed to represent the convective storm 

events. In this model, graph nodes represent the storm cells, and directed graph edges 

represent the filiation relationships among storm cells. Using this graph model, the 

following filiations can be well visualized and represented:  generation, continuity, split, 

merger, combinatorial, and dissipation. 

5) Graph-based algorithms were explored to analyze the convective storm events. The first 

one is the maximum reflectivity path using the classic Dijkstra’s shortest path algorithm 

on the graph to generalize the original storm event. The second one is in-degree/out-

degree to model the interactions among storm cells including split and merger. 

6) A MATLAB program was developed to realize the storm tracking algorithm, directed 

spatiotemporal graph representation, graph-based algorithms, visualization of convective 

storms using plots and videos. 

7) The methodologies was applied to one of the deadliest storm outbreaks that impacted 15 

states of southeastern U.S. between April 23 and 29, 2011. Several statistical analyses was 

done including duration, movement speed and direction, which confirmed theory, 

numerical simulations, and other observed case studies. 
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Chapter 3 of this dissertation addresses how to apply the identification and representation 

methodologies to thunderstorm spatiotemporal characteristics in central United States from 2010 

to 2014. The major findings and contributions can be listed as follows: 

1) The storm tracking algorithms were applied to five years’ warm season radar reflectivity 

data, and the cloud-to-ground lightning data were used to extract the thunderstorm events 

in central United States mainly covering the whole Kansas, Oklahoma, and northern 

Texas. 

2) A number of spatial and temporal characteristics of thunderstorms were studied. Most of 

thunderstorms (65.8%) have a duration from 5 to 20 minutes. Thunderstorm initiation is 

most frequent from 2100 to 0000 UTC, and the thunderstorm termination is most common 

from 2100 to 0300 UTC. 

3) Major thunderstorm activities are in the eastern part of the study area, especially at the 

border among Kansas, Missouri, Oklahoma, and Arkansas. 

4) Thunderstorm initiation and termination hot spots are along the border between Oklahoma 

and Arkansas and the south end at the border between Missouri and Kansas. 

5) Splits and mergers are mainly located along the border between Oklahoma and Arkansas 

and the border between Kansas and Missouri, in central Oklahoma, and in central and 

northern part of Texas. 

6) As for the relationship between thunderstorms and land cover types, thunderstorms favor 

forests and urban areas. Forests, crops, and grasses may trigger splits and mergers during 

the life cycle of a thunderstorm. 
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7) Statistical analyses demonstrated that the urban areas in Kansas City and Oklahoma City 

had statistically significant thunderstorm occurrences than the surrounding rural areas, 

though the Dallas urban area did not show this feature. 

In conclusion, this dissertation tries to propose a general workflow to identify, represent, and 

analyze dynamic geographical phenomena especially in the big data era. The identification 

algorithm should be application dependent, but the representational framework (directed 

spatiotemporal graph model) can be general like the two basic models (vector model and raster 

model) in the GIScience field. Based on this general representational model, we could further 

analyze the dynamic geographical phenomena. The biggest advantage of graph-based data model 

is that there are a number of existing graph algorithms we could explore and extend. Although 

this dissertation chose convective storm events as an example, the automatic processing methods 

and data model could be extended to other fields such as temperature, wildfire, land use/land 

cover and hurricane. 

 

5.2 Future research 

 
The possible future research is listed as follows: 

1) We will continue the similarity analysis based on the proposed methodologies in Chapter 

4. First, the storm cell types will be automatically classified, and then use the graph edit 

distance algorithm to assess the similarity. Storm event clustering will be used to evaluate 

the algorithms. There are also some problems we should deal with such as different 

cost/distance among different storm cell types’ substitution to improve the current cost 1. 

2) The identification, representation, and analysis framework is intended to apply to other 

geographical phenomena such as hurricanes and urban heat. The workflow may be 
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domain dependent, so there should be some modifications and improvements to the 

current methods. 

3) I would like exploring high performance computation such as cloud, distributed 

computation in order to improve computational efficiency. With respect to my research of 

storm event data from 2010 to 2014, finding ways to shorten computational time is critical 

and I would therefore like to parallelize the event tracking algorithm on high performance 

computational infrastructure. 

4) I am interested in exploring additional graph-based algorithms and methodologies to 

analyze the patterns, similarities, semantics, and dynamics of geographic phenomena. 

Although I have tried several graph algorithms, there are several promising algorithms I 

could look into in the future. 


